【大纲解析】2015数学考研大纲解析:线性代数重点内容与题型总结
数学考研必备知识点线性代数的重点章节解析

数学考研必备知识点线性代数的重点章节解析一、引言线性代数是数学中的一个重要分支,广泛应用于各个领域的科学研究和工程实践中。
作为数学考研的一门必备知识,掌握线性代数的重点章节非常关键。
本文将对数学考研必备知识点线性代数的重点章节进行解析,帮助考生全面理解和掌握这些内容。
二、向量空间向量空间是线性代数的基础,包括向量的加法、数乘和向量空间的性质等。
重点章节有:1. 线性相关性与线性无关性:讨论向量组的线性相关性与线性无关性,以及线性相关性的判定方法。
2. 向量空间的维数:介绍向量空间的维数概念及其性质,以及维数的计算方法。
3. 基与坐标:介绍向量空间的一组基及其坐标表示方法,以及基的变换与坐标的变换关系。
三、线性映射与线性变换线性映射与线性变换是线性代数的重要内容,涉及到线性变换的性质、线性变换的表示矩阵和线性映射的核与像等。
重点章节有:1. 线性变换与矩阵:介绍线性变换的定义和性质,并探究线性变换的代数表示——矩阵。
2. 线性变换的核与像:讨论线性变换的核与像的概念,以及它们的性质和计算方法。
3. 线性变换的合成与逆变换:研究线性变换的合成和逆变换的概念与性质,以及相应的计算方法。
四、特征值与特征向量特征值与特征向量是线性代数中的重要概念,用于研究线性变换的本质特性。
重点章节有:1. 特征值与特征向量的定义:介绍特征值与特征向量的定义及其性质。
2. 特征值与特征向量的计算:探究特征值与特征向量的计算方法和求解步骤。
3. 对角化与相似矩阵:讨论矩阵的对角化概念及其条件,以及相似矩阵的性质和计算方法。
五、内积空间与正交变换内积空间与正交变换是线性代数的重要分支,包括内积空间的定义与性质、正交变换的概念与性质等。
重点章节有:1. 内积空间的定义与性质:介绍内积空间的定义和性质,包括内积的性质和内积空间的几何解释。
2. 正交向量与正交子空间:研究正交向量和正交子空间的概念、性质及其计算方法。
3. 正交变换与正交矩阵:探究正交变换的定义和性质,以及正交变换的矩阵表示——正交矩阵。
线性代数的重点知识点总结

线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。
在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。
本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。
1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。
向量可以表示为一个有序的数列,也可以表示为一个列矩阵。
矩阵是由多个向量按照一定规则排列而成的矩形阵列。
矩阵可以进行加法、减法和数乘等运算。
矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。
2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。
线性方程组的求解可以通过消元法、矩阵的逆等方法进行。
当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。
3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。
子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。
子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。
子空间的维度等于基向量的个数。
4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。
线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。
线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。
5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。
特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。
特征值和特征向量可以通过求解线性方程组来得到。
6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。
内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。
2015年数学二考研大纲

2015年数学二考研大纲2015年数学二考研大纲于2014年9月13日上午公布,较2014年考研大纲无大的变化,具体内容如下:考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。
考研数学一大纲重点内容回顾线性代数部分知识点汇总

考研数学一大纲重点内容回顾线性代数部分知识点汇总线性代数是考研数学一科目中非常重要的一部分。
在考试中,线性代数占据了相当大的比重,因此熟练掌握线性代数的知识点是非常重要的。
本文将回顾考研数学一大纲中线性代数部分的重点知识点,帮助考生在备考中能够有针对性地进行复习,并为考试发挥出最佳水平做准备。
知识点1:向量空间向量空间是线性代数中最基础的概念之一。
考生需要掌握向量空间的定义、性质和基本运算法则。
此外,需要掌握向量空间的子空间、线性相关性和线性无关性等概念。
知识点2:矩阵与行列式矩阵和行列式也是考研数学一线性代数部分的重要内容。
考生需要掌握矩阵的运算法则,包括矩阵的加法、乘法和转置等运算。
同时,需要了解矩阵的秩以及矩阵可逆的条件。
在行列式方面,需要熟悉行列式的性质,以及行列式的计算方法和展开式。
知识点3:线性方程组线性方程组是线性代数中的一个重要应用,也是考研数学一中的常见考点。
考生需要掌握线性方程组的解法,包括消元法、矩阵法和特征值法等。
同时,还需要了解线性方程组解的存在唯一性条件,以及齐次线性方程组和非齐次线性方程组的关系。
知识点4:特征值和特征向量特征值和特征向量是线性代数中的重要概念,也是考研数学一中的热点内容。
考生需要了解特征值和特征向量的定义、性质和计算方法。
同时,需要掌握矩阵的对角化和相似对角化的相关知识。
知识点5:线性变换线性变换是线性代数的核心内容之一。
考生需要了解线性变换的定义和性质,以及线性变换的矩阵表达式和几何意义。
此外,还需要了解线性变换的基矩阵和过渡矩阵的计算方法。
知识点6:内积空间内积空间是线性代数中的高级内容,也是考研数学一中的难点。
考生需要了解内积空间的定义和性质,以及内积空间的标准正交基和正交投影的相关知识。
同时,还需要了解内积空间的正交补和正交矩阵的概念和计算方法。
综上所述,考研数学一大纲重点内容回顾线性代数部分的知识点汇总包括了向量空间、矩阵与行列式、线性方程组、特征值和特征向量、线性变换以及内积空间等内容。
考研数学一大纲详解线性代数部分考点归纳

考研数学一大纲详解线性代数部分考点归纳线性代数是考研数学一科目中的一部分,具有重要的地位和作用。
掌握好线性代数的知识,不仅有助于我们在考试中获得高分,还可以帮助我们在将来的学习和研究中更好地应用数学知识。
本文将针对考研数学一大纲中的线性代数部分,对考点进行详细解析和归纳。
一、向量空间及其基本性质1. 向量空间的概念2. 向量空间的基本性质3. 闭子空间的概念与性质4. 有限维向量空间与无限维向量空间的性质5. 向量的线性相关与线性无关6. 向量组与矩阵的秩7. 基底与维数的概念及其性质二、矩阵的运算及其性质1. 矩阵的加法和数乘2. 矩阵的乘法及其性质3. 矩阵的转置4. 矩阵的逆及其性质5. 矩阵的秩与逆的关系6. 矩阵的行列式及其性质7. 克拉默法则三、特征值、特征向量与对角化1. 特征值与特征向量的概念2. 特征多项式及其性质3. 对角化的条件4. 相似矩阵的性质5. 可对角化矩阵与不可对角化矩阵的区别6. Jordan标准形四、线性方程组的解法1. 线性方程组的消元法2. 线性方程组的矩阵表示与向量表示3. 齐次线性方程组与非齐次线性方程组4. 初等变换和增广矩阵的关系5. 矩阵的秩与线性方程组解的关系6. 非齐次线性方程组的通解和特解以上是考研数学一大纲中线性代数部分的主要考点和知识点的归纳,希望对考生们在备考中有所帮助。
在复习过程中,需要注重对基本概念的理解和记忆,同时通过大量的练习来提高对知识的掌握程度。
同时,考生还应该注重对知识的应用能力的培养,能够将所学的线性代数知识应用于实际问题中。
最后,祝愿所有备战考研的同学们都能够取得优异的成绩,顺利进入心仪的研究生院校。
相信通过努力的学习和不断的积累,成功将会属于你们!加油!。
2015《线性代数》数学三考研大纲

线性代数第一章:行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质。
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章:矩阵考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质。
2、掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。
5.了解分块矩阵的概念,掌握分块矩阵的运算法则。
第三章:向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线形无关向量组的正交规范化方法。
考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则。
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念。
掌握向量组线性相关、线性无关的有关性质及判别法。
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。
5.了解内积的概念、掌握线性无关向量组正交规范化的施密特(schmidt)方法。
第四章:线性方程组考试内容线性方程组的克莱姆(cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1. 会用克莱姆法则解线性方程组。
2. 掌握非齐次线性方程组有解和无解的判定方法。
3. 理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。
2015年考研数学大纲数一

函数单调性的判别 函数的最大值与最小值
函数的极值 函数图形的凹凸 弧微分 曲率的概念 曲率
性、 拐点及渐近线 圆与曲率半径 考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲 线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可 导性与连续性之间的关系. 2. 掌握导数的四则运算法则和复合函数的求导法则, 掌握基本初等函数的导数公式. 了 解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定 理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函 数最大值和最小值的求法及其应用. 8. 会用导数判断函数图形的凹凸性 (注: 在区间 (a, b) 内, 设函数 f ( x) 具有二阶导数. 当
二、一元函数微分学 考试内容 导数和微分的概念 平面曲线的切线和法线 导数的几何意义和物理意义 导数和微分的四则运算 函数的可导性与连续性之间的关系 复合函数、反函 微分
基本初等函数的导数
数、隐函数以及参数方程所确定的函数的微分法 中值定理 洛必达(L’Hospital)法则 函数图形的描绘
高阶导数 一阶微分形式的不变性
简单的二阶常系数非齐次线性微分方程 欧拉
1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法. 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方 程. 4.会用降阶法解下列形式的微分方程: y
线性代数知识点总结汇总

线性代数知识点总结汇总线性代数知识点总结行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=kn|A|(2)|AB|=|A|·|B|(3)|AT|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【大纲解析】2015数学考研大纲解析:线性代数重点内容与题型总结
2015考研大纲如期发布,所幸的是数学大纲没有变化,这对于广大考生,尤其是数学复习有难度的考生来说是一个利好消息,大家可以按照之前的复习计划继续复习,在这里乐考无忧名师团队专门针对线性代数中重点内容和典型题型做一个总结,希望对同学们复习有帮助。
一、行列式行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。
如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。
所以要熟练掌握行列式常用的计算方法。
1重点内容:行列式计算
(1)降阶法这是计算行列式的主要方法,即用展开定理将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2常见题型
(1)数字型行列式的计算
(2)抽象行列式的计算
(3)含参数的行列式的计算。
二、矩阵矩阵是线性代数的核心,是后续各章的基础。
矩阵的概念、运算及理论贯穿线性代数的始终。
这部分考点较多。
涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。
有些性质得证明必须能自己推导。
这几年还经常出现有关初等变换与初等矩阵的命题。
1重点内容:
(1)矩阵的运算
(2)伴随矩阵
(3)可逆矩阵
(4)初等变换和初等矩阵
(5)矩阵的秩
2常见题型:
(1)计算方阵的幂
(2)与伴随矩阵相关联的命题
(3)有关初等变换的命题
(4)有关逆矩阵的计算与证明矩阵可逆有哪几种等价关系?如何判别?都必须熟练掌握。
(5)解矩阵方程。
三、向量向量部分既是重点又是难点,由于n维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。
考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。
1重点内容:
(1)向量的线性表示线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。
(2)向量组的线性相关性向量组的线性相关性是线性代数的重点,也是考研的重点。
同学们一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。
(3) 向量组等价要注意向量组等价与矩阵等价的区别。
(4)向量组的极大线性无关组和向量组的秩
(5)向量空间
2常见题型:
(1)判定向量组的线性相关性
(2)向量组线性相关性的证明
(3)判定一个向量能否由一向量组线性表出
(4)向量组的秩和极大无关组的求法
(5)有关秩的证明。
(6)有关矩阵与向量组等价的命题
(7)与向量空间有关的命题。
四、线性方程组往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。
但也不会简单到仅考方程组的计算,还需灵活运用,比如2013年的线性代数第一道解答题,粗看不是解方程组,如果你光会熟练计算方程组而不知如何把问题归结为解线性方程组,那么你会有英雄无用武之地的感叹,就像一个人苦练屠龙本领,结果却发现无龙可屠。
1重点内容
(1)齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构
(2)齐次线性方程组基础解系的求解与证明
(3)齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。
2常见题型
(1)线性方程组的求解
(2)方程组解向量的判别及解的性质
(3)齐次线性方程组的基础解系
(4)非齐次线性方程组的通解结构
(5)两个方程组的公共解、同解问题。
五、特征值与特征向量特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大。
1重点内容
(1)特征值和特征向量的概念及计算
(2)方阵的相似对角化
(3)实对称矩阵的正交相似对角化。
2常见题型
(1)数值矩阵的特征值和特征向量的求法
(2)抽象矩阵特征值和特征向量的求法
(3)判定矩阵的相似对角化
(4)由特征值或特征向量反求A
(5)有关实对称矩阵的问题。
六、二次型由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。
1重点内容:
(1)掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;
(2)了解二次型的规范形和惯性定理;
(3)掌握用正交变换并会用配方法化二次型为标准形;
(4)理解正定二次型和正定矩阵的概念及其判别方法。
2常见题型
(1)二次型表成矩阵形式
(2)化二次型为标准形
(3)二次型正定性的判别。
乐考无忧老师提醒同学们同学们对照以上内容和题型,多问问自己是否已熟练掌握相关知识点和对应题型的解答。
应该说考研数学最简单的部分就是线性代数,其计算都是初等的,小学生都会,但这部分的难点就在于概念非常多而且相互联系,线代贯穿的主线就是求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。
同时从考试内容来看,考的内容基本类似,可以说是最死的部分,这几年出的考试题实际上就是以前考题的翻版,仔细研究一下以前考题对大家是最有好处的。