华工高数作业册答案第8章

合集下载

华南理工大学高数习题册答案汇总

华南理工大学高数习题册答案汇总

第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限(1)00x y →→;解:000016x t t y →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. 2.设2e xyu =, 证明 02=∂∂+∂∂yu y x u x. 证:因为222312,xxy yu ux e e x y y y∂∂-==∂∂ 所以222223221222220x x x xy y y y u u x x x x y xe ye e e x y y y y y ∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,lim lim 0y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln zx z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()22001sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====-- 又()()()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y+≠=-+++ ()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; (2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式(1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f ''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y ''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂. 解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题(1)已知3330x y xy +-=,则d d y x =22x yx y--; (2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .解:由已知()2222222602460dz xdx ydydz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩()()22606,132623220xdx z dz dz x dy x xy dx z dx y yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u uu P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂-- 5.设函数()f u 具有二阶连续偏导数,而()e sin xz f y =满足方程22222e xz z z x y∂∂+=∂∂,求()f u . 解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )x x x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是23; (6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变 解:(){}(){}1,11,12,23,3gradz x y y x --=--=-25l ⎧=⎨⎩,{3,3}5zl ∂=-⋅=-∂z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2);(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩, 法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z ={}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z n gradz n n∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. 证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬⎪ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭ 切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。

高等数学作业集答案第八章

高等数学作业集答案第八章

第八章 空间解析几何与向量代数§8.1向量及其线性运算 1.填空题(1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-).(2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--).2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角.解:因为)0,1,1(21=M M ,故2||21=M M ,方向余弦为22cos =α,22cos =β,0cos =γ,方向角为4πα=,4πβ=, 2πγ=.3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则222222)3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y ,即⎪⎩⎪⎨⎧-+-+=-+-+-+=-+222222)3()3(9)2()1(4)2(4)1(1z y z y z z ,解得⎩⎨⎧==33y z ,则该点为)3,3,0(.4. 求平行于向量k j i a 432-+=的单位向量的分解式.解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为29)4(32||222=-++=a ,所以)432(291k j i e a -+±=.5.设k j i m 22-+=,k j i n ++=2,求向量n m a +=4在各坐标轴上的投影及分向量.解:因为k j i k j i k j i n m a 796)2()22(44-+=+++-+=+=, 所以在x 轴上的投影为6=x a ,分向量为i i a x 6=,y 轴上的投影为9=y a ,分向量为j j a y 9=,z 轴上的投影为7-=z a ,分向量为k k a z 7-=.6. 在yOz 平面上,求与)1,2,1(A 、)0,1,2(B 和)1,1,1(-C 等距离的点.解:设所求的点为),,0(z y P ,由||||||CM BM AM ==可得⎪⎩⎪⎨⎧-+++=+-++-+=-+-+222222222222)1()1(1)1(2)1(2)1()2(1z y z y zy z y ,解之得21=y ,0=z 故所求的点为)0,21,0(.7. 已知点)6,2,1(-B 且向量在x 轴、y 轴和z 轴上的投影分别为1,4,4-,求点A 的坐标.解:设点A 的坐标为),,(z y x ,由题意可知)1,4,4()6,2,1(-=----z y x ,则5,6,5=-==z y x ,即点A 的坐标为)5,6,5(-.8.试用向量法证明:三角形各边依次以同比分之,则三个分点所成的三角形必与原三角形有相同的重心.证明:若),,(111z y x A 、),,(222z y x B 、),,(333z y x C 是一个FGH ∆的三个顶点,设三角形的重心为E,则),,(31)(31321321321z z z y y y x x x C B A E ++++++=++=设ABC ∆的同比nm之分点分别为F 、G 、H ,分点的坐标为),,(212121mn mz nz m n my ny m n mx nx F ++++++),,(323232mn mz nz m n my ny m n mx nx G ++++++),,(131313mn mz nz m n my ny m n mx nx H ++++++则三角形FGH ∆的重心为,()(31133221mn mx nx m n mx nx m n mx nx H G F ++++++++=++),133221133221m n mz nz m n mz nz m n mz nz m n my ny m n my ny m n my ny ++++++++++++++++),,(31321321321z z z y y y x x x ++++++=. 所以三个分点所成的三角形必与原三角形有相同的重心. §8.2 数量积 向量积 1.若3),(,4||,3||π===Λb a b a ,求b ac 23-=的模.解:b b b a a b a a b a b a c 22233233)23()23(||2⋅+⋅-⋅-⋅=-⋅-=73443cos431239||412||92222=⨯+⨯⨯⨯-⨯=+⋅-=πb b a a所以73||=c .2.已知||||b a b a -=+,证明:0=⋅b a .证明:由||||b a b a -=+,可得22||||b a b a -=+,可知)()()()(b a b a b a b a -⋅-=+⋅+,展开可得b a b a b a b a ⋅-+=⋅++2||||2||||2222,即04=⋅b a ,故0=⋅b a .3.已知20||,18||,10||=+==b a b a ,求||b a -. 解:因为b a b a b a b a b a b a ⋅++=⋅++=+⋅+=+=23241002||||)()(||400222所以242-=⋅b a ,)()(||b a b a b a -⋅-=-b a b a ⋅-+=2||||227824324100=++=.4.已知)4,2,1(=a ,)3,3,3(-=b ,求a 与b 的夹角及a 在b 上的投影.解:934)3(231=⨯+-⨯+⨯=⋅b a ,7799916419cos =++⋅++=θ,77arccos=θ. 因为a jb b a b Pr ||=⋅,所以3339Pr ==a jb .5.已知a ,b ,c 为单位向量,且满足0=++c b a ,计算a c c b b a ⋅+⋅+⋅.解:因为0)()(=++⋅++c b a c b a ,所以0222||||||222=⋅+⋅+⋅+++a c c b b a c b a ,而1||||||222===c b a ,所以23-=⋅+⋅+⋅a c c b b a . 6.求与k j i b k j i a 32,2-+=++=都垂直的单位向量. 解:kj i k j i k j i b a c 357122132113112312121-+-=+---=-=⨯=而83)3(5)7(||222=-++-=c ,所以)3,5,7(831--±=c e .7.设)(8,186,5b a b a b a -=+-=+=,试证A 、B 、D 三点共线.证明:只需证明//.因为b a b a 2)5(2102=+=+=+=,所以//.8.已知)3,2,1(-=a ,=b )0,,2(m ,)9,3,9(-=c (1)确定m 的值,使得b a +与c 平行.(2)确定m 的值,使得b a -与c 垂直.解:(1)要使b a +与c 平行,只需0=⨯+c b a )(,因为b a +)3,2,3(-=m ,而c b a ⨯+)()99,0,99(32m m m j --=--=,所以当1=m 时b a +与c 平行.(2)要使b a -与c 垂直,只需0)(=⋅-c b a ,因为b a -)3,2,1(---=m ,而c b a ⋅-)(24327639)9,3,9()3,2,1(+=+++-=-⋅---=m m m ,所以当8-=m 时,b a -与c 垂直. §8.3 曲面及其方程 1.填空题(1)将xOz 坐标面上的抛物线x z 42=绕x 轴旋转一周,所生成的旋转曲面的方程为(x y z 422=+),绕z 轴旋转一周,所生成的旋转曲面的方程为(2224y x z +=).(2)以点)2,3,2(-为球心,且通过坐标原点的球面方程为(17)2()3()2(222=-+++-z y x ).(3)将xOy 坐标面的圆422=+y x 绕x 轴旋转一周,所生成的旋转曲面的方程为(4222=++z y x ).2.求与点)1,2,1(A 与点)2,0,1(B 之比为2:1的动点的轨迹,并注明它是什么曲面.解:设动点为),,(z y x P ,由于2:1||:||=PB PA ,所以222222)2()0()1()1()2()1(2-+-+-=-+-+-z y x z y x ,解之,可得194166333222=+---++z y x z y x ,即920)32()38()1(222=-+-+-z y x ,所以所求的动点的轨迹为以点)32,38,1(为心,半径为352的球面. 3.求与点)3,1,2(和点)4,2,4(等距离的动点的轨迹. 解:设动点为),,(z y x P ,由题意知222222)4()2()4()3()1()2(-+-+-=-+-+-z y x z y x ,整理得0112=-++z y x .4. 写出下列曲面的名称,并画出相应的图形. (1)259916222-=--z y x . 解:该曲面为单叶双曲面. (2)259916222=--z y x . 解:该曲面为双叶双曲面.(3)1254222=++z y x . 解:该曲面为旋转椭球面. (4)x y x 922=-. 解:该曲面为双曲柱面. (5)x z y 922=+. 解:该曲面为椭圆抛物面.(6)0)3()2()1(4222=---+-z y x . 解:该曲面为椭圆锥面.§8.4 空间曲线及其方程 1. 填空题(1)二元一次方程组⎩⎨⎧-=+=3412x y x y 在平面解析几何中表示的图形是(两相交直线的交点)5,2();它在空间解析几何中表示的图形是(两平面的交线,平行于z 轴且过点)0,5,2().(2)旋转抛物面)20(22≤≤+=z y x z 在xOy 面上的投影为(⎩⎨⎧=+=222z y x z ),在x O z 面上的投影为(22≤≤z x ),在yOz 面上的投影为(22≤≤z y ).2.求球面4222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程.解:将x z -=1代入4222=++z y x ,得4)1(222=-++x y x ,因此投影方程为⎩⎨⎧=+-=322022y x x z . 3.分别求母线平行于x 轴、y 轴及z 轴且通过曲线⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 的柱面方程.解:在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去x 得4322=-z y ,即为母线平行于x 轴且通过曲线的柱面方程.在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去y 得45322=+z x ,即为母线平行于y 轴且通过曲线的柱面方程.在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去z 得8522=+y x ,即为母线平行于z 轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1)⎩⎨⎧-==++-14)1(222x y z y x .解:将1-=x y 代入4)1(222=++-z y x 得4)1(222=+-z x ,即14)2()1(222=+-z x . 令θcos 21=-x ,θsin 2=z ,所求的参数方程为 ⎪⎪⎩⎪⎪⎨⎧==+=θθθsin 2cos 2cos 21z y x . (2)⎪⎩⎪⎨⎧=+=++4922222z x z y x . 解:做变换⎩⎨⎧==θθsin 2cos 2z x ,将其带入方程9222=++z y x ,即得52=y . 所以参数方程为⎪⎩⎪⎨⎧=±==θθsin 25cos 2z y x (πθ20≤≤).5.求螺旋线⎪⎩⎪⎨⎧===θθθ3sin 2cos 2z y x 在三个坐标面上的投影曲线的直角坐标方程.解:螺旋线在xOy 面上的投影为⎪⎩⎪⎨⎧===0sin 2cos 2z y x θθ,直角坐标方程为⎩⎨⎧==+0422z y x . 螺旋线在yOz 面上的投影为⎪⎩⎪⎨⎧===03sin 2x z y θθ,直角坐标方程为⎪⎩⎪⎨⎧==03sin2x z y .螺旋线在zOx 面上的投影为⎪⎩⎪⎨⎧===03cos 2y z x θθ,直角坐标方程为⎪⎩⎪⎨⎧==03cos2y z x . 6.画出下列方程所表示的曲线:(1)⎩⎨⎧==++1164222z z y x .(2)⎪⎩⎪⎨⎧=-+=+1)2(2222y x y z x . (3)⎪⎩⎪⎨⎧==-4116422y z x .§8.5 平面及其方程 1. 填空题(1)一平面过点)4,1,1(-且平行于向量)1,1,2(-=a 和)1,0,1(=b ,平面的点法式方程为(0)4()1(3)1(=+----z y x ),平面的一般方程为(023=---z y x ),平面的截距式方程(12232=-+-+z y x ),平面的一个单位法向量为()1,3,1(1111-). (2)设直线L 的方程为⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A ,当(021==D D )时,直线L 过原点;当(021==A A )且(01≠D 或02≠D 有一个成立)时,直线L 平行于x 轴但不与x 轴相交;当(2121D D B B =)时,直线L 与y 轴相交;当(02121====D D C C )时,直线L 与z 轴重合. 2.求过三点)1,1,1(-,)3,1,3(-和)2,1,0(的平面方程. 解:由平面的三点式方程知,所求的平面方程为131313121212111z z y y x x z z y y x x z z y y x x ---------121110131113111-+---+--+-=z y x 121422111---+-=z y x =0,即0735=-++z y x . 3.求过点)1,1,1(-且垂直于两平面02=-+z y x 和052=+-z y x 的平面方程.解:该平面的法向量为k j i kj i37521211--=--,平面的方程为0)1(3)1(7)1(=--+--z y x ,即0537=---z y x .4.求点)1,2,1(到平面01022=-++z y x 的距离.解:点),,(0000z y x P =到平面0=+++D Cz By Ax 的距离公式是222000||CB A D Cz By ax d +++++=,因此点)1,2,1(到平面01022=-++z y x 的距离为1221|10122211|222=++-⨯+⨯+⨯=d .5.求平面052=-+-z y x 与各坐标面的夹角的余弦.解:所给平面的法向量为)1,2,1(-=n ,设该平面与xOy 面、yOz 面和zOx 面的夹角为z θ、x θ和y θ,于是=z θcos ||||n k n ⋅611)2(1|110201|222=+-+⨯+⨯-⨯=, =x θcos ||||n i n ⋅611)2(1|010211|222=+-+⨯+⨯-⨯=, =y θcos ||||n j n ⋅621)2(1|011201|222=+-+⨯+⨯-⨯=. 6.求过点)5,4,1(-且在三个坐标轴上的截距相等的平面的方程.解:设所求平面的方程为1=++aya y a x ,由于点)5,4,1(-在平面上,则1541=+-+aa a ,2=a ,所求方程为02=-++z y x . 7.分别按下列条件求平面方程:(1)平行于yOz 平面且经过点)2,3,2(--;(2)通过y 轴和点)1,1,2(-;(3)求平行于x 轴,且经过两点)2,1,2(-和)1,0,4(-的平面方程. 解:(1)yOz 平面的法向量是)0,0,1(=n ,可作为所求平面的法向量,因此所求平面的方程为0)2(0)3(0)2(1=+⋅++⋅+-⋅z y x ,即2=x . (2)所求平面的法向量即垂直于y 轴又垂直于向量)1,1,2(-=n ,所以所求平面的法向量为k i k j i201112+-=-,因此所求平面的方程为0)1(2)1(0)2(1=-⋅++⋅+-⋅-z y x ,即02=-z x .(3)由于所求平面平行于x 轴,故设所求平面方程为0=++D Cz By . 将点)2,1,2(-和)1,0,4(-分别代入0=++D Cz By 得02=+-D C B 及0=+-D C ,解得D C =及D B =. 因此所得方程为0=++D Dz Dy ,即01=++z y . §8.6 空间直线及其方程 1. 填空题(1)直线421zy x =-=和平面442=+-z z x 的关系是(平面与直线互相垂直).(2)过点)0,1,1(-且与直线321123-+=-=-z y x 平行的直线的方程是(31121-=+=-zy x ). (3)直线182511+=--=-z y x 与直线⎩⎨⎧=+=-326z y y x 的夹角为(3π). 2.化直线⎩⎨⎧=++=+-522z y x z y x 为对称式方程和参数方程.解:直线的方向向量为k j i k j in n s 3211211121++-=-=⨯=. 取10=x ,代入直线方程可得10=y ,20=z . 所以直线的对称式方程为321121-=-=--z y x . 令t z y x =-=-=--321121,所给直线的参数方程为⎪⎩⎪⎨⎧+=+=-=tz t y t x 32121. 3.求过点)3,0,2(且与直线⎩⎨⎧-=-+=+-1253742z y x z y x 垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即21n n n ⨯=)11,14,16(253421-=--=kj i .所求平面的方程为0)3(11)0(14)2(16=-+-+--z y x ,即01111416=+--z y x .4. 求直线⎩⎨⎧=---=-+-01023z y x z y x 与直线⎩⎨⎧=-+=+-+01202z y z y x 夹角的余弦.解:因为两直线的方向向量为k j i kjin 2241111311++=---=,k j i kjin +-=-=232101112,设两直线的夹角为θ,则422151)2(3224|122234|cos 222222=+-+++⨯+⨯-⨯=θ. 5. 求点)5,1,2(P 在直线:L13111-=-=-zy x 上的投影. 解:过)5,1,2(P 作垂直于已知直线L 的平面∏,则其法向量)1,3,1(-=n ,于是平面的方程为0)5()1(3)2(=---+-z y x ,即03=-+z y x .将已知直线的参数方程⎪⎩⎪⎨⎧-=+=+=tz t y tx 311代入03=-+z y x ,可得114-=t ,因此点)5,1,2(P 在直线L 上的投影即为平面∏与直线L 的交点)114,111,117(-. 6. 求直线:L ⎩⎨⎧=---=+-083032z y x z y x 在平面:∏12=+-z y x 上的投影直线的方程.解:设所给直线L 的平面束方程为0)83(32=---++-z y x z y x λ,即08)1()3()32(=--++-+λλλλz y x ,其中λ为待定常数,要使该平面与已知平面∏垂直,则有0)1()3()32(2=-++++λλλ,解得34-=λ,将其代入08)1()3()32(=--++-+λλλλz y x ,可得32756=-+z y x ,因此直线L 在平面∏上的投影直线方程为⎩⎨⎧=+-=-+1232756z y x z y x . 7.确定λ的值,使直线:L ⎩⎨⎧=-+=-+02012z x y x 与平面1:=-+∏z y x λ平行,并求直线L 与平面∏之间的距离.解:直线L 的方向向量n k j i kj i--==2101012,要使直线L 与平面∏平行,只要0=⋅s n (其中=s )1,,1(-λ为平面∏的法向量),即0121=+-λ,解得1=λ. 令10=x ,代入直线L 的方程可得10-=y ,10=z ,直线L与平面∏之间的距离332)1(11|1)1(11111|222=-++--⨯+⨯-⨯=d . 8.求通过直线⎩⎨⎧=-++=-+-02201:z y x z y x L 的两个互相垂直的平面,其中一个平面平行于直线111121-=-+=-z y x . 解:设平面束方程为0)22(1=-+++-+-z y x z y x λ,即012)1()1()12(=--++-++λλλλz y x ,=n )1,1,12(+-+λλλ.设平行于直线111121-=-+=-z y x 的平面为1∏,由0)1()1(2)12(=++--+λλλ,可知1-=λ,令10=x ,代入直线L 的方程,可得000==z y 平面1∏的方程为02)1(=---y x ,即012=-+y x . 设垂直于平面1∏的平面为2∏,由0)1(2)12(=-++λλ,可得41=λ,平面2∏的方程为04543)1(23=+--z y x ,即06536=-+-z y x . 第八章 空间解析几何与向量代数综合练习 1.填空题:(1)已知1||=a ,2||=b ,且a 与b 夹角为3πθ=,则=-||b a (3).(2)若向量)1,2,1(-=a ,=b ),,3(μλ-平行,则=),(μλ()3,6(-). (3)已知向量的模为10,且与x 轴的夹角为6π,与y 轴的夹角为3π,与z 轴的夹角为锐角,则=() 0 5, , 3(5).(4)曲线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos (a 、b 为常数)在xOy 平面上投影曲线是(⎩⎨⎧==+0222z a y x ).(5)xOy 平面上曲线16422=-y x 绕x 轴旋转一周所得旋转曲面方程是(16)(4222=+-z y x ).(6)直线z z y y x x 111-=-=-与平面0=+++D Cz By Ax 的夹角θ 的正弦=θsin (222222CB A pn m pC nB mA ++++++).(7)方程y z x =-22所表示的曲面名称为(双曲抛物面).(8)与两直线⎪⎩⎪⎨⎧+=+-==tz t y x 122及112212-=-=+z y x 都平行,且过原点的平面方程是(0=+-z y x ).(9)已知动点),,(z y x P 到yOz 平面的距离与点P 到点)2,1,1(-的距离相等,则点P 的轨迹方程为(012)2()1(22=++-+-x z y ).(10)与两平面012=--+z y x 和032=+-+z y x 等距离的平面方程为(012=+-+z y x ).2. 设k i a -=,k j i b ++=,求向量c ,使得b c a =⨯成立,这样的c有多少个,求其中长度最短的c .解:设=c ),,(z y x ,则 c a⨯y x z y zy kj ++-=-=)(10,则1,1-=+=x z y ,因此这样的c )1,1,(x x --=,有无穷个.由于||c 23)21(2)1(1222++=--++=x x x ,因此,当21-=x 时, 即c )21,1,21(--=长度最短. 3. 已知点)0,1,1(A 和点)2,1,0(B ,试在x 轴上求一点C ,使得ABC ∆的面积最小.解:设)0,0,(x C ,则)2,0,1(-=,)0,1,1(--=x,k j x i x AC AB +-+=---=⨯)1(221101,故A B C ∆的面积为1)]1(2[221||2122+-+=⨯=x S ,显然,当1=x 时,ABC ∆的面积最小,为25,所求点为)0,0,1(.4. 求曲线⎪⎩⎪⎨⎧+==+-2222242yx z z y x 在各坐标平面上的投影曲线方程.解:在xOy 平面投影为⎩⎨⎧==-04222z y x ;在yOz 平面投影为⎩⎨⎧==-043222x y z ;在zOx 平面投影为⎩⎨⎧==-04322y z x . 5.求原点关于平面:∏0=+++D Cz By Ax 的对称点的坐标.解:过原点作垂直于平面0=+++D Cz By Ax 的直线,该直线的方向向量等于平面∏的法向量),,(C B A ,所求直线的对称式方程为C z B y A x ==,即⎪⎩⎪⎨⎧===Ctz Bt y Atx 为其参数方程. 将此参数方程代入平面∏,有0)(222=+++D t C B A ,解得222C B A Dt ++-=,即直线与平面的交点为),,(222222222CB A CDC B A BD C B A AD ++-++-++-. 设所求的对称点为),,(000z y x ,则222020C B A AD x ++-=+,222020CB A BDy ++-=+,222020C B A CDz ++-=+,即所求的对称点为)2,2,2(222222222CB A CDC B A BD C B A AD ++-++-++-. 6.求直线11111:--==-z y x L 在平面012:=-+-∏z y x 上的投影直线绕x 轴线转一周所成曲面的方程.解:过L 作垂直于平面∏的平面0∏,所求的直线L 在平面∏上的投影就是平面∏和0∏的交线. 平面0∏的法向量为:k j i kj in 232111210--=--=,则过点),,(101的平面0∏的方程为: 0)1(23)1(=----z y x ,即0123=+--z y x . 所以投影线为⎩⎨⎧=+--=-+-0123012z y x z y x . 将投影线表示为以x 为参数的形式:⎪⎩⎪⎨⎧--==)12(212x z x y ,则绕x 轴的旋转面的方程为2222)]12(21[)2(--+=+xx z y ,即0416*******=+---z y x x .7.求球心在直线11212--==-z y x 上,且过点)1,2,1(-和点)1,2,1(--的球面方程.解:设球心为),,(z y x ,则222222)1()2()1()1()2()1(-++++=++-+-z y x z y x ,即02=-+z y x .又因为球心在直线上,直线的参数方程为⎪⎩⎪⎨⎧-==+=t z t y t x 122,将直线的参数方程代入02=-+z y x ,可得61-=t ,球心坐标为)67,31,611(-,所求球面方程为665)67()31()611(222=-+++-z y x .8.已知两条直线的方程是142211:1--=+=-z y x L ,10122:2zy x L =-=-,求过1L 且平行于2L 的平面方程. 解:因为所求平面过1L ,所以点)4,2,1(-在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为k j i k j i43212121--=-.因此所求平面的方程为0)4(4)2(3)1(2=--+--z y x ,即08432=+--z y x .9. 在过直线⎩⎨⎧=++=+++0201z y x z y x 的所有平面中,求和原点距离最大的平面.解:设平面束方程为0)2(1=++++++z y x z y x λ,即01)1()1()12(=++++++z y x λλλ,平面与原点的距离为31)32(61)1()1()12(|10)1(0)1(0)12(|2222++=++++++⨯++⨯++⨯+=λλλλλλλd要使平面与原点的距离最大,只要32-=λ,即该平面方程为03=---z y x .10. 设两个平面的方程为052=---z y x 和062=--+z y x (1)求两个平面的夹角. (2)求两个平面的角平分面方程. (3)求通过两个平面的交线,且和yOz 坐标面垂直的平面方程. 解:(1)两个平面的法向量为)1,1,2(1--=n 和)2,1,1(2-=n ,设两个平面的夹角为θ,则21)2(111)1(2|)2()1(1112|||||||cos 2222222121=-+++-+-⨯-+⨯-⨯=⋅=n n n n θ,所以3πθ=.(2)因为角平分面上任意一点),,(z y x 到两个平面的距离相等,由点到平面的距离公式,可得222222)2(11|62|)1()1(2|52|-++--+=-+-+---z y x z y x ,即)62(52--+±=---z y x z y x ,所求的角平分面方程为12=+-z y x 或1133=-z x .(3)设通过两个平面的交线的平面方程为)62(52=--++---z y x z y x λ,即0)65)12()1()2(=--+--++λλλλz y x ,由于该平面垂直于yOz 坐标面,所以00)12(0)1(1)2(=⋅+-⋅-+⋅+λλλ,可得2-=λ,因此所求的平面方程为0733=--z y . 11. 求直线321zy x =-=绕z 轴旋转所得旋转曲面的方程. 解:由于空间曲线⎪⎩⎪⎨⎧===)()()(t z z t y y t x x )(+∞<<-∞t 绕z 轴旋转所得旋转曲面的方程为⎩⎨⎧=+=+)()()(2222t z z t y t x y x )(+∞<<-∞t ,消去参数t 即可. 此直线的参数方程为 ⎪⎩⎪⎨⎧=-==t z t y t x 32,故该直线绕z 轴旋转所得旋转曲面的方程为⎩⎨⎧=-+=+tz t t y x 3)2()(2222,消去参数t ,旋转曲面的方程为22295z y x =+. 12. 画出下列各曲面所围立体的图形:(1)0,0,0,12643====++z y x z y x . (2)2,222=+=z y x z . (3)22224,y x z y x z --=+=. (4)2222,2y x z y x z +=--=.(5)222y x z +=,22x z -=. (6)2x y =,0=z ,y z =,1=y .。

高等数学课后习题答案--第八章

高等数学课后习题答案--第八章

第八章 多元函数积分学 §3 三重积分的计算及其应用 习 题
1. 计算下列三重积分 (1) ∫∫∫ xy 2 z 3 dσ ,其中 Ω 是曲面 z = xy 和平面 y = x, x = 1, z = 0 所围成的区域;

(2) ∫∫∫ xzdσ ,其中 Ω 是由平面 z = 0 , x = y, y = z 以及抛物柱面 y = x 2 所围成的
D D
的大小。 【解】 利用 sin 2 x ≤ x 2 .则 sin 2 ( x + 2 y + 3z ) ≤ ( x + 2 y + 3z ) 2 积分得
∫∫∫ sin
D
2
( x + 2 y + 3 z )dσ ≤ ∫∫∫ ( x + 2 y + 3 z ) 2 dσ
D
4. 利用重积分的性质,估计积分值
(1) ∫∫ sin( x 2 + y 2 )dσ ,其中 D = {( x, y ) |
D
π
4
≤ x2 + y2 ≤
3π }; 4
dxdy , 其中 D = {( x, y ) | 0 ≤ x ≤ 4,0 ≤ y ≤ 8}; ln(4 + x + y ) D 2 2 1 (3) ∫∫ e x + y dσ ,其中 D = {( x, y ) | x 2 + y 2 ≤ }. 4 D
习题参考资料
第八章 多元函数积分学 §2 二重积分的计算 习 题
1. 计算二重积分
(1) ∫∫ xye xy dσ ,其中 D = {( x, y ) | 0 ≤ x ≤ 1,0 ≤ y ≤ 1};
2
D
(2) ∫∫

高等数学课后答案 第八章 习题详细解答

高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

高等数学课后习题答案第八章1

高等数学课后习题答案第八章1

高等数学课后习题答案第八章1第八章习题解答节8.1部分习题解答 5、求极限(1)、101011l i m 2201=+-=+-→→yx xy y x (2)、xy y x y x 1sin)(lim 0+→→。

由y x xyy x +≤+≤1sin )(0,而0)(lim 00=+→→y x y x 所以01sin)(lim 00=+→→xyy x y x (3)、2ln 214)02ln()sin ln(lim2202=++=++→→y x y x y x (4)、=+-→→xy xy y x 42lim 041421)42(lim 00-=+-=++-→→xy xy xy y x (5)、110c o s 1c o s l i m000==++→→e y x y e x y x (6)、=++-→→xy y x ey x y x )()cos(1lim22220=++→→xy y x ey x y x )()(21sin 2lim 222220 )(21)(21sin lim 222200y x y x y x ++→→0101)(21sin lim 2200=?=+?→→xy y x e y x 6、证明下列极限不存在(1)、yx yx y x -+→→00l i m 证明:取路径0=x 有=-+→→y x y x y x 00lim1lim0-=-→=yyy x 取路径0=y 有=-+→→y x y x y x 00lim1lim 00=→=xx x y ,所以y x yx y x -+→→00lim 不存在(2)、xy x x y x -+→→2220l i m证明:取路径x y =有xy x x y x -+→→22200lim x x x y x -=→→2202lim 0142lim 00=-=→→x x y x 取路径x y =有x y x x y x -+→→2220 0lim 1lim 220==→→x x y x ,所以xy x x y x -+→→22200lim 不存在。

高等数学第八章课后习题答案

高等数学第八章课后习题答案

第八章习题解答(2) 节8.4部分习题解答1、设22v uv u z ++= y x v y x u -=+=,,求x z ∂∂,yz ∂∂ 解:v u u z +=∂∂2 v u vz 2+=∂∂ 1=∂∂x u ,1=∂∂x v ;1=∂∂y u ,1-=∂∂yv 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xvx v u v u v u 6)(3)2()2(=+=+++y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv y v u v u v u 2)2()2(=-=+-+ 2、设v u z ln 2= y x v yxu 23,-==,求x z ∂∂,y z ∂∂解:v u u zln 2=∂∂ vu v z 2=∂∂ y x u 1=∂∂,3=∂∂x v ;2yx y u -=∂∂,2-=∂∂y v所以 x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂x v )23(3)23l n (23ln 21222y x y x y x y x v u v u y -+-=+y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂y v )23(2)23l n (22ln 2223222y x y x y x y x v u v u y x ----=-- 3、设v e z uln = 22222,2y x v y x u -=-=,求x z ∂∂,yz∂∂ 解:v e u z uln =∂∂ ve v z u =∂∂ x x u 4=∂∂,x x v 2=∂∂;y y u 2-=∂∂,y yv 4-=∂∂ 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xv]21)2ln(2[22ln 42222222yx y x xe v e x v xe y x u u-+-=+-y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv ]22)2ln(2[24ln 2222222yx y x ye v e y v ye y x u u-+--=--- 4、设y x e z 2-= 3,sin t y t x ==,求 dtdz解:y x e x z 2-=∂∂ y x e yz 22--=∂∂,t dt dx cos =,23t dt dy =, 所以dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy223c o s t te y x +-)2(2y x e --=)6(c o s 22s i n 3t t e t t -- 5、设)arcsin(y x z -= 34,3t y t x ==,求 dtdz 解:2)(11y x x z --=∂∂ 2)(11y x y z ---=∂∂,t dt dx 3=,212t dt dy =, 所以 dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy=---22)(1123y x t 232)43(1123t t t ---6、设)23tan(22y x t z -+= t y tx ==,1,求dtdz 解:2sec 4x x z =∂∂)23(22y x t -+ 2s e c 2y yz -=∂∂)23(22y x t -+, 2sec 3=dt dz )23(22y x t -+;21t dt dx -=,tdt dy 21=, 1=dt dt 所以t dz ∂⋅∂∂=x z +dt dx ⋅∂∂y z =∂∂+t z dt dy 2s e c )23(22y x t -+]3212)1(14[2+--tt t t 2sec =)22(2t t +)42(3t -⋅ 7、设1)(2+-=a z y e u ax xz x a y cos ,sin ==,求 dx du解:=∂∂x u 1)(2+-a z y ae ax ,=∂∂y u12+a ae ax ,-=∂∂z u 12+a ae ax x dx dy cos =;x dxdzsin -=,所以 dx du ⋅∂∂=x u ⋅∂∂+y u =⋅∂∂+dx dzz u dx dy ]s i n c o s )c o s s i n ([12x x a x x a a a e ax ++-+ x e ax sin =8、设222z y xe u ++= x y z sin 2=,求x u ∂∂,yu∂∂ 解:x x u 2=∂∂222z y x e ++⋅ y yu2=∂∂222z y x e ++⋅,z z u 2=∂∂222z y x e ++⋅ x y x z cos 2=∂∂,x y yz sin 2=∂∂; 所以:x u ∂∂=∂∂⋅∂∂+∂∂⋅+∂∂=xzz u y u x u 0]cos 22[2222x zy x e z y x +++ =+=++]cos sin 22[22sin 2422x xy y x e xy y x]2sin 2[4sin 2422x y x e xy y x+=++y u ∂∂=∂∂⋅∂∂+∂∂+⋅∂∂=yz z u y u x u 0]sin 222[222x y z y e z y x ⋅+++ =⋅+=++]sin 2sin 22[2sin 2422x y x y y e xy y x]sin 21[222sin 2422x y ye xy y x+++9、设)cos(22y x y x z +++= v y v u x arcsin ,=+=,求vu zu z ∂∂∂∂∂2, 解:)sin(2y x x x z +-=∂∂,)sin(2y x y yz +-=∂∂ 1=∂∂u x ,1=∂∂v x ,0=∂∂u y211vv y -=∂∂所以)a r c s i n s i n ()(2)s i n (2v v u v u y x x uz++-+=+-=∂∂)111)(arcsin cos(222vv v u v u z -+++-=∂∂∂ 10、设,arctan y xz =v u y v u x -=+=,验证:22vu v u v z u z +-=∂∂+∂∂ 证明:22yx yx z +=∂∂,22y x x y z +-=∂∂,1=∂∂u x ,1=∂∂v x ,11=∂∂u y ,1-=∂∂v y所以)(122x y y x u z -+=∂∂22v u v +-=,)(122x y yx v z ++=∂∂22v u u += 故有 左边=+-=∂∂+∂∂=22vu vu v z u z 右边 11、设f 具有连续的一阶偏导数,求下列函数的一阶偏导数 (1)、)34,23(y x y x f z -+=解:设y x v y x u 34,23-=+=,于是有3=∂∂x u ,2=∂∂y u ,4=∂∂x v ,3-=∂∂yv2143f f x z +=∂∂ =∂∂yz2133f f - (2)、),(22xy e y x f z -= 解:设xy e v y x u =-=,22,于是有x x u 2=∂∂,y y u 2-=∂∂,xy ye x v =∂∂,xu xe yv=∂∂ =∂∂x z 212f ye xf xy + 212f xe yf yzxy +-=∂∂ (3)、)32,ln (y x x y f z +=解:设y x v x y u 32,ln +==,于是有x y x u =∂∂,x y u ln =∂∂,2=∂∂x v ,3=∂∂yv212f f x y x z +=∂∂ 213ln f xf yz+=∂∂ (4)、),(yxx y f z = 解:设y x v x y u ==,,于是有2x y x u -=∂∂,x y u 1=∂∂,y x v 1=∂∂,2yx y v -=∂∂ 2121f y f xy x z +-=∂∂2211f y x f x y z -=∂∂ (5)、),,(y x y x x f z -+=解:设y x v y x u -=+=,,于是有1=∂∂x u ,1=∂∂x v ,1=∂∂y u ,1-=∂∂yv321f f f x z ++=∂∂ 32f f yz -=∂∂ (6)、),,(x y z xy x f u =解:设xyz t xy s ==,,于是有y x s =∂∂,yz x t =∂∂,x y s =∂∂,zx yt=∂∂ 0=∂∂z x ,0=∂∂z s xy zt=∂∂ 321yzf yf f x u ++=∂∂ 32z x f xf yu+=∂∂ 3xyf z u =∂∂ 12、设)(u f 具有连续的导数,)(xyxf xy z += 验证:z xy yz y x z x+=∂∂+∂∂ 验证:)])(()([2xy x y f x x y f y x x z x-'++=∂∂)()(x y f y x y xf xy '-+= ='+=∂∂)])(([xyx y f x x y y z y)(x y f y xy '+左边==+=+=∂∂+∂∂z xy xyxf xy y z y x z x)(2右边 13、设)(22y x f z +=,)(u f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22y z∂∂ 解:设22y x u +=有1f u z=∂∂ 1122f u z =∂∂ x x u 2=∂∂ 222=∂∂x u 0=∂∂∂y x u y y u2=∂∂ 222=∂∂yu 12xf x z =∂∂ x xf f x z 22211122+=∂∂112142f x f += 11112422xyf y xf yx z ==∂∂∂ 12yf y z=∂∂ 11212242f y f yz +=∂∂ 14、设f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22yz∂∂(1)、),(xy y x f z += 解:设xy v y x u =+=,有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z =∂∂ 2222f v z =∂∂ 1=∂∂x u 022=∂∂x u 02=∂∂∂y x u 1=∂∂y u 022=∂∂y u y x v =∂∂ 022=∂∂x v 12=∂∂∂y x v x y v =∂∂ 022=∂∂yv 于是有:22222)(xv v z x u u z z v y u x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f y yf f ++=y x vv z y x u u z z v x u v y u y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂+∂∂∂∂+∂∂=∂∂∂222))((2221211)(f xyf f y x f ++++= 22222)(y vv z y u u z z v x u yz ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f x xf f ++= (2)、),(yxxy f z =解:设yx v xy u ==, 有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z=∂∂ 2222f v z =∂∂ y x u =∂∂ 022=∂∂x u 12=∂∂∂y x u x y u =∂∂ 022=∂∂yu y x v 1=∂∂ 022=∂∂x v221yy x v -=∂∂∂ 2y x y v -=∂∂ 3222y x y v =∂∂ 于是有:22222)1(x v v z x u u z z v y u y x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂2221211212f y f f y ++=yx vv z y x u u z z v y x u x v y u y y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂-∂∂∂∂+∂∂=∂∂∂2222))(1(221223111f y f f y x xyf -+-+=222222)(y v v z y u u z z v y x u x y z ∂∂∂∂+∂∂∂∂+∂∂-∂∂=∂∂232242122211222f y x f y x f y x f x ++-=。

高数第8章经典类型题参考答案

高数第8章经典类型题参考答案

第八章 经典类型题参考答案一、向量的有关运算1. 向量a ⃗=(3,5,−2),b ⃗⃗=(2,1,4),求a ⃗⋅b ⃗⃗,a ⃗×b⃗⃗。

解: 3a b =,2216-7.a b i j k ⨯=-2. 已知A(1,−1,1),B(−1,0,2),C(2,−2,1)。

(1)计算AB ⃗⃗⃗⃗⃗⃗的模和方向余弦;(2)求以A ,B ,C 为顶点的三角形的面积。

解:(1)6AB =,cos =α , cos β= , cos γ=(2)122S ABC ==。

3. 设向量b ⃗⃗和a ⃗=2i ⃗−j ⃗+2k ⃗⃗共线,并且a ⃗⋅b⃗⃗=18。

求向量b ⃗⃗。

解: ()4,2,4b =-。

()()()4.02.235.43612232530.1.3113751a b c a b c a b b c c a a b b c c a a b a b a b a b a b a b S x y z π++=⋅+⋅+⋅⋅+⋅+⋅=-==++-+=+=--+-已知,, 都是单位向量,且满足,求解:已知,,向量和的夹角为,求();()求,为邻边的平行四边形的面积.解:二、求直线和平面方程求过点,,且与平面()()20311.3752.432510325325.43113.23442311056423410114x y z x z x y z x y z x y z L x y z x y z =--+==--=---=-+--==---+==++-=---==-垂直的直线方程.解:直线方程为求平行于平面和的交线且过点,,的直线方程.解:直线的方程为:求过点M ,,且垂直于直线:以及平行于直线的直线方程.解:直线的方程为。

4. 求过点(4,−1,3)且与直线x−32=y 1=z−15垂直的平面方程。

解:方程为2(x −4)+(y +1)+5(z −3)=0,即2x+y+5z-22=0。

5. 求过点P (2,0,−3)且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩垂直的平面方程。

高数教学资料 第八章大作业答案

高数教学资料 第八章大作业答案

5 .若 在 点 (x 0 ,y 0 ) 处 f(x ,y ) 可 微 , 且 点 (x 0 ,y 0 ) 为 极 值 点 , 则 该 点
必 为 ( A )
A.驻点; B.最值点;
C.拐点;
D.以上都不对.
注意 可 微 偏 导 数 存 在 , ( 课 本 P 3 1 3 定 理 1 )
Q ( x 0 , y 0 ) 为 极 值 点 , 所 以 该 点 为 驻 点 。
则 f ( x, y)在点 P0( x0 , y0 )处是否取得极值的条件如下: (1) AC B2 0时具有极值,
当 A 0时有极大值, 当 A 0时有极小值;
(2) AC B2 0时没有极值; (3) AC B2 0时可能有极值,也可能没有极值,还需
另作讨论.
三、计算题
1、求极限:
2 xy4 lim
(x, y)(0,0)
xy
解:
原 式
(2 xy4)(2 xy4) lim
(x,y) (0,0)
xy(2 xy4)
lim
1
2 (x,y)(0,0) xy4
lim
1
2 (x,y)(0,0) 004
1 4
三 、 计 算 题
2 求 由 方 程 x ln (y z ) 确 定 的 函 数 z z (x ,y ) 的 一 阶 , 二 阶 偏 导 数
k 1 k2 ,
ykx
其值随k的不同而变化,故极限不存在.
(x,y l) i m (0 ,0 )x 2x yy2f(0 ,0 ) 在 (0 ,0 )不 连 续
(2)fx(0,0) lixm 0f(0 x, 0 x )f(0,0) lixm 0(0 (0 x )x 2) 0 0 x2f(0,0)0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ydy =
1
2x
⎛ ⎜
3
x4

x3
⎞ ⎟
dx
=
2
⎛ ⎜
4
11
x4

x5
1
⎞ ⎟
=
6
0
x2
0 3⎝
⎠ 3 ⎝ 11
5 ⎠ 0 55
∫∫ (2) ex+y dσ ,其中 D 是由 x + y ≤ 1所确定的闭区域; D
∫ ∫ ∫ ∫ 解:作图,原式=
0
dx
1+ x
ex+y dy
+
1
1−x
dx ex +y
−1
4−x 2
1
− 1−x 2
1
4−x 2
2
4−x 2
I = ∫ dx ∫ f ( x, y ) dy + ∫ dx ∫ f ( x, y ) dy + ∫ dx ∫ fdy + ∫dx ∫ fdy
−2 − 4− x 2
−1 − 4− x 2
−1
1− x 2
1 − 4−x2
2.改换下列二次积分的积分次序(填空):
4
x
∫ ∫ ∫ ∫ 2
2y
(1) dy f ( x, y)dx = dx
f ( x, y) dy ;
0
y2
0x
2
2
2 x − x2
1 1+ 1− y 2
∫ ∫ (2) dx
1
2−x
f (x, y)d y = ∫ dy ∫ f ( x, y) dx;
0
2−y
∫ ∫ ∫ ∫ ∫ ∫ (3)
1
2y
dy f (x, y)d x +
∫∫ 解:(a)因为在区域内部有 x + y < 1,( x + y )2 > ( x + y )3,从而 ( x + y)2dσ 大 D
∫∫ (b)因为在区域内部有 x + y > 1,(x + y )2 < (x + y )3 ,从而 ( x + y)3dσ 大 D
∫∫ ∫∫ (2) exydσ 与 e2xydσ
解:因为在区域内部有1 < xy(x + y ) < 2,σ (D ) =1,因此 0 < I < 2
∫∫∫ (2) I = ln(1 + x2 + y2 + z2)dv ,其中 Ω 为球体 x 2 + y2 + z 2 ≤ 1;

解:因为在区域内部有1 < ln(1 + x2 + y2 + z2) < ln 2,V (Ω ) = 4π ,
3
dy
3−y
f ( x, y)d x =
2 3− x
dx
f ( x, y) dy.
0
0
1
0
0x
2
3.画出积分区域,并计算下列二重积分:
∫∫ (1) x ydσ ,其中 D 是由两条抛物线 y = x , y = x2 所围成的闭区域; D
3
《高等数学》同步作业册
∫ ∫ ∫ 1
x
解:作图,原式= dx x
D
1
1
3
y
1y
(2)环形闭区域: 1 ≤ x 2 + y 2 ≤ 4.
解:在极坐标下环形闭区域 1 ≤ x 2 + y 2 ≤ 4为 1≤ r ≤ 2, 0 ≤ θ ≤ 2π

2
从而 ∫∫ f (x, y)dσ = ∫ dθ ∫ f ( r cos θ, r sin θ)rdr
D
0
1
在直角坐标下环形闭区域 1 ≤ x 2 + y 2 ≤ 4需分块表达,分块积分变为
⎞ ⎟⎠

2,
s (L) = 2π ,
因此 −2 2π < I < 2 2π
∫∫ (4) I =
Σ
x2
+
1 y2
+
z2
dS
,其中
Σ
为柱面
x2
+
y2
= 1被平面 z = 0, z = 1 所截下
的部分.
1
解:因为在曲面上积分,从而
2

x2
+
1 y2
+
z2
≤ ,
S (Σ)
=


因此π < I < 2π
0 < ln (1 + x + y + z) < ln 2 (1 + x + y + z ) ,因此 ∫∫∫ ln(1+ x + y + z)dv 大

1
《高等数学》同步作业册
2.利用积分的性质,估计下列各积分的值:
∫∫ (1) I = xy(x + y )dσ ,其中 D 是矩形闭区域: 0 ≤ x ≤ 1,0 ≤ y ≤ 1; D
(3) ∫∫∫ ln(1+ x + y + z)dv 与 ∫∫∫ ln2 (1+ x + y + z )dv ,其中 Ω 是由三个坐标面与


平面 x + y + z = 1所围成的闭区域.
解: 因 为 在 区 域 内 部 有 1 < 1+ x + y + z < 2 <e , 0 < ln( 1+x +y +z ) <1,从 而
院系
班级
姓名
作业编号
第八章 重积分
作业 9 二重积分的概念与性质
1.利用二重积分的性质,比较下列积分的大小:
(1) ∫∫( x + y)2dσ 与 ∫∫ (x + y )3 dσ
D
D
(a)D 是由直线 x = 0, y = 0及 x + y = 1所围成的闭区域;
(b) D 是由圆周 ( x − 2) 2 + ( y −1)2 = 2 所围成的闭区域.
D
D
(a)D 是矩形闭区域: 0 ≤ x ≤ 1,0 ≤ y ≤ 1;
(b) D 是矩形闭区域: − 1 ≤ x ≤ 0,0 ≤ y ≤ 1.
∫∫ 解:(a)因为在区域内部有 0 < xy < 2xy,1 < exy < e2 xy ,从而 e2 xydσ 大 D
∫∫ (b)因为在区域内部有 0 > xy > 2xy,1 > exy > e2xy > 0,从而 exydσ 大 D
2
院系
班级
姓名
作业编号
作业 10 二重积分的计算
∫∫ 1.试将二重积分 f ( x, y)dσ 化为两种不同的二次积分,其中区域 D 分别为: D
(1)由直线 y = x, x = 3及双曲线 xy = 1所围成的闭区域;
解:作图得知区域 D 可以表示为: 1 ≤ x ≤ 3, 1 ≤ y ≤ x , x
dy
=
e−
1
−1 − x −1
0 x −1
e
∫∫( ) (3) x2 − y2 dσ ,其中 D 是由不等式 0 ≤ y ≤ sin x, 0 ≤ x ≤ π 所围成的闭区域; D
3 因此 0 < I < 4π ln 2
3
∫ (3) I = ( x + y)ds ,其中 L 为圆周 x 2 + y 2 = 1位于第一象限的部分; L
解:因为在曲线上积分,
不妨设 x = cos t, y = sin t,− 2 ≤ x + y = cost + sint =
2
sin
⎛⎜⎝t
+
π 4
3x
得 ∫∫ f (x, y)dσ = ∫ dx ∫ f ( x, y) dy
D
1
1 x
区域 D 也可以分块表示为: 1 ≤ y ≤ 1, 1 ≤ x ≤ 3;1 ≤ y ≤ 3, y ≤ x ≤ 3
3
y
1
3
33
从而 ∫∫ f (x, y)dσ = ∫ dy ∫ f ( x, y) dx +∫ dy∫ f ( x, y) dx
相关文档
最新文档