高中数学复习教案:集合
集合的基本运算教案

集合的根本运算教案高一数学——集合第三讲集合的根本运算【教学目的】:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
【重点难点】:1.重点:集合的交集与并集、补集的概念2.难点: 集合的交集与并集、补集“是什么”,“为什么”,“如何样做”【教学过程】:器具:一、复习1、集合间的根本关系:子集、真子集、相等、空集2、作业讲评二、新授(1)知识导向或者情景引入我们两个实数除了可以比较大小外,还可以进展加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?(2)并集1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?2、调查集合A={1,2,3},B={2,3,4}与集合C={1,2,3,4}之间的关系在上述两个例子中,集合A,B与集合C之间都具有如此的一种关系:集合C是由所有属于集合A或属于集合B的元素组成的。
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union),记作:A∪B ,读作:“A并B”,即:A∪B={x|x∈A,或x∈B}Venn图表示如上图。
说明:两个集合求并集,结果仍然一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.例题2:A={a,b,c,d,e},B={c,d,e,f}.那么A∪B={a,b,c,d,e,f}例题3:教材例5(3)交集征询题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(V enn图中两个集合相交的部分)还应是我们所关心的,征询题1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?A B征询题2、调查集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.上面两个征询题中,集合C是由那些既属于集合A且又属于集合B的所有元素组成的。
高中数学必修一教案(全套)

读作:A 包含于(is contained in)B,或 B 包含(contains)A 当集合 A 不包含于集合 B 时,记作 A⊆ B 用 Venn 图表示两个集合间的“包含”关系
——————————————第 2 页 (共 70页)——————————————
『高中数学·必修 1』
征。 如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…; 例 2.(课本例 2) 说明:(课本 P5 最后一段) 思考 3:(课本 P6 思考) 强调:描述法表示集合应注意集合的代表元素 {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素 也可省略,例如:{整数},即代表整数集 Z。 辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实 数集},{R}也是错误的。 说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法, 要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (三)课堂练习(课本 P6 练习) 三、 归纳小结 本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对 集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。 四、 作业布置 书面作业:习题 1.1,第 1- 4 题 五、 板书设计(略)
课题:§1.2 集合间的基本关系
Байду номын сангаас教材分析:类比实数的大小关系引入集合的包含与相等关系 了解空集的含义
课 型:新授课 教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念; (3)能利用 Venn 图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用 Venn 图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
高一数学集合教案范文

高一数学集合教案范文在一年的数学教育工作中,作为高一数学老师的你知道怎样写高一数学集合教案范文吗?来写一篇高一数学集合教案范文吧,它会对你的教学工作起到不菲的帮助。
下面是为大家收集有关于高一数学集合教案范文,希望你喜欢。
高一数学集合教案范文1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培育学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的讨论,让学生认识到数学的应用价值,激发学生学习数学的爱好.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行讨论的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点讨论.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论讨论是学生面临的重要问题,所以从的讨论过程中得到相应的结论当然重要,但更为重要的是要了解系统讨论一类函数的方法,所以在教学中要特别让学生去体会讨论的方法,以便能将其迁移到其他函数的讨论.教法建议(1)关于的定义根据课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去讨论对底数,指数都有什么限制要求,老师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避开描点前的盲目列表计算,也应避开盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学集合教案范文2一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
高中数学集合复习教案

高中数学集合复习教案一、教学目标1. 理解集合的概念,掌握集合的表示方法(列举法、描述法)。
2. 掌握集合之间的关系(子集、真子集、补集、集合相等)。
3. 理解集合的基本运算(并集、交集、对称差集)。
4. 能够运用集合的知识解决实际问题。
二、教学内容1. 集合的概念与表示方法集合的定义列举法与描述法2. 集合之间的关系子集、真子集补集集合相等3. 集合的基本运算并集、交集、对称差集的定义与性质运算规律4. 集合的实际应用列举实际问题,运用集合知识解决5. 复习巩固与拓展探讨集合的拓展问题三、教学重点与难点1. 重点:集合的概念、表示方法,集合之间的关系,集合的基本运算。
2. 难点:理解集合的抽象概念,掌握集合的运算规律。
四、教学方法1. 采用讲授法,系统地讲解集合的概念、表示方法、关系与运算。
2. 利用例题,引导学生运用集合知识解决实际问题。
3. 采用互动讨论法,鼓励学生提问、交流、探讨。
五、教学过程1. 导入:复习集合的概念,引导学生回顾已学的集合知识。
2. 讲解:详细讲解集合的表示方法、关系与基本运算。
3. 练习:布置练习题,让学生巩固所学知识。
4. 应用:列举实际问题,引导学生运用集合知识解决。
6. 拓展:探讨集合的拓展问题,激发学生的学习兴趣。
7. 作业:布置作业,巩固所学知识。
六、教学评价1. 课堂讲解:评价学生对集合概念、表示方法、关系与运算的理解程度。
2. 练习题:评价学生运用集合知识解决问题的能力。
3. 实际应用:评价学生在实际问题中运用集合知识的灵活性。
4. 课堂讨论:评价学生的参与程度、思考深度。
七、教学策略1. 针对不同学生的学习基础,采取分层教学,满足不同学生的学习需求。
2. 利用多媒体教学,直观展示集合的图形,帮助学生理解抽象概念。
3. 创设有趣的实际问题,激发学生的学习兴趣。
4. 鼓励学生提问、交流,提高学生的思考能力。
八、教学资源1. 教材:高中数学教材,用于引导学生学习。
高一数学教案精选13篇

高一数学教案精选13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
人教版高中数学必修1第1章第一章 集合与函数概念复习课教案

第一章集合与函数概念复习课教学目标分析:知识目标:进一步领会函数单调性和奇偶性的定义,并在此基础上,熟练应用定义判断和证明函数的单调性及奇偶性,初步学习单调性和奇偶性结合起来解决函数的有关问题。
过程与方法:体会单调性和奇偶性在解决函数有关问题中的重要作用,提高应用知识解决问题的能力。
情感目标:体会转化化归及数形结合思想的应用,培养学生的逻辑思维能力。
重难点分析:重点:函数的性质的灵活应用。
难点:函数的性质的灵活应用。
互动探究:一、课堂探究:一、复习回顾1、集合的包含关系;2、集合的交、并、补运算;3、函数的单调性(概念、判断方法、应用——求函数的最值);4、函数的奇偶性(概念、图像特征、判断方法);5、函数最值的求法.二、典型例题探究1、集合的概念以及运算例1、设集合2==∈==-∈,求P Q.P y y x x R Q y y x x R{|,},{|2||,}答案:{|02}=≤≤.P Q y y变式:已知全集32C A=,求=++和它的子集{1,|21|}U x x x{1,3,32}A x=-,如果{0}U实数x的值.答案:1x=-2、函数及映射的概念例2、已知集合42{1,2,3,},{4,7,,3}==+,且,,,A kB a a a∈∈∈∈,映射a N k N x A y B=+和A中元素x对应,求,a k的值.y x→,使B中元素31:f A B答案:2,5==a k3、分段函数例3、若不等式|2||1|++->恒成立,求实数a的取值范围.x x a答案:3a <.变式:若不等式|2||1|x x a +-->的解集是空集,求实数a 的取值范围.答案:3a ≥.4、函数的定义域和值域例4、若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求,a b 的值.答案:3,32a b ==.变式1:若函数()y f x =的值域是[1,3],求函数()12(3)F x f x =-+的值域.答案:[5,1]--变式2:若函数()y f x =的值域为1[,3]2,求函数1()()()F x f x f x =+的值域.答案:10[2,]35、函数的单调性例5、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是多少?答案:(1)-变式:已知()(0,)()()(),(2)1x f x f f x f y f y+∞=-=是定义在上的增函数,且, 解不等式1()()23f x f x -≤-。
集合的概念教案5篇

集合的概念教案5篇教师需要了解学生的学习偏好,以确保教案包括多种教学方法,以满足不同学生的需求,教案包括教学评估的方法,用于测量学生的学习成果和教学效果,以下是作者精心为您推荐的集合的概念教案5篇,供大家参考。
集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1,3)} 6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。
集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。
把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。
从知识结构上来说是为了引入函数的定义。
因此在高中数学的模块中,集合就显得格外的举足轻重了。
高中数学集合复习教案

高中数学集合复习教案一、教学目标1. 理解集合的概念,掌握集合的表示方法(列举法、描述法、图示法)。
2. 掌握集合之间的关系(包含、相等、子集、真子集、补集)。
3. 理解集合的基本运算(并集、交集、差集、对称差集)。
4. 能够运用集合的知识解决实际问题,提高逻辑思维能力。
二、教学内容1. 集合的概念与表示方法:列举法、描述法、图示法。
2. 集合之间的关系:包含、相等、子集、真子集、补集。
3. 集合的基本运算:并集、交集、差集、对称差集。
4. 集合在实际问题中的应用。
三、教学重点与难点1. 教学重点:集合的概念、表示方法、关系、基本运算。
2. 教学难点:集合的表示方法、集合关系的理解、集合运算的运用。
四、教学方法与手段1. 采用问题驱动法,引导学生主动探究集合的知识。
2. 利用多媒体课件,生动展示集合的图示法,帮助学生形象理解集合之间的关系和基本运算。
3. 开展小组合作活动,让学生在讨论中加深对集合知识的理解。
五、教学过程1. 导入:通过生活中的实例,引入集合的概念,激发学生的兴趣。
2. 讲解:讲解集合的表示方法、关系和基本运算,结合示例进行演示。
3. 练习:布置练习题,让学生巩固所学知识,并及时给予解答和反馈。
4. 应用:结合实际问题,让学生运用集合的知识解决问题,提高学生的应用能力。
5. 总结:对本节课的内容进行总结,强调重点和难点,为学生课后复习提供指导。
教案仅供参考,具体实施时可根据学生的实际情况进行调整。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。
2. 练习作业:评估学生在练习作业中的表现,检查学生对集合知识的掌握程度。
3. 课后反馈:收集学生的课后反馈,了解学生在学习过程中的困惑和问题,为后续教学提供改进方向。
七、教学拓展1. 探讨集合的其他表示方法,如区间表示法、维恩图等。
2. 介绍集合论的基本原理和概念,如势、无限集合等。
3. 结合数学史,讲述集合论的起源和发展,提高学生对数学学科的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第章集合与常用逻辑用语第一节集合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于或不属于,分别记为∈和∉.(3)集合的三种表示方法:列举法、描述法、Venn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.表示关系文字语言符号语言记法基本关系子集集合A的元素都是集合B的元素x∈A⇒x∈BA⊆B或B⊇A真子集集合A是集合B的子集,但集合B中至少有一个元素不属于AA⊆B,∃x0∈B,x0∉AA B或BA相等集合A,B的元素完全相同A⊆B,B⊆A⇒A=B A=B空集不含任何元素的集合.空集是任何集合A的子集∀x,x∉∅,∅⊆A ∅3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于A且属于B的元素组成的集合{x|x∈A且x∈B} A∩B并集属于A或属于B的元素组成的集合{x|x∈A或x∈B} A∪B补集全集U中不属于A的元素组成的集合{x|x∈U,x∉A} ∁U A[常用结论]1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩∁U A=∅;A∪∁U A=U;∁U(∁U A)=A.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都至少有两个子集.()(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C. ()(3)若{x2,x}={-1,1},则x=-1. ()(4)若A∩B=A∩C,则B=C. ()[解析](1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)正确.(4)错误.当A=∅时,B,C可为任意集合.[答案](1)×(2)×(3)√(4)×2.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉AD[由题意知A={0,1,2,3},由a=22知,a∉A.]3.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}A[A∪B={1,2,3,4}.]4.设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}C[∁A B={0,2,6,10}.]5.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}A[∵A={x|-2<x<1},B={x|x<-1或x>3},∴A∩B={x|-2<x<-1}.]集合的含义与表示1() A.3B.4C.5D.6B[因为集合M中的元素x=a+b,a∈A,b∈B,所以当b=4,a=1,2,3时,x=5,6,7.当b=5,a=1,2,3时,x=6,7,8.由集合元素的互异性,可知x=5,6,7,8.即M={5,6,7,8},共有4个元素.]2.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=()A.92 B.98C.0 D.0或98D[若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.当a=0时,x=23,符合题意;当a≠0时,由Δ=(-3)2-8a=0得a=9 8,所以a的取值为0或9 8.]3.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019为( ) A .1 B .0 C .-1D .±1C [由已知得a ≠0,则ba =0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1.]4.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 1 [由A ∩B ={3}知a +2=3或a 2+4=3. 解得a =1.][规律方法] 与集合中的元素有关的问题的求解策略 (1)确定集合中的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.集合间的基本关系【例1】 (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则( ) A .B ⊆A B .A =B C .A BD .B A(2)(2019·大庆模拟)集合A =⎩⎨⎧⎭⎬⎫x ∈Z ⎪⎪⎪x +1x -3≤0,B ={y |y =x 2+1,x ∈A },则集合B 的子集个数为( )A .5B .8C .3D .2(3)已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的取值集合为________.(1)C (2)B(3)⎩⎨⎧⎭⎬⎫-13,12,0 [(1)A ={1,2},B ={1,2,3,4},则A B ,故选C.(2)由x +1x -3≤0得-1≤x <3,则A ={-1,0,1,2},B ={y |y =x 2+1,x ∈A }={1,2,5},其子集的个数为23=8个.(3)A ={-3,2},若a =0,则B =∅,满足B ⊆A , 若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 知,1a =-3或1a =2,故a =-13或a =12,因此a 的取值集合为⎩⎨⎧⎭⎬⎫-13,12,0.] [规律方法] 1.集合间基本关系的两种判定方法 (1)化简集合,从表达式中寻找两集合的关系.(2)用列举法(或图示法等)表示各个集合,从元素(或图形)中寻找关系.2.根据集合间的关系求参数的方法,已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图化抽象为直观进行求解.易错警示:B ⊆A (A ≠∅),应分B =∅和B ≠∅两种情况讨论.集合C 的个数为( )A .1B .2C .4D .8(2)已知集合A ={x |x 2-2x ≤0},B ={x |x ≤a },若A ⊆B ,则实数a 的取值范围是________. (1)C (2)[2,+∞) [(1)由A ⊆C ⊆B 得C ={0}或{0,-1}或{0,1}或{0,-1,1},故选C. (2)A ={x |0≤x ≤2},要使A ⊆B ,则a ≥2.]集合的基本运算►考法1 【例2】 (1)(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}(2)(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}(3)(2019·桂林模拟)已知集合M ={x |-1<x <3},N ={-1,1},则下列关系正确的是( ) A .M ∪N ={-1,1,3} B .M ∪N ={x |-1≤x <3} C .M ∩N ={-1}D .M ∩N ={x |-1<x <1}(1)C (2)B (3)B [(1)由题意知,A ={x |x ≥1},则A ∩B ={1,2}.(2)法一:A={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以∁R A={x|-1≤x≤2},故选B.法二:因为A={x|x2-x-2>0},所以∁R A={x|x2-x-2≤0}={x|-1≤x≤2},故选B.(3)M∪N={x|-1≤x<3},M∩N={1},故选B.]►考法2利用集合的运算求参数【例3】(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是() A.-1<a≤2 B.a>2C.a≥-1 D.a>-1(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0B.1 C.2D.4(3)(2019·厦门模拟)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1C.a≥2 D.a>2(1)D(2)D(3)C[(1)由A∩B≠∅知,集合A,B有公共元素,作出数轴,如图所示:易知a>-1,故选D.(2)由题意可知{a,a2}={4,16},所以a=4,故选D.(3)B={x|1<x<2},由A∩B=B知B⊆A,则a≥2,故选C.][规律方法]解决集合运算问题需注意以下三点:(1)看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解.(3)要借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,并注意端点值的取舍.()A.(-1,0) B.(0,1)C.(-1,3) D.(1,3)(2)(2019·西安模拟)设集合A={x|x2-3x+2≥0},B={x|x≤2,x∈Z},则(∁R A)∩B=()A.{1}B.{2} C.{1,2}D.∅(3)(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0}C.{1,3} D.{1,5}(4)(2019·长沙模拟)已知集合A={1,3,9,27},B={y|y=log3x,x∈A},则A∩B=()A.{1,3} B.{1,3,9}C.{3,9,27} D.{1,3,9,27}(1)C(2)D(3)C(4)A[(1)A={x|-1<x<1},B={x|0<x<3},所以A∪B={x|-1<x<3},故选C.(2)A={x|x≤1或x≥2},则∁R A={x|1<x<2}.又集合B={x|x≤2,x∈Z},所以(∁R A)∩B=∅,故选D.(3)∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.故选C.(4)因为A={1,3,9,27},B={y|y=log3x,x∈A}={0,1,2,3},所以A∩B={1,3}.]1.(2018·全国卷Ⅰ)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0} D.{-2,-1,0,1,2}A[由题意知A∩B={0,2}.]2.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为() A.9B.8C.5D.4A[由x2+y2≤3知,-3≤x≤3,-3≤y≤ 3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A 中元素的个数为9,故选A.]3.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32B .A ∩B =∅C .A ∪B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32D .A ∪B =RA [因为B ={x |3-2x >0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ={x |x <2},所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}.故选A.]4.(2015·全国卷Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2D [分析集合A 中元素的特点,然后找出集合B 中满足集合A 中条件的元素个数即可. 集合A 中元素满足x =3n +2,n ∈N ,即被3除余2,而集合B 中满足这一要求的元素只有8和14.故选D.]。