卡尔曼滤波的基本原理及应用

合集下载

卡尔曼滤波器的原理与应用

卡尔曼滤波器的原理与应用

卡尔曼滤波器的原理与应用1. 什么是卡尔曼滤波器?卡尔曼滤波器(Kalman Filter)是一种用于估计系统状态的数学算法,它通过将系统的测量值和模型预测值进行加权平均,得到对系统状态的最优估计。

卡尔曼滤波器最初由卡尔曼(Rudolf E. Kálmán)在20世纪60年代提出,广泛应用于航天、航空、导航、机器人等领域。

2. 卡尔曼滤波器的原理卡尔曼滤波器的原理基于贝叶斯滤波理论,主要包括两个步骤:预测步骤和更新步骤。

2.1 预测步骤预测步骤是根据系统的动力学模型和上一时刻的状态估计,预测出当前时刻的系统状态。

预测步骤的过程可以用以下公式表示:x̂k = Fk * x̂k-1 + Bk * ukP̂k = Fk * Pk-1 * Fk' + Qk其中,x̂k为当前时刻的状态估计,Fk为状态转移矩阵,x̂k-1为上一时刻的状态估计,Bk为输入控制矩阵,uk为输入控制量,Pk为状态协方差矩阵,Qk为过程噪声的协方差矩阵。

2.2 更新步骤更新步骤是根据系统的测量值和预测步骤中的状态估计,通过加权平均得到对系统状态的最优估计。

更新步骤的过程可以用以下公式表示:Kk = P̂k * Hk' * (Hk * P̂k * Hk' + Rk)^-1x̂k = x̂k + Kk * (zk - Hk * x̂k)Pk = (I - Kk * Hk) * P̂k其中,Kk为卡尔曼增益矩阵,Hk为测量矩阵,zk为当前时刻的测量值,Rk 为测量噪声的协方差矩阵,I为单位矩阵。

3. 卡尔曼滤波器的应用卡尔曼滤波器广泛应用于以下领域:3.1 导航与定位卡尔曼滤波器在导航与定位领域的应用主要包括惯性导航、GPS定位等。

通过融合惯性测量单元(Inertial Measurement Unit)和其他定位信息,如GPS、罗盘等,卡尔曼滤波器可以提高导航与定位的准确性和鲁棒性。

3.2 机器人控制卡尔曼滤波器在机器人控制领域的应用主要包括姿态估计、移动定位、目标跟踪等。

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。

为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。

最后,对卡尔曼滤波的应用做了简单介绍。

卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。

最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。

卡尔曼滤波器包括两个主要过程:预估与校正。

预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。

这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。

以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。

时间更新方程:状态更新方程:在上面式中,各量说明如下:A:作用在X k-1上的n×n 状态变换矩阵B:作用在控制向量U k-1上的n×1 输入控制矩阵H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间P k-:为n×n 先验估计误差协方差矩阵P k:为n×n 后验估计误差协方差矩阵Q:n×n 过程噪声协方差矩阵R:m×m 过程噪声协方差矩阵I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。

卡尔曼滤波器算法

卡尔曼滤波器算法

卡尔曼滤波器算法卡尔曼滤波器算法是一种常见的数据处理算法,它能够通过对数据进行滤波,去除噪声和干扰,提高数据质量,广泛应用于各个领域。

本文将对卡尔曼滤波器算法进行详细介绍,包括其原理、应用场景以及实现方法。

一、卡尔曼滤波器算法的原理卡尔曼滤波器算法的原理是基于贝叶斯概率理论和线性系统理论的。

其核心思想是通过对系统状态的不断测量和预测,根据预测值和实际值之间的误差来调整状态估计值,从而获得更准确的状态估计结果。

具体来说,卡尔曼滤波器算法可以分为两个步骤:预测和更新。

1. 预测步骤在预测步骤中,通过上一时刻的状态估计值和状态转移矩阵对当前时刻的状态进行预测。

状态转移矩阵是描述系统状态变化的数学模型,可以根据实际情况进行定义。

2. 更新步骤在更新步骤中,通过测量值和状态预测值之间的误差,计算出卡尔曼增益,从而根据卡尔曼增益调整状态估计值。

卡尔曼增益是一个比例系数,它的大小取决于预测误差和测量误差的比例。

二、卡尔曼滤波器算法的应用场景卡尔曼滤波器算法具有广泛的应用场景,下面列举几个常见的应用场景:1. 飞机导航系统在飞机导航系统中,卡尔曼滤波器算法可以通过对飞机的位置、速度和姿态等参数进行滤波,提高导航的准确性和精度。

2. 机器人控制系统在机器人控制系统中,卡尔曼滤波器算法可以通过对机器人的位置、速度、姿态和力量等参数进行滤波,提高机器人的控制精度和稳定性。

3. 多传感器融合系统在多传感器融合系统中,卡尔曼滤波器算法可以通过对多个传感器的数据进行滤波和融合,提高数据质量和精度。

三、卡尔曼滤波器算法的实现方法卡尔曼滤波器算法的实现方法具有一定的复杂性,下面介绍一般的实现步骤:1. 定义状态向量和状态转移矩阵根据实际情况,定义状态向量和状态转移矩阵,描述系统状态的变化规律。

2. 定义测量向量和观测矩阵根据实际情况,定义测量向量和观测矩阵,描述传感器测量数据与状态向量之间的联系。

3. 计算预测值和预测误差协方差矩阵根据状态向量、状态转移矩阵和误差协方差矩阵,计算预测值和预测误差协方差矩阵。

卡尔曼滤波的基本原理

卡尔曼滤波的基本原理

卡尔曼滤波的基本原理1. 任务名称卡尔曼滤波的基本原理2. 引言卡尔曼滤波是一种用于估计动态系统状态的方法,它通过融合系统测量和模型预测的信息,提供对系统状态的最优估计。

该滤波器在众多领域,如导航、信号处理、机器人技术等方面得到了广泛应用。

本文将详细介绍卡尔曼滤波的基本原理及其应用。

3. 卡尔曼滤波器的算法卡尔曼滤波器的算法主要由两个步骤组成:预测步骤和更新步骤。

在预测步骤中,根据系统的动力学模型,利用上一时刻的状态估计和模型进行预测;在更新步骤中,根据测量值和预测值之间的差异,对状态进行修正。

3.1 预测步骤预测步骤中,卡尔曼滤波器通过状态转移矩阵和控制向量对上一时刻的状态估计进行预测。

预测的状态向量可由以下公式表示:x k=Fx k−1+Bu k其中,x k表示当前时刻的状态估计,x k−1表示上一时刻的状态估计,F表示状态转移矩阵,B表示控制向量,u k表示当前时刻的控制输入。

预测的协方差矩阵可由以下公式表示:P k=FP k−1F T+Q其中,P k表示当前时刻的协方差矩阵,P k−1表示上一时刻的协方差矩阵,Q表示过程噪声的协方差矩阵。

3.2 更新步骤更新步骤中,卡尔曼滤波器将测量值与预测值进行比较,通过计算卡尔曼增益,对预测的状态进行修正。

卡尔曼增益的计算公式如下所示:K k=P k H T(HP k H T+R)−1其中,K k表示卡尔曼增益,H表示测量矩阵,R表示测量噪声的协方差矩阵。

修正后的状态向量可由以下公式表示:x k=x k+K k(y k−Hx k)修正后的协方差矩阵可由以下公式表示:P k=(I−K k H)P k3.3 初始化在使用卡尔曼滤波器之前,需要对状态向量和协方差矩阵进行初始化。

通常情况下,初始状态向量和协方差矩阵可通过经验估计或历史数据进行初始化。

4. 卡尔曼滤波器的应用卡尔曼滤波器具有很广泛的应用领域,下面将介绍其中几个典型的应用。

4.1 导航在导航领域,卡尔曼滤波器常用于姿态估计、位置估计和速度估计等方面。

联邦卡尔曼滤波原理

联邦卡尔曼滤波原理

联邦卡尔曼滤波原理引言:联邦卡尔曼滤波(Federated Kalman Filtering)是一种用于多个分布式传感器数据融合的滤波算法。

与传统的中央集权式滤波算法不同,联邦卡尔曼滤波将传感器数据分布式处理,通过信息交换和融合,实现更准确的状态估计。

本文将介绍联邦卡尔曼滤波的基本原理和应用。

一、卡尔曼滤波简介卡尔曼滤波是一种递归滤波算法,通过使用系统的动力学模型和观测模型,根据先验信息和测量结果,对系统状态进行估计和预测。

卡尔曼滤波在估计问题中广泛应用,特别是在控制和导航领域。

二、联邦卡尔曼滤波原理联邦卡尔曼滤波是将卡尔曼滤波算法应用于分布式传感器网络中的一种技术。

在传统的中央集权式滤波算法中,所有传感器的数据都通过中心节点进行融合处理,然后得到最终的估计结果。

而联邦卡尔曼滤波则将数据处理过程分布到各个传感器节点中,通过交换信息和融合结果,实现联合估计。

具体实现中,每个传感器节点都有自己的卡尔曼滤波器,负责对本地观测数据进行处理和状态估计。

节点之间通过通信网络交换自身的状态估计和协方差矩阵等信息,从而实现联合估计。

每个节点根据接收到的其他节点的信息,更新自身的状态估计和协方差矩阵,进一步提高估计的准确性。

三、联邦卡尔曼滤波的优势联邦卡尔曼滤波相比于传统的中央集权式滤波算法具有以下优势:1. 高效性:联邦卡尔曼滤波将数据处理过程分布到多个传感器节点中,可以并行处理,提高了滤波算法的计算效率。

2. 鲁棒性:联邦卡尔曼滤波中的每个节点都只处理自身的观测数据,对于某个节点的故障或数据异常不会影响其他节点的估计结果,提高了整个系统的鲁棒性。

3. 隐私保护:联邦卡尔曼滤波中的数据处理过程分布在各个节点中,不需要将原始数据传输到中心节点,从而保护了数据的隐私性。

4. 扩展性:联邦卡尔曼滤波可以方便地扩展到大规模的传感器网络中,只需要增加或减少节点即可,而无需改变整体系统的架构。

四、联邦卡尔曼滤波的应用联邦卡尔曼滤波在许多领域都有广泛的应用,例如:1. 环境监测:联邦卡尔曼滤波可以将多个传感器节点的气象数据进行融合,提高对环境变化的估计精度。

卡尔曼滤波收敛

卡尔曼滤波收敛

卡尔曼滤波收敛摘要:1.卡尔曼滤波的基本原理2.卡尔曼滤波的收敛性证明3.卡尔曼滤波在实际应用中的优势4.卡尔曼滤波的局限性及改进方向正文:一、卡尔曼滤波的基本原理卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计系统状态和优化控制策略。

它通过将预测状态量的高斯分布和观测量的高斯分布进行融合,生成一个新的高斯分布,从而实现对系统状态的估计。

卡尔曼滤波主要包括五个步骤:预测、校正、更新、观测和修正。

预测步骤用于预测系统的状态,校正步骤用于根据测量值修正预测结果,更新步骤用于更新状态估计值,观测步骤用于观测系统状态,修正步骤用于根据观测结果修正状态估计值。

二、卡尔曼滤波的收敛性证明卡尔曼滤波的收敛性可以通过数学证明来阐述。

假设系统状态满足线性高斯状态空间模型,并且观测噪声和过程噪声都满足正态分布。

则卡尔曼滤波可以得到如下状态估计方程:x_hat = A^T * P * A * x + A^T * P * C * z其中,x_hat 表示状态估计值,P 表示状态协方差矩阵,A 表示系统状态转移矩阵,C 表示观测矩阵,z 表示观测值。

可以看出,卡尔曼滤波得到的状态估计值是观测值和预测值的加权平均,权重分别为卡尔曼增益和观测噪声方差。

由于卡尔曼增益和观测噪声方差都是正数,因此状态估计值会随着观测值的增加而逐渐趋近于真实值,即卡尔曼滤波具有收敛性。

三、卡尔曼滤波在实际应用中的优势卡尔曼滤波在实际应用中具有很多优势,主要体现在以下几个方面:1.高精度:卡尔曼滤波可以有效地融合预测和观测信息,提高状态估计的精度。

2.实时性:卡尔曼滤波可以在实时测量观测值的情况下进行状态估计,适用于动态系统的实时控制。

3.鲁棒性:卡尔曼滤波对噪声具有较强的鲁棒性,即使在噪声较大的情况下,仍然可以得到较为准确的状态估计结果。

4.适用性广泛:卡尔曼滤波适用于线性高斯状态空间模型,可以应用于各种领域的问题,如导航、定位、机器人控制等。

卡尔曼滤波的原理与应用pdf

卡尔曼滤波的原理与应用pdf

卡尔曼滤波的原理与应用一、什么是卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的算法,其基本原理是将过去的观测结果与当前的测量值相结合,通过加权求和的方式进行状态估计,从而提高对系统状态的准确性和稳定性。

二、卡尔曼滤波的原理卡尔曼滤波的原理可以简单概括为以下几个步骤:1.初始化:初始状态估计值和协方差矩阵。

2.预测:使用系统模型进行状态的预测,同时更新预测的状态协方差矩阵。

3.更新:根据测量值,计算卡尔曼增益,更新状态估计值和协方差矩阵。

三、卡尔曼滤波的应用卡尔曼滤波在很多领域都有广泛的应用,下面列举了几个常见的应用场景:•导航系统:卡尔曼滤波可以用于航空器、汽车等导航系统中,实时估计和优化位置和速度等状态参数,提高导航的准确性。

•目标追踪:如在无人机、机器人等应用中,利用卡尔曼滤波可以对目标进行状态估计和跟踪,提高目标追踪的鲁棒性和准确性。

•信号处理:在雷达信号处理、语音识别等领域,可以利用卡尔曼滤波对信号进行滤波和估计,去除噪声和提取有效信息。

•金融预测:卡尔曼滤波可以应用于金融市场上的时间序列数据分析和预测,用于股价预测、交易策略优化等方面。

四、卡尔曼滤波的优点•适用于线性和高斯性:卡尔曼滤波适用于满足线性和高斯假设的系统,对于线性和高斯噪声的系统,卡尔曼滤波表现出色。

•递归性:卡尔曼滤波具有递归性质,即当前状态的估计值只依赖于上一时刻的状态估计值和当前的测量值,不需要保存全部历史数据,节省存储空间和计算时间。

•最优性:卡尔曼滤波可以依据系统模型和观测误差的统计特性,以最小均方差为目标,进行最优状态估计。

五、卡尔曼滤波的局限性•对线性和高斯假设敏感:对于非线性和非高斯的系统,卡尔曼滤波的性能会受到限制,可能会产生不理想的估计结果。

•模型误差敏感:卡尔曼滤波依赖于精确的系统模型和观测误差统计特性,如果模型不准确或者观测误差偏差较大,会导致估计结果的不准确性。

•计算要求较高:卡尔曼滤波中需要对矩阵进行运算,计算量较大,对于实时性要求较高的应用可能不适合。

卡尔曼滤波原理及应用

卡尔曼滤波原理及应用

卡尔曼滤波原理及应用
一、卡尔曼滤波原理
卡尔曼滤波(Kalman filter)是一种后验最优估计方法。

它以四个步骤:预测、更新、测量、改善,不断地调整估计量来达到观测的最优估计的目的。

卡尔曼滤波的基本思想,是每次观测到某一位置来更新位置的参数,并用更新结果来预测下一次的位置参数,再由预测时产生的误差来改善当前位置参数。

从而可以达到滤波的效果,提高估计精度。

二、卡尔曼滤波应用
1、导航系统。

卡尔曼滤波可以提供准确的位置信息,把最近获得的各种定位信息和测量信息,如GPS、ISL利用卡尔曼滤波进行定位信息融合,可以提供较准确的空中、地面导航服务。

2、智能机器人跟踪。

在编队技术的应用中,智能机器人往往面临着各种复杂环境,很难提供精确的定位信息,而卡尔曼滤波正是能解决这一问题,将持续不断的测量信息放在卡尔曼滤波器中,使机器人能够在范围内定位,跟踪更新准确可靠。

3、移动机器人自主避障。

对于移动机器人来说,很多时候在前传感器检测不到
人或障碍物的时候,一般将使用卡尔曼滤波来进行自主避障。

卡尔曼滤波的定位精度很高,相对于静止定位而言,移动定位有更多的参数要考虑,所以能提供更准确的定位数据来辅助自主避障,准确的定位信息就可以让我们很好的实现自主避障。

4、安防监控。

与其他传统的安防场景比,安防场景如果需要运动物体位置估计或物体检测,就必须使用卡尔曼滤波技术来实现,这是一种行为检测和行为识别的先进技术。

(注:安防监控可用于感知移动物体的位置,并在设定的范围内监测到超出范围的物体,以达到安全防护的目的。

)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
个向量 X∈R 来表示。为了描述方便,我们作以下假设:①物理
系 统 的 状 态 转 换 过 程 可 以 描 述 为 一 个 离 散 时 间 的 随 机 过 程 ;②
系 统 状 态 受 控 制 输 入 的 影 响 ;③ 系 统 状 态 及 观 测 过 程 都 不 可 避
免 受 噪 声 影 响 ;④对 系 统 状 态 是 非 直 接 可 观 测 的 。
· 34 ·
软件导刊
2009 年
这种情形的一种解法,同 Talyer 级数类似,面对非线性关系时, 我们可以通过求过程方程和量测方程的偏导 来 线 性化 , [4、5] 并 计算当前估计量。 不同于基本卡尔曼滤波(KF)过程,扩展卡尔 曼 滤 波 (EKF)过 程 中 的 因 子 矩 阵 (A,W,H,K)是 时 刻 变 化 的 , 因此加下标 k(k 表示 k 时刻)以示标记。 扩展滤波器 (EKF)的 基本工作步同基本滤波器的工作步一样,两者的主要区别在于 非线性情形下需要进行线性化处理,且因子矩阵一般都随时间 变化(与时刻 k 有关)。 但是值得注意的是,经线性变换后系统 噪声及量测噪声不再服从高斯分布。
了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤
波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。 最后,对卡尔曼滤波的应用做了简单介绍。
关键词:卡尔曼滤波;系统模型;线性化
中 图 分 类 号 :TP319
文 献 标 识 码 :A
文 章 编 号 :1672-7800 (2009)11-0032-03
[5] 许耀伟,周一宇,孙仲康.引入测频信息对运动辐射源进行无源被 动 定 位 的 研 究 [J].电 光 与 控 制 ,1998(4). (责任编辑:卓 光)
Pseudo-linear Kalman Filter in Passive Target Tracking
Abstract:For only targets tracking,Pseudo-linear Kalman filter algorithm is an effective method of tracking filter.This method can be a good movement on the target state estimates. The simulation proved that the method reduces the reqwirement of the accuracy about the model,and has good stability. Key Words:Pseudo-linear Kalman Filter;Bearings-only;Target Tracking
2 卡尔曼滤波的应用
图 2 卡尔曼滤波器应用示意 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被 提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐 渐得到广泛应用。 其它的滤波理论也迅速发展,如线性离散系
统的分解滤波 (信息平方根滤波 ,序列平方根滤波 ,UD 分解滤 波),鲁棒滤波(H∞ 波)。
估计X赞 k:
X赞 k=X赞 k-+K(Zk -X赞 k-)
(9)
式 中 测 量 变 量 及 其 预 测 值 之 差 (Zk -X赞 k-)反 映 了 预 测 值 和 实际值之间的不一致程度,称为测量过程的残余。 n×m 阶矩阵
K 叫 做 残 余 的 增 益 ,作 用 是 使 (1.8)式 中 的 后 验 估 计 误 差 协 方
在上面式中,各量说明如下:
(14) (15)
A:作用在 Xk-1 上的 n×n 状态变换矩阵 B:作用在控制向量 Uk-1 上的 n×1 输入控制矩阵 H:m×n 观测模型矩阵, 它把真实状态空间映射成观测空 间 Pk-:为 n×n 先验估计误差协方差矩阵 Pk:为 n×n 后验估计误 差 协 方差 矩 阵 Q:n×n 过 程 噪 声 协 方 差 矩 阵 R:m×m 过 程 噪 声
预估-校正过程,对应的这种估计算法称为预估-校正算法。 以
下给出离散卡尔曼滤波的时间更新方程和状态更新方程。
时间更新方程:பைடு நூலகம்
X赞 k-=AX赞 k-1+BU赞 k-1 Pk-=APk-1AT+Q 状态更新方程: Kk =Pk-HT(HPk-HT+R)-2
(11) (12)
(13)
X赞 k=X赞 k-+Kk(Zk-HX赞 k-) Pk=(I-KkH)Pk-
差范围内可以快速实现对空间目标定位。但伪线性卡尔曼滤波 算法存在稳态有偏估计的问题,这有待于进一步研究解决。
参考文献:
[1] 郭福成,孙仲康,安玮.对运动辐射源的单站无源伪线性定位跟踪 算 法 [J].宇 航 学 报 ,2002(5).
[2] 程咏 梅.主/被 动 传 感 器 自 适 应 协 同 跟 踪 算 法 研 究 [D].西 北 工 业 大 学 ,2001.
本质上来讲,滤波就是一个信号处理与变换(去除或减弱 不想要的成分,增强所需成分)的过程,这个过程既可以通过硬
s),被动雷达的扫描周期为 T=1s,状态噪声为相互独立的 零 均 值的高斯白噪声,传感器对目标的测量误差均方差分别为 :σa= 0,σx=10; 运用本文介绍的伪线性卡尔曼滤波方法对上述运动 目标进行跟踪。 进行蒙特卡洛仿真试验,所得到的位置滤波结 果和速度方向上的均方误差,见如图 2 到图 5。
0 引言
1960 年,卡尔曼发表了用递归方法解决离散数据线性滤波 问题的论文(A New Approach to Linear Filtering and Prediction Pro blems)。 在这篇文章里,一种克服了维纳滤波缺点的新方法被提出
来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广 泛且功能强大,它可以估计信号的过去和当前状态,甚至能估计将 来的状态,即使并不知道模型的确切性质。
卡尔曼滤波作为一种数值估计优化方法,与应用领域的背 景结合性很强。 因此在应用卡尔曼滤波解决实际问题时,重要 的不仅仅是算法的实现与优化问题,更重要的是利用获取的领 域知识对被认识系统进行形式化描述, 建立起精确的数学模 型,再从这个模型出发,进行滤波器的设计与实现工作。
滤波器实际实现时, 测量噪声协方差 R 一般可以观测得 到,是滤波器的已知条件。 它可以通过离线获取一些系统观测 值计算出来。 通常,难确定的是过程激励噪声协方差的 Q 值, 因为我们无法直接观测到过程信号。一种方法是通过设定一个 合适的 Q,给过程信号“注入”足够的不确定性来建立一个简单 的可以产生可接受结果的过程模型。 为了提高滤波器的性能, 通常要按一定标准进行系数的选择与调整。
协方差矩阵 I:n×n 阶单位矩阵 Kk:n×m 阶矩阵, 称为卡尔曼增 益或混合因数,作用是使后验估计误差协方差最小前面描述的
卡尔曼滤波器估计一个用线性随机差分方程描述的随机过程
n
的状态变量 Xk∈R ,那么对于系统模型是非线性的情形 ,又该 怎么做呢? 扩展的卡尔曼滤波(Extended Kalman Filter)器给出
卡尔曼滤波器包括两个主要过程:预估与校正。 预估过程
主要是利用时间更新方程建立对当前状态的先验估计,及时向
前推算当前状态变量和误差协方差估计的值,以便为下一个时
间状态构造先验估计值;校正过程负责反馈,利用测量更新方
程在预估过程的先验估计值及当前测量变量的基础上建立起
对当前状态的改进的后验估计。 这样的一个过程,我们称之为
1 离散线性卡尔曼滤波
最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用
于解决随机线性离散系统的状态或参数估计问题。
1.1 建立系统数学模型
在实际应用中,我们可以将物理系统的运行过程看作是一
个状态转换过程,卡尔曼滤波将状态空间理论引入到对物理系
统的数学建模过程中来,其假设系统状态可以用 n 维空间的一
作 者 简 介 :彭 丁 聪 (1983- ),男 ,湖 南 隆 回 人 ,中 国 地 质 大 学 研 究 生 院 硕 士 研 究 生 ,研 究 方 向 为 数 据 挖 掘 、智 能 计 算 。
第 11 期
彭丁聪:卡尔曼滤波的基本原理及应用
· 33 ·
件来实现,也可以通过软件来实现。 卡尔曼滤波属于一种软件 滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采 用信号与噪声的状态空间模型,利用前一时刻的估计值和当前 时刻的观测值来更新对状态变量的估计,求出当前时刻的估计 值,算法根据建立的系统方程和观测方程对需要处理的信号做 出满足最小均方误差的估计。
(5)
Ek =Xk -X赞 k
(6)
先验估计误差的协方差矩阵为:
Pk-=E(Ek-Ek-T)
(7)
后验估计误差的协方差矩阵为:
T
Pk =E(Ek Ek )
(8)
式(9)构造了卡尔曼滤波器的表 达 式 :先 验 估 计X赞 k-和 加 权
的测量变量 Zk 及其预测 HX赞 k-之差的线性组合构成了后验状态
差最小。 可以通过以下步骤求出 K:将(1.9)式代入(1.6)式代入
(1.8)式,将 Pk 对 K 求导,使一阶导数为零,可以求出 K(具体推
导过程参见文献[5]),K 的一种形式为:
Kk =Pk-HT(HPk-HT+R)-1
(10)
对卡尔曼增益 K 的确定是建立滤波模型的关键步骤之
一,它能显著影响模型的效率。 1.3 滤波器模型的建立
n
在以上假设前提下,定义系统状态变量为 Xk ∈R ,系统控
制输入为 Uk ,系统过程激励噪声为 Wk ,可得出系统的状态随
[4]
机差分方程 为:
Xk =AXk-1 +BUk +Wk
(1)
m
定义观测变量 Zk ∈R ,观测噪声为 Vk ,得到量测方程:
相关文档
最新文档