单片机按键程序(按钮处理)
单片机按键程序设计

单片机按键程序设计单片机按键的基本原理其实并不复杂。
通常,按键就是一个简单的开关,当按键按下时,电路接通,对应的引脚电平发生变化;当按键松开时,电路断开,引脚电平恢复到初始状态。
在程序设计中,我们需要不断检测引脚的电平变化,从而判断按键是否被按下。
在实际的按键程序设计中,有多种方式可以实现按键检测。
其中一种常见的方法是查询法。
这种方法是通过不断地读取按键对应的引脚状态来判断按键是否被按下。
以下是一个简单的查询法示例代码:```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void main(){while(1) //无限循环{if(key == 0) //如果按键按下,引脚为低电平{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;while(key == 0);//等待按键松开}}}```上述代码中,我们首先定义了按键连接的引脚`key`,然后在主函数的无限循环中不断检测按键引脚的状态。
当检测到按键按下时,执行相应的操作,并通过`while(key == 0)`等待按键松开。
除了查询法,还有中断法可以用于按键检测。
中断法的优点是能够及时响应按键动作,不会因为程序的其他操作而导致按键响应延迟。
```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void int0_init()//中断初始化函数{IT0 = 1; //下降沿触发中断EX0 = 1; //使能外部中断 0EA = 1; //开总中断}void int0() interrupt 0 //外部中断 0 服务函数{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;}void main(){int0_init();//初始化中断while(1);//无限循环,保持程序运行}```在上述代码中,我们首先在`int0_init` 函数中对中断进行了初始化设置,然后在`int0` 函数中编写了按键按下时的处理代码。
单片机按键连按长按汇编程序

单片机按键连按长按汇编程序;=============================================================== ;程序编写人:兰建文;编写地点:51hei培训机构;时间:6月7日下午星期日;功能:本程序实现P0口的对2个数码管显示0到99,一个按键实现一次;按键只递加1次,到99回到0,按着不动不影响数码管动态显示;任何时;刻,任何一个按键,若按键连续按键3次,每次间隔时间不大于1秒,循;环显示0到9回到0。
若间隔时间大于1秒,显示加1,低电平亮;P2口实现对数码管的片选功能;=============================================================== ;==========================系统程序============================= ;=========================开始初始化============================ SHUCHU EQU P0 ;定义P0口为输出口PIANXUAN EQU P2 ;定义P2口为片选口SHUZI EQU 30H ;设置处理数据存放地址JIANBIT0 BIT 20H.0 ;设置按键标志位XIAN0 BIT 20H.2 ;显示标志位T_BIT BIT 21H.0 ;设置中断定时器0标志位LIANAN BIT 20H.1 ;设置连按标志位BIT4 BIT 20H.2MODE EQU 01HSHU EQU 40H;========================程序开始==============================ORG 00H ;程序开始LJMP START ;跳到STARTORG 0BH ;中断定时器0入口地址JMP T0_1 ;跳到定时器0服务程序ORG 0030H ;入口地址;=========================主程序=============================== START:MOV SP,#60H ;移开指针MOV SHUZI,#00 ;数据初始化MOV DPTR,#TAB ;查表初始化MOV P1,#0F8H ;设置P1.0口为输入CALL INIT ;开中断CLR JIANBIT0 ;按键标志位清0CLR LIANAN ;连按标志位清0CLR BIT4SETB T_BIT ;中断标志位置1MOV SHU,#0MOV R2,#0MOV R3,#0MOV R4,#0MOV R5,#200MAIN:JNB T_BIT,MAIN ;等待中断CLR T_BIT ;中断标志位清0JB BIT4,VVINC R3CJNE R3,#25,XXMOV R3,#00MOV R2,#0JMP DDXX:CJNE R2,#3,VVSETB LIANANMOV R2,#00DD:CLR BIT4VV:JB LIANAN,XUNHUAN ;判断是否有连按CC:CALL JISUAN ;计算分离十位和个位CALL DISPLAY ;显示个位和十位JNB JIANBIT0,PANDUAN;按键标志位=1判断P1.3口,若为0则判断按键是否抬起JNB P1.3,XIANSHI0 ;若没抬起(P1.3=0)则调到XIANSHI0 SETB BIT4INC R2MOV R3,#0CLR JIANBIT0 ;按键标志位清0CLR XIAN0 ;显示标志位清0JMP MAIN ;返回MAINPANDUAN:JB P1.3,MAIN ;若按键抬起则返回MAIN,若没有抬起按键标志位清0 SETB JIANBIT0JMP MAINXIANSHI0:JB XIAN0,MAINSETB XIAN0 ;显示标志位清0CALL JIACHULI ;加处理JMP MAINXUNHUAN:MOV A,SHUCJNE A,#10,KKKMOV SHU,#0CLR LIANANMOV A,SHUKKK: MOVC A,@A+DPTR ;查表MOV SHUCHU,AMOV PIANXUAN,#05INC R4CJNE R4,#50,OUTTINC SHUMOV R4,#0OUTT:JMP MAIN;====================定时中断0服务子程序======================== ;输入:无;输出:无;实现的功能:实现定时20MS,影响标志位T_BIT;=============================================================== T0_1:MOV TMOD,#MODE ;定时器1工作方式1MOV TL0,#0E0H ;设置定时初值MOV TH0,#0B1HSETB T_BIT ;定时标志位清0RETI;========================中断设置子程序========================= ;输入:无;输出:无;实现的功能:初始化设置定时器,设置初值;===============================================================INIT:MOV TMOD,#MODE ;定时器0工作方式1MOV TL0,#0E0HMOV TH0,#0B1HMOV IE,#82H ;开定时器中断0SETB TR0 ;开定时器0RET;========================计算子程序============================= ;输入:30H;输出:"A和B";实现的功能:把30H的数据的十位和个位分离出来;=============================================================== JISUAN:MOV A,SHUZI ;数据放在A中MOV B,#10 ;除数放在B中DIV AB ;商放在A中,余数放在B中RET;========================显示子程序============================= ;输入:"A";输出:"P0口";实现的功能:把A的数输出到P0口显示,十位和个位分开显示;=============================================================== DISPLAY:MOVC A,@A+DPTR ;查表MOV SHUCHU,A ;显示十位MOV PIANXUAN,#04H ;片选CALL DELAY ;查表MOV SHUCHU,#0FFH ;关闭数码管MOV A,BMOVC A,@A+DPTR ;查表MOV SHUCHU,A ;显示个位MOV PIANXUAN,#05H ;片选CALL DELAY ;延时MOV SHUCHU,#0FFH ;关闭数码管RET;======================加处理子程序============================= ;输入:无;输出:无;实现的功能:把30H地址加1;=============================================================== JIACHULI:MOV A,SHUZICJNE A,#99,L0 ;若A不等于9,则跳到LL MOV A,#00JMP L1L0:INC A ;自加一L1:MOV SHUZI,ARET;========================延时程序===============================;输入;无;输出: 无;实现的功能:延时一段时间;=============================================================== DELAY:MOV R6,#80L7:MOV R7,#80L8:DJNZ R7,L8DJNZ R6,L7RET;=====================共阳查表数据============================== TAB:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H;=======================程序结束================================ END一个按键控制一个灯,要求按一下按键,灯亮一直亮,再按一下按键灯灭,要带按键的去抖程序。
51单片机键盘数码管显示(带程序)

期中大作业学院:物理与电子信息工程学院课题:【利用8255和51单片机实现数码管显示按键数值的程序】要求:【4*4矩阵键盘,按0到15,数码管上分别显示0~9,A~F】芯片资料:8255:8255是Intel公司生产的可编程并行I/O接口芯片,有3个8位并行I/O口。
具有3个通道3种工作方式的可编程并行接口芯片(40引脚)。
其各口功能可由软件选择,使用灵活,通用性强。
8255可作为单片机与多种外设连接时的中间接口电路。
8255作为主机与外设的连接芯片,必须提供与主机相连的3个总线接口,即数据线、地址线、控制线接口。
同时必须具有与外设连接的接口A、B、C口。
由于8255可编程,所以必须具有逻辑控制部分,因而8255内部结构分为3个部分:与CPU连接部分、与外设连接部分、控制部分。
8255特性:1.一个并行输入/输出的LSI芯片,多功能的I/O器件,可作为CPU总线与外围的接口。
2.具有24个可编程设置的I/O口,即3组8位的I/O口,分别为PA口、PB口和PC 口。
它们又可分为两组12位的I/O口:A组包括A口及C口(高4位,PC4~PC7),B组包括B口及C口(低4位,PC0~PC3)。
A组可设置为基本的I/O口,闪控(STROBE)的I/O闪控式,双向I/O三种模式;B组只能设置为基本I/O或闪控式I/O两种模式,而这些操作模式完全由控制寄存器的控制字决定.引脚说明RESET:复位输入线,当该输入端处于高电平时,所有内部寄存器(包括控制寄存器)均被清除,所有I/O口均被置成输入方式。
CS:芯片选择信号线,当这个输入引脚为低电平时,即CS=0时,表示芯片被选中,允许8255与CPU进行通讯;CS=1时,8255无法与CPU做数据传输。
RD:读信号线,当这个输入引脚为低电平时,即CS=0且RD=0时,允许8255通过数据总线向CPU发送数据或状态信息,即CPU从8255读取信息或数据。
WR:写入信号,当这个输入引脚为低电平时,即CS=0且WR=0时,允许CPU将数据或控制字写入8255。
按键模拟仿真 原理图与程序(汇编+C语言)

按键模拟仿真(入门级实验)实验介绍1:利用单片机控制一个按键以及一个LED灯,通过程序控制上述两个原件,模拟简单的按键控制LED电路。
当按键按下的时候LED灯点亮,当按键松开的时候LED熄灭。
(拓展:可以对该实验进行一定的拓展,例如当按键按下一段时间后,LED灯才开始点亮,或当按键松开后,LED灯点亮一段时间后再熄灭等等)实验目的:通过对简单的按键控制LED电路的模拟,掌握单片机读入数字量的过程以及单片机对数字量进行判断(按键按下或松开)。
仿真原理图:在仿真软件Proteus中绘制仿真仿真原理图如上图所示。
(注意事项:在上图中按键使用了“button”,该元件类似于带复位功能的按钮,当鼠标按下该按键时接通,当鼠标松开后,按键自动复位,变为断开状态。
在此原理图中也可使用“switch”元件,该元件的类似于带自锁功能的按钮,当鼠标点击一次该元件,按键接通并自锁,此时松开鼠标,按键也不能复位,当再次使用鼠标单击该按键时,按键才能处于复位状态。
)程序HEX代码如下::0300000002003BC0:0C003B00787FE4F6D8FD75810702000014:020********E50:0B00300020A204C2A080F9D2A080F53D:00000001FF程序HEX使用方法:1)新建txt文档2)将HEX代码复制到txt文档中,保存3)将该txt文档另存为“程序名.hex”,例如:pro.hex4)在仿真软件中打开即可实现仿真。
汇编语言代码以及C语言代码如下:汇编语言代码:ORG 0HJMP MAINORG 30HMAIN:JB P2.2,X1CLR P2.0JMP MAINX1:SETB P2.0JMP MAINEND注意:该程序较为简单,一般不易出错。
需要注意的是程序需要重复执行!C语言代码:#include <reg52.h>sbit P20=P2^0;sbit P22=P2^2;void main(){while(1){ if(P22==0)P20=0; //点亮LEDelseP20=1; //熄灭LED}}上述程序完成的是当按键按着的时候灯亮,而当按键松开后灯灭。
51单片机使用状态机的键盘程序

}
default://其它
{
step = _Key1_up;//单键抬起消抖
#define Key_Down 0x3D //下箭头
#define Key_Add 0x3B //加
#define Key_Sub 0x37 //减
#define Key_Enter 0x2F //回车
传入参数:无
返回参数:无
设 计:莫汉伟 amo73@
修改日期:2007-10-12
备 注:详细功能和处理算法请参照本文件相关的流程图和文档
**************************************************************************/
#define KeyBuffLen 8 //定义键值环形缓冲区长度为8(缓冲区大小可自由定义,只要大于0即可)
//定义一个键盘缓冲区结构体
struct Struct_KeyBoardBuff
{
u8 buff[KeyBuffLen];//键值环形缓冲区
u8 in; //写键值指示(定时器中断写)
u8 Read_Key(void)
{
u8 Value;
if(Key.out != Key.in)
{
Value=Key.buff[Key.out++];//"读"还没有追上"写",缓冲区有键值,读之
if(Key.out >= KeyBuffLen) //如果"读"跑到了队列尾部,则重新跳回原点
u8 out; //读键值指示(用户读)
单片机按键连接方法

------------------- 看磊诫呎 ....... ....... .....单片机按键连接方法总结(五种按键扩展方案详细介绍)单片机在各种领域运用相当广泛,而作为人机交流的按键设计也有很多种。
不同的设 计方法,有着不同的优缺点。
而又由于单片机 I/O 资源有限,如何用最少的 I/O 口扩展更多的按键是我所研究的问题。
接下来我给大家展示几种自己觉得比较好的按键扩展方案,大家可以在以后的单片机电路设计中灵活运用。
1)、第一种是最为常见的,也就是一个 I/O 口对应一个按钮开关。
GND这种方案是一对一的, 一个I/O 口对应一个按键。
这里P00到P04,都外接了一个上拉 电阻,在没有开关按下的时候,是高电平,一旦有按键按下,就被拉成低电平。
这种方案优 点是电路简单可靠,程序设计也很简单。
缺点是占用 I/O 资源多。
如果单片机资源够多,不紧缺,推荐使用这种方案。
2)、第二种方案也比较常见,但是比第一种的资源利用率要高,硬件电路也不复杂。
P0.0P0-1P0.2P0,3o■0 0S2O O这是一种矩阵式键盘,用 8个I/O 控制了 16个按钮开关,优点显而易见。
当然这种电路的程序设计相对也还是很简单的。
由P00到P03循环输出低电平,然后检测P04到P07的状态。
比方说这里 P00到P03 口输出1000,然后检测P04到P07,如果P04为1则说明按下 的键为si ,如果P05为1则说明按下的是s2等等。
为了电路的可靠,也可以和第一种方案 一样加上上拉电阻。
3)、第三种是我自己搞的一种方案,可以使用4个I/O 控制8个按键,电路多了一些二极管,稍微复杂了一点。
POOS1S2'S3―■—■1 ------------ O --------------------------- -------- od ------------------- &o ------------S4< ----- -56S10S8S12o o-S16PQ OS7S5POIo811P02□P03P04------------------- 磊册时——... .... .... ..这个电路的原理很简单,就是利用二极管的单向导电性。
单片机按键连接方法

单片机按键连接方法总结单片机在各种领域运用相当广泛,而作为人机交流的按键设计也有很多种。
不同的设计方法,有着不同的优缺点。
而又由于单片机I/O资源有限,如何用最少的I/O口扩展更多的按键是我所研究的问题。
接下来我给大家展示几种自己觉得比较好的按键扩展方案,大家可以在以后的单片机电路设计中灵活运用。
1)、第一种是最为常见的,也就是一个I/O口对应一个按钮开关。
这种方案是一对一的,一个I/O口对应一个按键。
这里P00到P04,都外接了一个上拉电阻,在没有开关按下的时候,是高电平,一旦有按键按下,就被拉成低电平。
这种方案优点是电路简单可靠,程序设计也很简单。
缺点是占用I/O资源多。
如果单片机资源够多,不紧缺,推荐使用这种方案。
2)、第二种方案也比较常见,但是比第一种的资源利用率要高,硬件电路也不复杂。
这是一种矩阵式键盘,用8个I/O控制了16个按钮开关,优点显而易见。
当然这种电路的程序设计相对也还是很简单的。
由P00到P03循环输出低电平,然后检测P04到P07的状态。
比方说这里P00到P03口输出1000,然后检测P04到P07,如果P04为1则说明按下的键为s1,如果P05为1则说明按下的是s2等等。
为了电路的可靠,也可以和第一种方案一样加上上拉电阻。
3)、第三种是我自己搞的一种方案,可以使用4个I/O控制8个按键,电路多了一些二极管,稍微复杂了一点。
这个电路的原理很简单,就是利用二极管的单向导电性。
也是和上面的方案一样,程序需要采用轮训的方法。
比方说,先置P00到P03都为低电平,然后把P00置为高电平,接着查询P02和P03的状态,如果P02为高则说明按下的是s5,若P03为高则说明按下的是s6,然后再让P00为低,P01为高,同样检测P02和P03的状态。
接下来分别让P02和P03为高,其他为低,分别检测P00和P01的状态,然后再做判断。
这种方案的程序其实也不难。
4)这是我在一本书上看到的,感觉设计的非常巧妙,同样它也用到了二极管,不过比我的上一种方案的I/O利用率更高,他用4个I/O口控制了12个按键。
单片机驱动继电器仿真实验(按键控制)

sbit ks=P2^5; //定义开始按键连接 P 口
main()
{
while(1)
{ if(ks==0) { lamp=0;
//如果开始按键按下 //点亮灯泡
} if(tz==0) { lamp=1;
//如果停止按键按下 //熄灭灯泡
}
}
}
在上述 4 个程序段中我们发现,在程序的开头都进行了位定义。这种编程方 法的一个优点是程序通用性强。读者可以直接把程序复制到自己的系统中,只修 改程序开头的定义行的几个地址即可。
。由于普通按键的原理决定,普通按键都具有抖动的特点,也就是说,当按键 的静触头和动触痛接触瞬间,会产生抖动现象,简单说就是瞬间接通,又瞬间断 开的现象。这种现象会对原理图 1 所示的程序造成影响,产生按键按下后,有时 有效,有时没有效的现象。因此在进行实物制作的时候,原理图 1 对应的程序需 要添加软件防抖或者增加硬件防抖电路。而对于原理图 2 所对应的程序,则不需 要考虑按键抖动。
图 1 所示原理图驱动程序
汇编语言代码如下:
LAMP BIT P2.0 //根据原理图定义灯泡 AJ BIT P2.7 //根据原理图定义按键
ORG 0H
JMP MAIN
ORG 30H
MAIN:
JB AJ,$ JNB AJ,$
//等待按键松开
CPL LAMP
JMP MAIN
END 注意:程序一定要与原理图对应,上述汇编语言程序的前两行,是根据原理图定
ORG 0H
MAIN
ORG 30H
MAIN:
JB KS,$
CLR LAMP
JB TZ,$
SETB LAMP
JMP MAIN
END C 语言代码如下: