八年级数学下册第5章分式与分式方程第2节分式的乘除法教案新版北师大版
2024北师大版数学八年级下册5.2《分式的乘除法》教案

2024北师大版数学八年级下册5.2《分式的乘除法》教案一. 教材分析《分式的乘除法》是北师大版数学八年级下册第五章第二节的内容。
本节课主要学习分式的乘法和除法运算。
分式的乘除法是分式运算的重要组成部分,也是后续学习更复杂分式运算的基础。
通过学习分式的乘除法,学生能够进一步理解分式的概念,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了分式的基本概念、分式的加减法以及简单的不等式。
他们对分式的理解还不够深入,需要通过实例来进一步理解分式的乘除法。
此外,学生需要掌握分式运算的规则,并能够灵活运用这些规则解决实际问题。
三. 教学目标1.知识与技能:学生能够掌握分式的乘法和除法运算规则,能够正确进行分式的乘除法运算。
2.过程与方法:学生通过自主学习、合作交流,培养解决问题的能力。
3.情感态度与价值观:学生能够体验到数学与实际生活的联系,提高学习数学的兴趣。
四. 教学重难点1.重点:分式的乘法和除法运算规则。
2.难点:灵活运用分式的乘除法规则解决实际问题。
五. 教学方法采用问题驱动法、合作交流法和实例教学法,引导学生通过自主学习、合作交流,掌握分式的乘除法运算规则,提高解决问题的能力。
六. 教学准备1.教师准备PPT,内容包括分式的乘除法运算规则和实例。
2.准备一些实际问题,用于巩固学生对分式的乘除法的掌握。
七. 教学过程导入(5分钟)教师通过一个实际问题引入本节课的主题:“小明有一块地,长是8米,宽是5米,他想将这块地分成几个相同大小的矩形区域,每个区域的面积是多少?”让学生思考并讨论如何解决这个问题。
呈现(10分钟)教师呈现分式的乘除法运算规则,并通过PPT展示一些实例。
例如,解释如何计算分式 ( ) 和 ( )。
引导学生观察分式乘除法运算的规则。
操练(10分钟)教师给出一些分式的乘除法运算题目,让学生独立完成。
例如,计算( ) 和( )。
学生在纸上完成题目,教师巡回指导。
巩固(15分钟)教师呈现一些实际问题,让学生运用分式的乘除法来解决。
北师版初中数学八年级下册精品教案 第5章 分式与分式方程 2 分式的乘除法

2 分式的乘除法教师备课 素材示例●情景导入 问题1:一个长方体容器的容积为V ,底面的长为a ,宽为b ,当容器内的水占容积的mn 时,水高多少?思考:长方体容器的高为__V ab ,水高为__V ab ·mn__.问题2:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?思考:大拖拉机的工作效率是__am__公顷/天,小拖拉机的工作效率是__b n __公顷/天,大拖拉机的工作效率是小拖拉机的工作效率的__a m ÷b n __倍.(1)V ab ·m n ;(2)a m ÷bn,一个是分式的乘法运算,一个是分式的除法运算,怎样计算分式的乘除呢?这节课研究课题是分式的乘除法.【教学与建议】教学:本教学采用例题分析法,针对所填数据的模型,导入课题.建议:所提问题学生先独立思考后再小组讨论答案.●复习导入 这节课的学习让我们从几个小题的回顾开始.1.化简:(1)-6a 3bc -3ab ;(2)x 2-4x 2-4x +4.2.计算:(1)43×68;(2)910÷35.3.小学学过的分数乘除法的运算法则是什么?学生回答:1.(1)-6a 3bc -3ab =2a 2c ;(2)x 2-4x 2-4x +4=(x +2)(x -2)(x -2)2=x +2x -2. 2.(1)43×68=1;(2)910÷35=910×53=32.3.分数乘分数,用分子的积作为积的分子,分母的积作为积的分母;分数除以分数,把除数的分子和分母颠倒位置后再与被除数相乘.通过习题我们知道了分数乘除法的运算法则,那分式的乘除法运算是不是和分数的乘除法运算法则一样呢?本节课让我们针对分式的乘除运算进行进一步的探究!【教学与建议】教学:复习巩固分式的基本性质和分数乘除法计算,为本节课的知识内容的进一步探究做好铺垫.建议:问题1,2,3学生独立完成.解答这类问题时,既可以根据乘法法则求得积后再约分,也可以先约分再求积.【例1】计算ax 2b 2y ·byax 的结果是(C)A .axB .bxC .x bD .xa【例2】计算3xy 24z 2·⎝ ⎛⎭⎪⎫-8z 2y =__-6xy__.进行分式的除法运算时,应注意以下几点:(1)分式的除法运算,抓住“一变一倒”,即变除法为乘法,把除式的分子、分母的位置颠倒.(2)两个分式相除,能约分的先约分再计算结果.【例3】2x 2-4÷1x 2-2x 的计算结果为(B)A .x x +2B .2x x +2C .2x x -2D .2x(x +2)【例4】计算:-3xy÷2y 23x =__-9x 22y__.进行分式的乘除混合运算时,先统一成乘法运算,注意确定结果的符号,又注意运算顺序不能颠倒,注意结果一定要化成最简分式或整式的形式.【例5】化简x÷x y ·1x的结果为(B)A .x yB .yxC .xyD .1 【例6】计算:b 2-27a 3÷2b 9a ·3ab b 4=__-12ab__.高效课堂 教学设计1.会运用分式乘除法的运算法则和乘方运算法则.2.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识.▲重点掌握分式乘除法运算法则及其应用. ▲难点分子、分母是多项式的分式的乘除法的运算.◆活动1 创设情境 导入新课(课件)小学学过的分数乘除法的运算法则是__分数乘分数,用分子的积作为积的分子,分母的积作为积的分母;分数除以分数,把除数的分子和分母颠倒位置后再与被除数相乘__.计算:23×45=__815__;57×29=__1063__;23÷45=__23×54__=__56__;57÷29=__57×92__=__4514__.我们知道了分数的乘除法运算法则,那分式的乘除法运算是不是和分数的乘除法运算法则一样呢?本节课让我们针对分式的乘除法运算进行进一步的探究!(板书课题:2 分式的乘除法)◆活动2 实践探究 交流新知 【探究1】我们知道分式的基本性质与分数的基本性质类似,那么分式的运算也和分数的运算类似吗?这节课我们就来研究分式的乘除法.下面我们看投影并进行探索、交流.1.23×45=2×43×5; 57×29=5×27×9. 2.23÷45=23×54=2×53×4; 57÷29=57×92=5×97×2. 猜一猜:b a ·d c =________;b a ÷dc=________.【归纳】分式的乘除法的法则: 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.这一法则可以用式子表示为:b a ·d c =bd ac ,b a ÷d c =b a ·c d =bcad.【探究2】利用分式的乘法法则计算 (1)3a 4y ·2y 23a 2; (2)a +2a -2·1a 2+2a. 【方法指导】(1)根据分式的乘法法则运算,然后约分;(2)根据分式的乘法法则运算,分母能分解因式的要先分解因式,然后约分.解:(1)3a 4y ·2y 23a 2=3a·2y 24y ·3a 2=y2a .(2)a +2a -2·1a 2+2a =a +2(a -2)·a (a +2)=1a 2-2a. 【归纳】注意:分式乘法的关键是约分,当分子和分母是多项式时一定要注意分解因式.【探究3】利用分式的除法法则计算计算:(1)3xy 2÷6y 2x ; (2)a -1a 2-4a +4÷a 2-1a 2-4.【方法指导】进行分式除法运算时,应先把除法运算统一为乘法,再利用分式的乘法法则运算.当算式中遇到整式时,可以把整式看成分母是“1”的式子参与计算.解:(1)原式=3xy 2·x 6y 2=3xy 2·x 6y 2=12x 2;(2)原式=a -1a 2-4a +4·a 2-4a 2-1=(a -1)(a 2-4)(a 2-4a +4)(a 2-1)=(a -1)(a -2)(a +2)(a -2)2(a -1)(a +1)=a +2(a -2)(a +1). 【归纳】分式乘除法运算步骤(1)当分式的分子与分母都是单项式时: 乘法的运算步骤:①用分子的积作为积的分子,分母的积作为积的分母;②把分式积中的分子与分母均写成分子与分母的公因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分.除法的运算步骤:把除式中的分子与分母颠倒位置后再与被除式相乘,其他与乘法运算步骤相同.(2)当分式的分子、分母中有多项式时: ①先分解因式;②如果分子与分母有公因式,先约分再进行乘除计算;③如果分式的分子(或分母)的符号是负号,应把负号提到分式的前面.最后的计算结果必须是最简分式.◆活动3 开放训练 应用举例 【例1】先化简,再求值:(1)x 2-9x 2+6x +9·3x 3+9x 2x 2-3x ,其中x =-13; (2)2x x 3+2x 2+x ÷x -1x 2+x,其中x =-2. 【方法指导】(1)原式约分得到最简结果,将x 的值代入计算即可求出值;(2)原式利用除以一个数等于乘这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入计算即可求出值.解:(1)原式=(x +3)(x -3)(x +3)2·3x 2(x +3)x(x -3)=3x ,当x =-13时,原式=3×⎝ ⎛⎭⎪⎫-13=-1;(2)原式=2x x(x +1)2·x(x +1)x -1=2xx 2-1,当x =-2时,原式=-44-1=-43.【例2】通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的,西瓜皮的厚度都是d ,已知球的体积公式为V =43πR 3(其中R 为球的半径),那么(1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积的比是多少? (3)你认为买大西瓜合算还是买小西瓜合算? 【方法指导】分式乘除法法则的应用.解:(1)V 西瓜瓤=43π(R -d)3,V 西瓜=43πR 3;(2)因为V 西瓜瓤V 西瓜=43π(R -d)343πR 3=(R -d)3R 3=(R -d R )3=(1-d R)3,所以西瓜瓤与整个西瓜的体积的比是V 西瓜瓤V 西瓜=(1-d R)3;(3)买大西瓜合算,R 越大即西瓜越大,d R 的值越小,(1-dR)的值越大,则(1-d R )3的值也越大,西瓜瓤占整个西瓜的体积也越大,因此,买大西瓜合算.◆活动4 随堂练习1.计算4ab c 2·2c2b 的结果是(C)A .4a c 2B .4aC .4a cD .1c2.计算4x 3a ÷2x 2a 2的结果是(A)A .2a 3xB .83aC .23D .83x 3.计算:y 2x 2·x y =__12x__.4.当m =5时,3m -3÷4m 2-9的值是__6__.5.课本P 115随堂练习◆活动5 课堂小结与作业 【学生活动】1.这节课你有什么收获?2.分式乘除法的运算法则和运算步骤分别是什么?要注意哪些问题?【教学说明】梳理本节课的重要方法和知识,加深对分式乘除法运算的理解.【作业】课本P 116习题5.3中的T 1、T 2、T 3、T 4.本节课的重点是分数的乘除法的法则及应用,难点是分子、分母是多项式的分式的乘除法的运算.分式的乘除法与分数的乘除法类似,所以可以通过类比,探索分式的乘除运算法则的过程,分式运算的结果要化成最简分式和整式,也就是分式的约分.约分的关键在于找公因式,学生通过对知识的理解和吸收才能更好做题.。
2024北师大版数学八年级下册5.2《分式的乘除法》教学设计

2024北师大版数学八年级下册5.2《分式的乘除法》教学设计一. 教材分析《分式的乘除法》是北师大版数学八年级下册第五章第二节的内容。
本节内容是在学生已经掌握了分式的概念、分式的加减法的基础上进行学习的。
本节课主要让学生学习分式的乘法和除法,进一步理解和掌握分式的运算法则,为后续学习更复杂的分式运算打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了分式的概念和分式的加减法,具备了一定的数学基础。
但学生在进行分式的乘除法运算时,容易混淆运算规则,对乘除法运算中的符号理解和运用不够熟练。
因此,在教学过程中,需要引导学生理解乘除法运算的规则,并通过大量的练习让学生熟练掌握。
三. 教学目标1.理解分式的乘法和除法运算规则,掌握分式的乘除法运算方法。
2.能够正确进行分式的乘除法运算,提高运算能力。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:分式的乘法和除法运算规则。
2.难点:分式乘除法运算中的符号理解和运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索分式的乘除法运算规则;通过案例分析,让学生理解和掌握运算方法;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作包含分式乘除法运算规则的PPT,以便进行教学展示。
2.练习题:准备分式乘除法的练习题,以便进行课堂练习和课后巩固。
3.教学工具:准备黑板、粉笔等教学工具,以便进行板书和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考和探索分式的乘除法运算规则。
例如,给出一个实际问题:某商品的原价是200元,现在进行打折活动,打折力度是原价的3/4,求打折后的价格。
让学生思考如何运用分式的乘法来解决这个问题。
2.呈现(10分钟)通过PPT展示分式的乘法和除法运算规则,并结合实际问题进行解释和讲解。
让学生理解和掌握分式的乘除法运算方法。
北师大版数学八年级下册第五章分式与分式方程5.2分式的乘除法教案设计

5.2 分式的乘除法教学目标1.经历探索分式的乘除法运算法则,通过类比分数的乘除法法则,提高联想能力和推理能力.2.熟练地进行分式的乘除运算,并能利用它解决实际问题.教学重点利用法则计算分式乘除法.教学难点归纳分式乘除法的法则.课时安排1课时教学过程导入新课观察下列运算:23×45=2×43×5,57×29=5×27×9, 23÷45=23×54=2×53×4,57÷29=57×92=5×97×2. 以上是以前学习的分数的乘法与除法,分数乘法与除法的运算法则分别是什么?【互动】(学生回答,老师补充)两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 猜一猜下面的式子怎么运算,与同伴交流你的想法.(1)?b d a c ⨯= (2)?b d a c÷= 这就是今天我们要学习的内容:分式的乘除.探究新知一、分式的乘除法法则[引导学生思考]用代数化的思想,把a ,b ,c ,d 看作数,类比分数的乘除法法则来进行运算.[老师讲评]类比分数的乘除法法则,我们可以得到如下结果:(1)b d a c ⨯=bd ac ; (2)b a ÷d c =b a ×c d =bc ad . 【归纳】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【练一练】下面的计算对吗?如果不对,应该怎样改正?(1)2x b -·26b x =-23xb x b 2x b -·26b x=-3x (2)43x a ÷2a x =23 43x a ÷2a x =43x a ·2x a =2283x a【互动】学生自主发现,小组交流,老师提问纠正、点评.【例1】计算.(1)68a y ·2223y a ; (2)22a a +- ·212a a+. 【互动】学生自主解答,小组讨论,老师统一讲解,对存在问题进行点评.解:(1)68a y ·2223y a =226283a y y a ·· =226283ay a y···· =2y a ; (2)22a a +- ·212a a +=(2)1(2)(2)a a a a +-+·· =212a a- . [老师总结]分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算.各分式中的分子、分母都是多项式时,先因式分解,再约分.【例2】计算.(1)23xy ÷26y x ; (2)2144a a a --+÷2214a a --. 【互动】老师提示,利用分式的除法法则进行计算.解:(1)23xy ÷26y x(2)2144a a a --+÷2214a a -- 2263y x xy ⋅=2263y x xy ⋅=;212x =14441222--⋅+--=a a a a a ()()()()14441222-+---=a a a a a ()()()()()()1122212-+--+-=a a a a a a【总结】进行分式的除法运算时,要先变(除法变乘法)后算.二、分式乘除法的应用购买西瓜时,人们总是希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,且西瓜瓤的分布是均匀的,西瓜的皮厚都是d .已知球的体积公式为V =43πR 3(其中R 为球的半径),那么【互动】(老师提示,引导学生思考求解)(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.(1)西瓜瓤与西瓜的体积各是多少?(2)西瓜瓤与西瓜的体积的比是多少?(3)你认为买大西瓜合算还是买小西瓜合算?解:(1)西瓜瓤的体积是43π(R -d )3,整个西瓜的体积是43πR 3; (2)西瓜瓤与整个西瓜的体积比是43π(R -d )343πR 3=(R -d )3R 3; (3)由(2)知,西瓜瓤与整个西瓜的体积比是(R -d )3R 3<1,故买大西瓜比买小西瓜合算.课堂练习1.若式子x +1x +2÷x +3x +4有意义,则x 的取值范围是( ) A.x ≠-2,x ≠-4B.x ≠-2C.x ≠-2,x ≠-3,x ≠-4D.x ≠-2,x ≠-32.计算:(1)3a 4b ·16b 9a 2; (2)12xy 5a÷8x 2y ; (3)-3x y ÷2y 23x. 3.计算:(1)x 2-4x 2-4x +3÷x 2+3x +2x 2-x; ()()122+-+=a a a .222--+=a a a(2)2x +64-4x +x 2÷(x +3)·x 2+x -63-x. 4.老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?参考答案1.C2.解:(1)43a . (2)310ax. (3)-292x y . 3.解:(1)(2)(3)(1)x x x x --+. (2)2(3)(2)(3)x x x +---. 4.分析:不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.解:设花生的总产量是1,1a 2+b 2÷12ab =2ab a 2+b 2(倍). 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的2ab a 2+b 2倍. 课堂小结1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 布置作业教材习题5.3板书设计2 分式的乘除法分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 例1 计算:(1)68a y ·2223y a ; (2)22a a +- ·212a a+. 例2 计算:(1)23xy ÷26y x ; (2)2144a a a --+÷2214a a --.。
春八年级数学下册 第5章 分式与分式方程 2 分式的乘除法教案 (新版)北师大版-(新版)北师大版初

2 分式的乘除法教学目标一、基本目标1.能正确理解分式乘除法的法则,能类比分数乘除法的法则得出分式乘除法的法则.2.能解决一些与分式乘除法有关的简单的实际问题.3.会进行简单分式的乘除运算,具有一定的代数化归能力.二、重难点目标【教学重点】利用法则计算分式乘除法,并解决简单的实际问题.【教学难点】类比分数的乘除法,归纳得到分式乘除法的法则.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P114~P115的内容,完成下面练习.【3 min 反馈】1.分式乘除法的法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母,用字母表示为b a ·c d =bc ad. (2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为b a ÷d c=b a ·c d =bc ad. 2.计算x y ·y 2x 的结果是12. 3.化简m -1m ÷m -1m 2的结果是m . 4.下列计算正确吗?若错误,要怎样改正?(1)b a ·a b =1;(2)b a÷a =b ; (3)x 2b ·6b x 2=3b x ;(4)4x 3a ÷a 2x =23.解:(1)正确.(2)错误.正确的是b a 2.(3)错误.正确的是3x .(4)错误.正确的是8x 23a 2. 环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算下列各式:(1)3xy 24z 2·⎝ ⎛⎭⎪⎫-8z 2y ; (2)-3xy ÷2y 23x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算.【解答】(1)3xy 24z 2·⎝ ⎛⎭⎪⎫-8z 2y =-6xy . (2)-3xy ÷2y 23x =-3xy ·3x 2y 2=-9x 22y. 【互动总结】(学生总结,老师点评)根据分式乘除法法则进行计算即可.活动2 巩固练习(学生独学)1.若式子x +1x +2÷x +3x +4有意义,则x 的取值X 围是( C ) A .x ≠-2,x ≠-4B .x ≠-2C .x ≠-2,x ≠-3,x ≠-4D .x ≠-2,x ≠-32.计算:(1)3a 4b ·16b 9a 2; (2)12xy 5a÷8x 2y ; (3)-3xy ÷2y 23x. 解:(1)43a . (2)310ax . (3)-9x 22y. 3.计算: (1)x 2-4x 2-4x +3÷x 2+3x +2x 2-x; (2)2x +64-4x +x 2÷(x +3)·x 2+x -63-x. 解:(1)x x -2x -3x +1.(2)-2x +3x -2x -3. 活动3 拓展延伸(学生对学)【例2】老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?【互动探索】不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.【解答】设花生的总产量是1,1a 2+b 2÷12ab =2ab a 2+b 2. 即老王家种植的花生单位面积产量是老李家种植的单位面积产量的2ab a 2+b 2倍. 【互动总结】(学生总结,老师点评)此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可.环节3 课堂小结,当堂达标(学生总结,老师点评)1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除. 练习设计请完成本课时对应练习!。
八年级数学下册 5.2 分式的乘除法教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案

第五章分式与分式方程5.2 分式的乘除法【教学内容】掌握分式的乘除法法则。
【教学目标】知识与技能经历探索分式的乘除法法则的过程,并结合具体情境说明其合理性;会进行简单分式的乘除法计算,具有一定的化归能力。
过程与方法学习类比转化的思想方法,受到思维训练,能解决与分式有关的简单实际问题。
情感、态度与价值观在学知识的同时学到类比转化的思想方法,受到思维训练,能解决与分式有关的简单实际问题,让学生经历体会数学观点,培养学生的数学意识。
【教学重难点】重点:掌握分式的乘除法法则;难点:熟练地运用法则进行计算,提高运算能力。
【导学过程】【知识回顾】1.分数的乘法法则:【情景导入】1、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的,把分母相乘的积作为积的;两分式相除,把除式的分子和分母颠倒位置后再与被除式。
2、分式乘除法运算步骤和运算顺序:(1)步骤:对分式进行乘除运算时,先观察各分式,看各分式的分子、分母能否分解因式,若能分解因式的应先分解因式。
当分解因式完成以后,要进行____________,直到分子、分母没有______________时再进行乘除。
(2)顺序:分式乘除法与整式乘除法运算顺序相同,一般从左向右,有除法的先把除法转化为乘法。
【新知探究】 探究一、()222244229164311y x x y y xy x y x x y y x +-•+--•2 ) 计算:(例探究二、(1)=vu g f . (2) v u g f ÷= 计算:⑴3234x y y x ⋅⑵cd b a cab 4522223-÷ 总结步骤:⑴确定符号;⑵除法转化为乘法;⑶因式分解;⑷运用乘法法则计算;⑸约分为最简分式. 计算:⑴291643a b b a ⋅⑵225432ab xy y x ab -⋅-⑶y x a xy 28512÷⑷⎪⎪⎭⎫ ⎝⎛-÷x y xy 3232 探究三 计算:2b a ⎛⎫ ⎪⎝⎭=3b a ⎛⎫ ⎪⎝⎭=10b a ⎛⎫ ⎪⎝⎭= 猜想:n b a ⎛⎫ ⎪⎝⎭= 归纳:分式乘方的运算法则:【知识梳理】分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的,把分母相乘的积作为积的;两分式相除,把除式的分子和分母颠倒位置后再与被除式。
北师大版八年级数学下册第五章分式与分式方程5.2分式的乘除法(教案)

在上完这节分式乘除法的内容后,我认真反思了自己的教学过程。首先,我发现学生们对分式乘法法则的理解相对较好,他们能够较快地掌握分子乘分子、分母乘分母的基本规则。但在约分环节,部分学生还是显得有些吃力,对如何寻找分子和分母的公因数不够熟练。针对这一点,我计划在接下来的课程中增加一些约分的练习,帮助学生巩固这一技能。
本节课旨在帮助学生掌握分式的乘除法,培养其运算技巧和解决问题的能力。
二、核心素养目标
1.培养学生的逻辑推理能力:通过分式乘除法的学习,使学生能够理解和掌握分式运算的规律,提高逻辑推理和运算能力。
2.增强数学抽象素养:让学生从具体的分式乘除运算中抽象出一般规律,培养数学抽象思维。
3.提升数学建模素养:学会将现实问题转化为分式乘除运算问题,通过数学建模解决实际问题。
2.教学难点
-约分技巧:在分式乘除运算过程中,能够正确识别并实施约分,简化结果。
-难点举例:在计算过程中,学生可能会忽略分子与分母的公因数,导致结果未能简化到最简形式。
-分式乘除的符号处理:在运算过程中,学生可能会对正负符号处理不当,导致最终结果错误。
-难点举例:在计算过程中,如何正确处理同号得正、异号得负的规则。
-约分:在乘法过程中,对分子和分母进行约分。
2.分式除法法则:介绍分式除法的运算规则,使学生能够熟练运用分式除法解决问题。
-除法法则:将除法转换为乘法,即乘以倒数;
-约分:在乘法过程中,对分子和分母进行约分。
3.分式乘除混合运算:结合实际例题,让学生学会处理分式乘除混合运算,提高运算能力。
4.应用举例:通过典型例题,让学生巩固所学分式乘除法知识,并学会运用到实际问题中。
然而,我也注意到在学生小组讨论的过程中,有些学生过于依赖同伴,没有独立思考。为了解决这个问题,我计划在接下来的课程中,加强对学生的引导,鼓励他们提出自己的观点,培养独立思考的能力。
八年级数学下册第五章分式与分式方程2分式的乘除法教案(新版)北师大版

2 分式的乘除法1.类比分数的乘除运算法则,探究分式的乘除法法则,研究分式的运算算理.2.会利用分式的乘除法运算法则,进行简单的分式的乘除法运算.3.提升学生的思维迁移能力,发展符号运算水平.重点会进行简单的分式的乘除法运算.难点解决一些与分式有关的简单的实际问题.一、情境导入有一次,鲁班的手不慎被一片小草割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.鲁班在这里就运用了“类比”的思想方法,“类比”也是数学学习中常用的一种重要方法.上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?今天我们研究“分式的乘除法”.(板书课题)二、探究新知1.探究分式的乘法法则(1)计算,并说出分数的乘法法则:①23×45; ②57×29. 分数乘分数,用分子的积作为积的分子,分母的积作为积的分母.(2)猜一猜:b a ×d c=________. 你能总结分式的乘法法则吗?与同伴交流.b a ×dc =b×d a×c. 分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.2.探究分式的除法法则(1)计算,并说出分数的除法法则.①23÷45; ②57÷29. 分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)猜一猜:b a ÷d c=________. 你能总结分式的除法法则吗?与同伴交流.b a ÷dc =b a ×cd =b×c a×d. 分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.三、举例分析例1 计算:(1) 3a 4y ·2y 23a 2; (2) a +2a -2·1a 2+2a. 处理方式:师生共同完成解题过程.解:(1) 3a 4y ·2y 23a 2=3a·2y 24y ·3a 2=y 2a .(2)a +2a -2·1a 2+2a =a +2(a -2)·a(a +2)=1a 2-2a. 注意:①分子、分母有多项式的,一般是分子和分母先分解因式,并在运算过程中约分;②运算结果要化成最简分式.例2 计算:(1) 3xy 2÷6y 2x; 处理方式:学生自主完成计算过程.解:3xy 2÷6y 2x =3xy 2·x 6y 2=3xy 2·x 6y 2=12x 2. 提出问题:就计算过程谈谈你的想法?引导学生得出计算分式除法的步骤:① 除法变乘法; ②再按乘法法则运算;③结果为最简分式.(2) a -1a 2-4a +4÷a 2-1a 2-4. 处理方式:师生共同完成计算过程.解:原式=a -1a 2-4a +4·a 2-4a 2-1=(a -1)(a 2-4)(a 2-4a +4)(a 2-1)=(a -1)(a +2)(a -2)(a -2)2(a -1)(a +1)=a +2(a -2)(a +1). 注意:①分式的分子和分母是多项式,先要对分子和分母进行因式分解;②结果要化为最简分式或整式.四、练习巩固1.计算:(1)b a 2-9·a +3b 2-b ;(2)a a -b ·(b -a b)2. 2.购买西瓜时,人们总是希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的,西瓜皮的厚度都是d ,已知球的体积公式为V =43πR 3 (其中R 为球的半径).那么(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积的比是多少?(3)你认为买大西瓜合算还是买小西瓜合算?与同伴交流.3.对于a÷b·1b ,小明是这样计算的:a÷b·1b= a÷1=a.他的计算过程正确吗?为什么?五、课堂小结通过这节课的学习,你学到了哪些知识?要注意什么问题?六、课外作业1.教材第115页“随堂练习”.2.教材第116页习题5.3第1、2、4题.本节课中的运算法则的运用不难,但有的学生在运用法则计算时遇到单项式乘单项式、单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差.另外,部分学生在结果的化简上存在问题,化简意识不够,因此在本节课的教学中应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识.还有些学生因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关联的,所以课前有必要巩固分式的约分和因式分解这两方面的知识,进行有针对的练习.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2《分式的乘除法》
课题 5.2《分式的乘除法》课型
教学目标
(一)教学知识点
1、分式乘除法的运算法则,
2、会进行分式的乘除法的运算.
(二)能力训练要求
1、类比分数乘除法的运算法则,探索分式乘除法的运算法则.
2、在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力.
3、用分式的乘除法解决生活中的实际问题,提高“用数学”的意识.
(三)情感与价值观要求
1、通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感.
2、培养学生的创新意识和应用数学的意识.
重点让学生掌握分式乘除法的法则及其应用.
难点分子、分母是多项式的分式的乘除法的运算
教学用具二次备课
课程讲授一、创设情境引入新课
Ⅰ、请同学们观察下列运算,:
3
2
×
5
4
=
5
3
4
2
⨯
⨯
,
3
2
÷
5
4
=
3
2
×
4
5
=
4
3
5
2
⨯
⨯
,
填一填:
7
5
×
9
2
=
52
79
⨯
⨯
;
7
5
÷
9
2
=
7
5
×
9
2
=
59
72
⨯
⨯
.
猜一猜
a
b
×
c
d
=?
a
b
÷
c
d
=?
与同伴交流
Ⅱ、如果让字母代表整式,那么就得到类似于分数的分式的乘除法. 引出课题:分式的乘除法
Ⅰ、分式乘除法的法则:
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
Ⅱ、分式乘除法法则的运用。
1、 出示例1:
计算:(1)68a y ·2
2
23y a (2)22-+a a ·a
a 212+ 解:(1)原式=2
2
6283a y y a ⋅⋅ =2y a
(2)原式=)
2()2(2+⋅⋅-+a a a a =a
a 212- 当分子、分母中含有多项式时,先对其进行因式分解,再进行约分。
分式乘法的一般计算方法:
(1)将算式按照分式乘法法则进行计算;
(2)进行约分(多项式的项进行因式分解使运算结果化为最简分式或整式。
2、 分式乘法练习:
计算:(1)2
a b b a (2)22
11a a a a -+ 3、 出示例2:
计算:(1)3xy 2
÷x y 2
6 (2)4
412+--a a a ÷4122--a a 解:(1)原式=3xy 2·26y
x =2
263y x xy ⋅ =2
1x 2 (2)原式=4414+--a a a ×1
422--a a =)
1)(44()4)(1(222-+---a a a a a =)
1)(1()2()2)(2)(1(2+---+-a a a a a a =)
1)(2(2+-+a a a 分式除法的一般计算方法:
(1) 按照分式除法的法则,把除法转化为乘法。
(2) 按分式乘法的法则进行计算。
5.练一练:(1)(a 2-a )÷1
-a a (2)y x 12-÷21y
x + 6、观察下面的计算:1311312323224
÷⨯=⨯⨯= 计算: 1()a b a b a b a b
-÷+⨯-+ 做一做:
通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是 d ,已知球的体积公式为V=3
43R π(其中R 为球的半径那么
(1)西瓜瓤与整个西瓜的体积各是多少?
(2)西瓜瓤与整个西瓜的体积比是多少?
(3)买大西瓜合算还是买小西瓜合算?
解:设西瓜的半径为R ,根据题意,可得:
(1) 整个西瓜的体积为
V 1=3
43R π 西瓜瓤的体积为 V 2=
34π(R -d )3. (2)西瓜瓤与整个西瓜的体积比为:
12V V =333
4)(34R d R ππ-=33)(R d R - =(R d R -)3=(1-R
d )3. 二、小结
1、 分式乘除法的法则
2、 分式乘除法的一般计算方法
3、化简时要注意分子分母中的多项式能分解因式的要分解因式,再进行约分。
4、思想方法:类比法、转化法
作业
布置
板书
设计 课后
反思。