华丽高数上作业答案
高等数学上册习题答案

高等数学上册习题答案高等数学上册习题答案在学习高等数学的过程中,习题的解答是加深对知识点理解和应用的重要途径。
然而,由于高等数学上册的习题较多且难度较高,很多同学在解答习题时会遇到困难。
为了帮助同学们更好地掌握高等数学上册的知识,本文将给出一些典型习题的解答。
一、极限与连续1. 计算极限 $\lim_{x \to 0} \frac{\sin 2x}{x}$。
解答:根据极限的定义,我们可以将该极限转化为 $\lim_{x \to 0} \frac{\sin2x}{2x} \cdot 2$。
由于 $\lim_{x \to 0} \frac{\sin x}{x} = 1$,所以原极限等于 $2$。
2. 设函数 $f(x) = \begin{cases} x^2, & x \geq 0 \\ 2x, & x < 0 \end{cases}$,判断函数 $f(x)$ 在点 $x = 0$ 处是否连续。
解答:要判断函数 $f(x)$ 在 $x = 0$ 处是否连续,我们需要分别计算左极限和右极限,并判断它们是否相等。
左极限为 $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} 2x = 0$,右极限为 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0$。
由于左极限等于右极限,且 $f(0) = 0$,所以函数 $f(x)$ 在 $x = 0$ 处连续。
二、一元函数微分学1. 求函数 $f(x) = x^3 - 3x^2 + 2x$ 的极值点和极值。
解答:首先,我们需要求出函数的导数。
对函数 $f(x)$ 求导得到 $f'(x) = 3x^2 - 6x + 2$。
然后,令导数等于零,解方程 $3x^2 - 6x + 2 = 0$,得到 $x = 1 \pm \frac{\sqrt{3}}{3}$。
再求出对应的函数值,得到 $f\left(1 \pm\frac{\sqrt{3}}{3}\right) = \frac{4}{3} \pm \frac{2\sqrt{3}}{9}$。
大学高等数学上习题(附答案)

《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。
高数上册练习答案

4.
lim
x
1
x
x
2
x
解:
lim
x
1
x
x
2x
lim
x
1
1 x
2x
lim
x
1
1 x
x
2
e2
5.
lim
x1
xm xn
1 1
(
m,
n
为正整数且
m
n
)
解:原式
lim
x1
mx m 1 nx n 1
m n
6.
lim
x0
x sin x x2 (ex 1)
解:原式
lim
x0
x sin x2 x
1
1
8. lim x e x 1
x
1
1
解:原式
lim
x
ex 1 1
lim
x
x 1
1
x
x
1
9. lim 1 2x x x0
2
解:原式 e e e e 1 1
ln lim 12 x x0
x
ln12 x
lim
x0
x
lim
x0
12 1
x
2x
0
1
10. y lim x lnx31 x
解: ln y lim x ln
2x
1
x0
x0
x
x x0 1 x 1 x x x0 1 x 1 x
lim f x lim ln 1 x lim 1 1
x0
x0
x
x0 1 x
lim f x lim f x 1, f 0 0
高数上册全部答案

第1页/共8页第一章 函数、极限与连续1.1 映射与函数1. (1))(x f 与 )(x h 相同; )(x g 与)(),(x h x f 不同. (2))(x f 与 )(x ψ相同相同)(x ϕ与)(),(x x f ψ不同. (3) )(x f 与 )(x g 相同. 2. (1) [ππ)(12,2+n n ],,2,1,0 =n (2) 21≤a 时[]a a −1,;21>a 为空集. 3. (1)3arctan 213arctan 21xy y x ==;(2)xx y y y x −=−=1ln 1ln; 5.(2),224,216==−)()(πϕπϕ02=)(ϕ. 6. (1)奇 , (2)奇 , (3) 偶. 7..22332+∞<<−h r r h h hr ,)(π1.2 数列的极限1.(1)3⎯⎯→⎯∞→n n x .(2).0⎯⎯→⎯∞→n n x(3)无极限. (4) 无极限. 1.3 函数的极限2. (1) 极限不存在. (2) 极限不存在. (3),2arctan π−⎯⎯→⎯−∞→x x∞→x 时,x arctan 的极限不存在. (4),11⎯⎯→⎯++∞→−x x e ∞→x 时,x e −+1的极限不存在. (5) 极限不存在. 1.4 无穷小与无穷大3.无界,非无穷大. 1.5 极限运算法则1. 2; 2. 0; 3. -1/5; 4. -1; 5. 2x ;6. 2; 7. 0; 1.6 极限存在准则 两个重要极限1.(1) e1; (2) a ; (3) 0 ; (4) x ; (5) 1; (6)2−e ; (7) 1−e ; (8) 3; (9) e . 2. 2 ; 3. 0 1.7 无穷小的比较1. (1)x x ~arctan . (2)e a =时等价; e a ≠时同阶. (3) 同阶. (4) 同阶. 2 (1)6=n ; (2) 1=n ; (3) 8=n . 1.8 函数的连续性与间断点1.(1)2=x ,第一类可去,补充定义-4; 3=x ,第二类无穷. (2),,20ππ+==k x x 第一类可去, 分别补充定义1,0; )(0≠=k k x π为第二类无穷. (3) 0x =第一类跳跃第一类跳跃 (4)0x =第二类无穷第二类无穷2. ),),(,),(,(∞+−−∞−1122.3112∞⎯⎯→⎯−⎯⎯→⎯→−→x x x f x f )(,)(3.)()(,)(0100100f f f =−=+=−, ,0=x 第一类跳跃.4.1±=x ,第一类跳跃.1.9 连续函数的运算与初等函数的连续性1..34==b a ,2. (1)112ln ++e ; (2) 0 ; (3) 1/2 ; (4)-1/56 ; (5) 1/2 ;(6) 0 ; (7) 2−e ; (8) 0 ; (9) ;x sin − (10) 1−e . 第二章 导数与微分 2.1 导数概念1、(1)-20 (2)12、(1)(0)f ′ (2)0()f x ′−(3)02()f x ′3、2,-14、1,1y x y x −=−=−2.2 函数的求导法则1、(1)′=++y x xln ln 2222 (2)′=−+⋅y x x x x x 332155222cos sin sec () (3)2-1(1)y x x =+(4)2cos sin x x x y x −= (5)(2)(3)(1)(3)y x x x x =−−+−−(1)(2)x x +−−(6)21cos sin (1cos )x xy x ++=+ (7)()22224sin1cos (1)x x x y x x ⎡⎤++⎣⎦=+(8)x x chx shx e y x tan sec )(3−+=′ 2、(1)-2 (2)2(1)42π+ 3.(1)38(25)y x =+(2)3sin(43)y x =− (3)22xy a x−=− (4)2sin 4y x =(5)2sec (12)y x x =−−(6)()arctan 21x e y x x =+ (7)211y x=+(8)12(1)y x x =− (9)sec y x =(10)csc y x =(11)()11sin cos sin sin cos n n n n y n x x x x x x −−=+(12)211y x =−− (13)()1ln ln ln y x x x =(14)′=++−y x x x xx xx 3222212123ln ()ln cos4.22()()()()()()f x f xg x g x f x g x ′′++5.445(3),5x x −6.(1)()-241xy exx =−++(2)-24()t ty e e =+或21(ch) (3)24arctan 24xy x =+ (4)arcsin 2x y =(5)4218x x x x y x x x x x x+++=+++ 7.122.3 高阶导数1. (1)214-x (2)()23222aa x −− (3)232(1)x y x −=+2.(1)!n (2) ().xx n e +(3)-1-12sin(2).2n n y x π=+3. (1)4cos xe x −(2)21225(sin 250cos 2sin 2)2x x x x x −++5022.4隐函数及由参数方程所确定的函数的导数1 (1)22.ay x y ax −− (2)′=++−+y y x x y x x y sin cos()cos cos()2.(1)222.y x y −(2)22.e3.sin 11cot 2(1)x xx x x e e x x e ⎡⎤−+−⎢⎥−⎣⎦24.(1)cos sin 1sin cos θθθθθθ−−− (2)sin cos cos sin t t t t +−5.(1)231t t +− (2)1()f t ′′2.5函数的微分1 (1)22)sin 2).xxx e x e dx ++(((2)231(1)dx x + (3)2ln 1)1x dx x −−−((4)42.1xdx x −+2.dx3.提示:利用()(0)(0)f x f f x ′≈+第三章 微分中值定理与导数的应用3.1 微分中值定理1.提示:首先验证函数满足Lagrange 定理的条件,并可求得63(1,2)3ξ−=∈, 使(2)(1)()21f f f ξ−′=−.2.11ln()xe x x θ−=3.方程()0f x ′=有且仅有三个实根,它们分别在区间(0,1),(1,2),(2,3)内.4.提示:利用反证法.5.提示:作辅助函数()x ϕ=(1)10xx e −+>,利用Lagrange 中值定理.3.2 洛必达法则1.32 2. 12 3. 3. 11 4. 12 5. 5. 1 6. 1 6. 0 0 7. 528. 8. 1 1 9. ∞ 10. 13.3 泰勒公式 1.21()ln 2()()244f x x x ππ=−−−−− 232sec tan ()34x πξξ−− ,ξ在,4x π之间.2.2311()2!(1)!xn n xe x x x x o x n =+++++− 3.4 函数的单调性与曲线的凹凸性2. 1(,),(1,)2−∞+∞单调增加,1(,1)2上单调减少.3.2(,),(,)3a a −∞+∞单调增,2(,)3a a 上单调减.4.22[,]33−单调增, 2(,]3−∞−,2[,)3+∞单调减.7. 凸区间(,1]−∞,凹区间[1,)+∞, 拐点11(1,)9−3.5 函数的极值与最大值最小值1.2[1,]e 单调增,(0,1],2[,)e +∞单调减,极小值(1)0f =,极大值224()f e e=2.2,05x x ==3. 极大值213xy ==,极小值312.5x y ==.4. 3,0,1a b c =−==5. 0()f x 是极小值是极小值6.最大值为2,最小值为 -2.7.最小值212x y =−=8.0163x =, max 16()151.73S =9.422,33h R r R == 3.7 曲率1. 曲率2K =,曲率半径12ρ=. 2. 2x π=处曲率最大,为1.高等数学期中自测试题一、DDCDD二、1、[1,2] 2、1/2 3、-14、(1)(1)(0)(0)f f f f ′′>−>5、1t =三、1、(22)n n πππ+,(012)n =±± ,,,2lim ln sin 0x x π→=2、1/43、04、36、(]0−∞,单调减,[)0+∞,单调增单调增五、提示:利用反证法,由零点定理推出矛盾。
《高等数学上》在线作业及参考答案

高等数学上在线作业一、单选题1.(1分)设满足。
则在处()A.取得极大值B.取得极小值C.不取得极值D.可能取得极值E.无法判断参考答案:D2.(1分)是极限的()A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件E.无法判断参考答案:C3.(1分)设函数在处连续,则常数=()A.2B.�C2C.1D.3E.0参考答案:D4.(1分)设,则此函数单调减少的区间为()A.B.C.D.E.参考答案:D5.(1分)()A.0B.C.D.E.1参考答案:D6.(1分)设函数满足,则=()A.B.C.D.E.参考答案:A7.(1分)设且,则()A.B.C.D.E.参考答案:E8.(1分)是极限的()A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件E.无法判断参考答案:C9.(1分)设函数可微,则()A.B.C.D.E.参考答案:B10.(1分)()A. -1B.0C.1D.2E. -2参考答案:B11.(1分)若函数满足,则()A.B.C.D.E.参考答案:C12.(1分)()A.B.C.D.E.参考答案:A13.(1分)设函数在处可导,则必有()A.B.C.D.E.参考答案:C14.(1分)设在的某邻域内有定义,若,则=()A.1 �CeB.eC.�C1D.0E.1 +e参考答案:A15.(1分)设函数在处连续,则常数=()A.2B. -2C.1D.3E.0参考答案:D16.(1分)已知函数,则方程有()A.一个实根B.两个实根C.三个实根D.没有实根E.无法判断参考答案:B17.(1分)设函数可微,则()参考答案:B18.(1分)设为可微函数,若则()A.B.C.D.E.参考答案:C19.(1分)设,则()A.B.C.D.E.参考答案:B20.(1分)若函数满足,则()参考答案:C21.(1分)函数的最小正周期是()A.B.C.2D.4E.8参考答案:D22.(1分)设的定义域为则函数的定义域是()A.B.C.D.(0,1)E.参考答案:D23.(1分)设在上连续,在内可导且,若,则在内()A.B.C.D.E.无法判断参考答案:A24.(1分)函数在区间()内有界A.B.C.D.E.参考答案:D25.(1分)极限=()A.2B.C.1D.0E. -1参考答案:A26.(1分)函数的定义域是()A.B.C.D.E.参考答案:D27.(1分)下列四组函数中与表示同一函数的是()A.,B.,C.,D.,E.,参考答案:E28.(1分)设的一个原函数为,则()A.B.C.D.+cE.参考答案:C29.(1分)若,则=()A.B.C.D.E.参考答案:A30.(1分)下列积分正确的是()A.,B.,C.,D.E.=0参考答案:C31.(1分)是当()时的无穷小A.¥B.1C.0D. -1E.2参考答案:A32.(1分)极限=()A.0B.1C.D.2E. -1参考答案:C33.(1分)()A. -1B.0C.1D.2E. -2参考答案:B34.(1分)极限=()A.B.1C.0D.E. -1参考答案:C35.(1分)由方程所确定的曲线在点处的切线斜率为()E.0参考答案:A36.(1分)下列各式正确的是()A.B.C.D.E.参考答案:B37.(1分)设为连续函数,则=()A.B.C.D.E.参考答案:B38.(1分)()参考答案:A39.(1分)由方程所确定的曲线在点处的切线斜率为()A.B.C.D.E.0参考答案:A40.(1分)设在上连续,在内可导且,若,则在内()E.无法判断参考答案:A41.(1分)设为连续函数,变上限积分所定义的函数为()A.的一个原函数B.的全体原函数C.的一个原函数D.的全体原函数E.无法判断参考答案:C42.(1分)设,则()A.B.C.D.E.参考答案:B43.(1分)由所围成的平面图形的面积为()A.B.C.D.E.参考答案:A44.(1分)设具有连续导数,且,,则=()A.B.1C.2D.0E. -1参考答案:D45.(1分)设,则在处()A.无定义B.不连续C.连续且可导D.连续不可导E.无法判断参考答案:D46.(1分)=()A.B.C.D.E.参考答案:D47.(1分)设,则()A.B.C.D.E.参考答案:E48.(1分)下列函数中是奇函数的是()A.B.C.D.E.参考答案:A49.(1分)设,则=()A.0B.1C. -1D.不存在E.2参考答案:E50.(1分)()A.0E.1参考答案:D51.(1分)极限=()A.2B.C.1D.4E.0参考答案:A52.(1分)是当()时的无穷小A.;B.1C.0D. -1E.2参考答案:A53.(1分)下列极限中能用罗比塔法则的是()A.B.C.D.E.参考答案:D54.(1分)设在上连续,且是常数,则()A.B.0C.D.E.参考答案:B55.(1分)设可导,则极限()A.3B.C.D.E.参考答案:C二、多选题1.(3分)当时,()与为等价无穷小参考答案:A,C,D,E2.(3分)当时,()与为等价无穷小A.B.C.D.E.参考答案:A,C,D,E3.(3分)函数=在点处()A.连续B.不连续C.可导D.不可导E.不确定参考答案:A,D4.(3分)下列等式正确的是()A.B.C.D.E.参考答案:B,D5.(3分)以下直线是曲线渐近线的为()参考答案:A,D三、判断1.(2分)函数,在处具有极小值参考答案:错误2.(2分)函数,在处具有极小值()参考答案:错误3.(2分)定积分=()参考答案:正确4.(2分)=()参考答案:错误5.(2分)=参考答案:错误6.(2分)由所围成的平面图形绕轴旋转所成的旋转体的体积等于参考答案:正确7.(2分)函数的拐点为2()参考答案:正确8.(2分)=参考答案:错误9.(2分)曲线在点(0,0)处的切线方程为参考答案:错误10.(2分)=()参考答案:正确11.(2分)=参考答案:正确12.(2分)设,则参考答案:正确13.(2分)函数的拐点为2参考答案:正确14.(2分)曲线在区间内下降且是凸的()参考答案:正确15.(2分)设函数,则是可去间断点参考答案:正确高等数学上在线作业20交卷时间:2021-06-28 15:11:16一、单选题1.(1分)下列各式正确的是()A.B.C.D.E.参考答案:B2.(1分)设,则()A.B.C.D.E.参考答案:E3.(1分)设可导,则极限()A.3参考答案:C4.(1分)设为连续函数,则=()A.B.C.D.E.参考答案:B5.(1分)由方程所确定的曲线在点处的切线斜率为()E.0参考答案:A6.(1分)()A.B.C.D.E.参考答案:A7.(1分)设函数可微,则()A.B.C.D.E.参考答案:B8.(1分)设在上连续,在内可导且,若,则在内()A.B.C.D.E.无法判断参考答案:A9.(1分)是当()时的无穷小A.;B.1C.0D. -1E.2参考答案:A10.(1分)()A.0B.C.D.E.1参考答案:D11.(1分)函数是由那些简单函数复合而成的()A.B.C.D.E.参考答案:D12.(1分)设为连续函数,则()A.0B.C.D.E.1参考答案:A13.(1分)设的定义域为则函数的定义域是()A.B.C.D.(0,1)E.参考答案:D14.(1分)设满足。
华工高等数学上教材答案

华工高等数学上教材答案答案一:华工高等数学上教材-函数极限与连续1. 函数极限1.1 定义对于一个函数,当自变量趋向于某一特定值时,如果函数值也趋向于某一确定值,我们就称该函数在该特定值处有极限。
函数极限的定义如下:设函数f(x)在点x₀的某一去心邻域内有定义,如果对于任意给定的正数ε(无论它多么小),总存在另一个正数δ,使得当0 < |x - x₀| < δ时,都有 |f(x) - A| < ε 成立,其中A为常数,则称数A为函数f(x)当x 趋于x₀时的极限,记作lim┬(x→x₀)〖f(x) = A〗。
1.2 常用极限公式在高等数学中,存在一些常用的极限公式,可以简化解题过程。
以下是一些常见极限的公式:- 基本极限- lim┬(x→0) (sinx)/x = 1- lim┬(x→0) (1-cosx)/x = 0- lim┬(x→0) (e^x - 1)/x = 1- lim┬(x→∞) (1+1/x)^x = e- 三角函数极限- lim┬(x→0) (t anx)/x = 1- lim┬(x→0) (arcsinx)/x = 1- lim┬(x→0) (arctanx)/x = 1- 自然指数函数与对数函数极限- lim┬(x→0) (ln(1+x))/x = 1- lim┬(x→0) (e^x - 1)/x = 11.3 求极限的方法求函数极限的方法有以下几种常见的情况:- 直接代入法:当函数不含有分式、根式、反三角函数等时,可以直接将自变量的值代入函数中,即可得到极限值。
- 化简法:对于一些特殊的表达式,可以通过化简的方式,将其转化为已知极限的形式,从而得到结果。
- 夹逼法:当函数无法直接求极限时,可以通过夹逼定理来确定极限的值。
夹逼法的基本思想是找到两个函数,一个比原函数小,一个比原函数大,并且两个函数的极限都相同。
- 常用极限公式法:当函数满足一些特定的形式时,可以直接使用已知的极限公式,将函数转化为已知形式,进而求出极限。
华东理工高等数学作业本第1次作业答案

华东理工高等数学作业本第1次作业答案第3章(之3)第15次作业教学内容: §3.3.1 00型3.3.2 ∞∞型1. 填空题*(1)若0≠p ,则px px xx x cos sin 1cos sin 1lim0-+-+→________=.解:p 1.**(2)_______)e1ln()e 1ln(lim11=+--+-∞→x x x .解:2e -。
2. 选择题。
**(1)若)()(limx g x f x x →是00待定型,则“Ax g x f x x =''→)()(lim 0”是“Ax g x f x x =→)()(lim 0”的( B )(A )充要条件; (B)充分条件,非必要条件;(C )必要条件,非充分条件; (D) 既非充分条件,也非必要条件.**(2)若)()(limx g x f x x →是∞∞的未定型,且Ax g x f x x =''→)()(lim 0,则=→)(ln )(ln lim 0x g x f x x( B )(A )A ln ;(B )1; (C)2A ; (D)21A.***3 求极限 xx x xxx arctan 3 3e2elim220---+-→.解:原式= =+----→2201116e2e2limxxxxx 2203e elim2xxx xx ---→xxxx 23e e2lim220-+=-→31ee4lim20=-=--→xxx .4 求下列极限:**(1)+→0lim x )0()sin ln()sin ln(>>a b bx ax ; **(2)∞→x lim)43ln()35ln(236+-++x x x x .解:(1)原式bxa x cos cot lim+→=ax b bxa x tan tan lim+→=1=.(2))431ln(ln )751ln(ln lim 22636x x x x x x x +-++++=∞→原式=++++-+→∞limln()ln ln()ln x x xxx x x 3157113436222=3.****5. xex x x -+→1)1(lim.解: ])1[(lim )00()1(lim 10'+=-+→→xx x x x x e x 210)1()1)](1ln()1([lim x x x x x x x x ++++-=→2]21)1ln(1lim[])1ln()1(lim[02e xx e xx x x e x x -=-+-=++-=→→.***6. 若已知()x f '在0=x 连续,且有()00=f ,2)0(='f ,求极限()()[]2limxx f f x f x ?→.解:xx f f xx f xx f f xx f xx f f x f x x x x )]([lim)(lim)]([)(lim)]([)(lim2→→→→?=?=?82)]0('[)]0('[)0(')('1)](['lim1)('lim3320===?=??=→→f f f x f x f f x f x x .***7. 设()x f 具有2阶连续导数,且()00=f ,试证()x g 有1阶连续导数,其中()()()??=≠=.0,0,0,'x f x xx f x g证明:依题意,当0≠x 时,2)()(')('xx f x x f x g -?=均连续.故只需证明 )0(')('lim 0g x g x =→ 即可.由导数定义,有)0("212)0(')('lim)0(')(lim)0(')(lim0)0()(lim)0('02f xf x f xxf x f xf xx f x g x g g x x x x = -=-=-=--=→→→→又)0(')0(''212)(')(')(''lim)()('lim)('lim 020g f xx f x f x x f xx f x x f x g x x x == -+=-=→→→.故命题得证.。
高等数学上册习题册答案

高等数学上册习题册答案高等数学是大学中的一门重要课程,它对于培养学生的数学思维能力和解决实际问题的能力起着重要的作用。
而习题册作为高等数学学习的重要辅助材料,对于巩固和提高学生的数学水平至关重要。
在这篇文章中,我将为大家提供高等数学上册习题册的一些答案,帮助大家更好地学习和掌握这门课程。
第一章:极限与连续1. 求函数f(x) = 3x^2 + 2x - 1的极限。
解:我们可以通过直接代入法求得极限。
当x趋近于任意实数时,函数f(x)的极限为无穷大。
2. 求函数f(x) = (x^2 - 4)/(x - 2)的极限。
解:我们可以通过化简的方法求得极限。
将分子进行因式分解,得到f(x) = (x + 2),所以当x趋近于2时,函数f(x)的极限为4。
第二章:导数与微分1. 求函数f(x) = 2x^3 - 3x^2 + 4x - 1的导数。
解:我们可以通过求导的方法求得导数。
对于函数f(x) = 2x^3 - 3x^2 + 4x - 1,它的导数为f'(x) = 6x^2 - 6x + 4。
2. 求函数f(x) = e^x * sin(x)的导数。
解:我们可以利用链式法则求得导数。
对于函数f(x) = e^x * sin(x),它的导数为f'(x) = e^x * sin(x) + e^x * cos(x)。
第三章:微分中值定理与导数的应用1. 求函数f(x) = x^3在区间[0, 1]上的极大值和极小值。
解:我们可以通过求导和二阶导数的方法求得极值。
首先,求得f'(x) = 3x^2,然后求得f''(x) = 6x。
对于区间[0, 1],当x = 0时,f''(x) = 0,所以函数f(x)在x= 0处取得极小值;当x = 1时,f''(x) = 6,所以函数f(x)在x = 1处取得极大值。
2. 求函数f(x) = x^2在点x = 2处的切线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12次作业教学内容:§3.1微分**1..求,设 dy x x x x y x ),40(2tan )(cos )(sin π<<+=解: dy y x dx ='()[]{}dx x x x x x x x 2sec 2tan sin )ln(cos cos )(cos 2sin +⋅-= .**2.设 求.y x e e dy x x ()ln()=++--241 解:du u du du dy dy eu x2211,+===-则 令 dxe e x x4212--+-= .**3.设 且处处可微求ϕϕϕϕϕ(),(),ln ()()x x d x x >⎡⎣⎢⎤⎦⎥0 解:)()(ln x x u ϕϕ=记,则du u x x d )()()(ln ϕϕϕϕ'=⎥⎦⎤⎢⎣⎡dx x x x x u )()(ln )()()(2ϕϕϕϕϕ⋅'-'⋅'=[]dxx x x x x ⎥⎦⎤⎢⎣⎡'⋅-'=)()(ln )(ln 1)()(2ϕϕϕϕϕϕ .**4. .的微分所确定隐函数求由方程dy x y y a axy y x )(,)0(0333=>=-+解: 由0333=-+axy y x , 得 0)d d (3d 3d 322=+-+y x x y a y y x xxax y x ay y d d 22--=∴.**5..)(0)cos(sin dy x y y y x x y 的微分所确定隐函数求由方程==+-解: 0)()sin(cos sin =+⋅+++⋅dy dx y x xdx y x dy 由 得 dy y x x y x x y dx=-++++cos sin()sin sin().**6. .263的近似值用微分方法计算 解:127)()()()(0003-=∆=∆⋅'+≈∴=x x xx f x f x f x x f .,令 959.22713263=-≈.**7..151cos ,0的值计算用微分代替增量 解:f x x x x ()cos =====.,000150561180ππ∆,8747.036023180)150(sin 150cos )151(000-≈--=⋅-≈ππf .**8.cm cm cm 005.02.55一层厚的空心铁球的表面上镀外半径为在一个内半径为 量。
个金球中含铁和金的质,试用微分法分别求这,金的密度为已知铁的密度为的金33g/cm 9.18g/cm 86.7,解: ,..,86.72.05341113==∆==ρπr r r V)(6.4932086.7486.71211g r r m ≈⨯=∆⋅⋅≈ππ,,,,9.18005.02.5222==∆=ρr r )(1.32005.0)2.5(49.1822g m =⋅⨯≈π.**9.,要使周期,摆长,其中单摆振动周期cm 8.9cm/s 98022===l g g lT π?,01.0摆长需增长多少增大s解:lgldT T ∆=≈∆π)(31.001.014.398cm T gll ≈⋅≈∆≈∆ π.**10.设扇形的圆心角60=α,半径cm R 100=,如果R 保持不变,α减少03',问扇形面积约改变多少?如果60=α不变,R 增加cm 1,问扇形面积约改变多少?解:扇形面积公式为221R S α=,(1) 视α为变量,则63.43)360(21)d d (2-=-⋅=∆⋅≈∆πααR S S 。
(2) 视R 为变量,则7.10411003d d =⋅⋅=∆⋅=∆⋅≈∆παR R R R S S .**11.测得一个角大小为45,若已知其相对误差为%3,问由此计算这个角的正弦函数值所产生的绝对误差和相对误差各是多少?解:设角度为x ,于是x y sin =,由微分近似计算,有(1)01666.0%3422%3445cos cos =⨯⨯=⎪⎭⎫⎝⎛⨯⋅=∆⋅=∆⋅'≈∆ππ x x x y y ; (2)%356.2sin =∆⋅'≈∆x xy y y .第13次作业教学内容:§3.2微分中值定理**1. .arcsin )(]1,1[的值时应用拉格朗日中值定理内对函数试求在ξ=-x x f 解:在上连续在内可导f x x ()arcsin [,],(,)=--1111即在满足拉格朗日中值定理的条件f x ()[,]-11又'=-f x x ()112令'=-=----=f f f ()()()()ξξπ11111122得到内的解(,)-=±-11142ξπ即存在ξπξπ12221414=-=--,,使)2,1()1(1)1()1()(=----='i f f f i ,ξ.**2.成立内使则在设))(()()(,1)(,0,a b f a f b f b x a x x f ab b a -'=-<<=<<ξξ的点 ( )的具体数值有关与是否存在 不存在有两点 只有一点 b a D C B A ,,)(,)()()( 答 ()C***3.设()()()()()d x c x b x a x x f ----=(其中d c b a <<<),不用求()x f ',说明方程()0='x f 有几个实根,指出它们所在的区间。
解:显然,()x f 在[][][]d c c b b a ,,,,,三个闭区间上连续,且在()()()d c c b b a ,,,,,内可导,又因为有()()()()0====d f c f b f a f ,由罗尔中值定理,至少存在三点()()()d c c b b a ,,,,,321∈∈∈ξξξ,使得()()()0321='='='ξξξf f f .又()x f '是一个实系数一元三次多项式函数,所以方程()0='x f 在实数范围内最多只有三个根,亦即321,,ξξξ。
它们的所在区间为 ()()()d c c b b a ,,,,,321∈∈∈ξξξ.**4.若已知方程0111=+++--x a x a x a n n n n 有一个正根0x ,证明方程 ()011211=++-+---a x a n x na n n n n至少有一个小于0x 的正根.证:考虑闭区间[]0,0x ,显然函数()x a x a x a x F n n n n 111+++=-- 在[]0,0x 上连续,在()0,0x 内可导,且有()()00x F F =。
所以由罗尔中值定理值必存在一个()0,0x ∈ξ,使得()0='ξF .***5.设()x f 在⎥⎦⎤⎢⎣⎡-2,2ππ上连续,在⎪⎭⎫ ⎝⎛-2,2ππ内可导,试证:存在⎪⎭⎫ ⎝⎛-∈2,2ππξ,使 ()()ξξξξsin cos f f ='.证:令()()x x f x g cos =,显然()x g 在⎥⎦⎤⎢⎣⎡-2,2ππ上连续,在⎪⎭⎫⎝⎛-2,2ππ内可导,且022=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-ππg g 。
由罗尔中值定理知,存在⎪⎭⎫⎝⎛-∈2,2ππξ,使得()0='ξg ,即()()0sin cos =-'ξξξξf f .***6.证明下列不等式:()b a ab a b b a <<-<<-0,1ln 1.证:令()x x f ln =,显然()x f 在[]b a ,上连续,在()b a ,内可导,故由拉格朗日定理,知必存在一个()b a ,∈ξ,使得()()()ξξ1='=--f a b a f b f ()* 由()*式,显然有()()a a b a f b f b 111<=--<ξ, 即()()a a b a b a f b f a a b -<=-<-ln , 亦即 1ln 1-<<-a ba b b a ,证毕.****7.设()x f 在[]1,1-上可微,且()()Mx f f <'=,00。
试证明:在[]1,1-上恒成立()Mx f <(其中0>M 是常数)。
证:对任意的[]1,1-∈x )0(≠x ,显然()x f 在由0与x 构成的闭区间]0,[x 或],0[x 上满足拉格朗日条件,所以,在0与x 之间必存在一个ξ,使得())0()0()(-'=-x f f x f ξ , ()*由已知,()Mx f <',及1≤x ,代入()*式,即得()()()Mf x f x f <'⋅=-ξ0;而当0=x 时,Mf <=0)0(,于是可得对任意的[]1,1-∈x ,都有 ()Mx f <.**8. 使证明存在上可导在设),,(,],[)(b a b a x f ∈ξ [])()(3)()(1233ξξξξf f b f a f a b a b '+=- ,其中)()(33b f a a f b )()(33a f a b f b -=.中值定理,上可导,利用拉格朗日在,则证明:令],[)()()(3b a x F x f x x F =))(()()(),(a b F a F b F b a -'=-∈ξξ,使则至少存在))](()(3[)()(3233a b f f a f a b f b -'+=-ξξξξ即,[])()(3)()(1233ξξξξf f b f a f a b a b '+=- 即.***9. 若()ax f x ='+∞→lim ,计算极限()()[]x f x f x -++∞→100lim .解:依题意,函数)(x f 在闭区间[]100,+x x 上必连续,在()100,+x x 内必可导,故符合Lagrange 中值定理的条件。
所以,)100,(+∈∃x x ξ,使 ])100)[(('lim )]()100([lim x x f x f x f x x -+=-++∞→+∞→ξ,其中 100+<<x x ξ,当+∞→x 时,有 +∞→ξ,af 100100)('lim =⋅=+∞→ξξ上式.****10.设()x f 在[]b a ,上具有1阶连续导数,()x f ''在()b a ,内存在,且()()0==b f a f 。
又存在常数()b a c ,∈,使()0>c f 。