成人高考《高等数学一》模拟试卷
成考教材高等数学一试卷

成考教材高等数学一试卷高等数学一试卷一、选择题1. 设函数f(f)=f^2+f+1,那么当f=2时,f(f)的值为()A. 5B. 7C. 9D. 112. 下列哪个不等式在实数集上恒成立?A. |f|<fB. |f|>fC. |f|=fD. |f|≥f3. 设直线f=2f+f与圆f^2+f^2=1交于两点,则实数f的取值范围是()A. (−∞, −1]B. [−1, 1]C. [1, +∞)D. (−1, 1)二、填空题1. 若函数f(f)=3f−2,f(f)=4f+1,则复合函数f(f(f))的解析式为______________。
2. △fff中,边ff和ff的长度分别为5和7,ff的角度为60°,则f△ff的面积为_________________。
三、解答题1. (12分)已知函数f=f^2−2ff−(f^2−1),其中f为常数。
当f=1时,请你求出函数的最小值,并给出最小值点的坐标。
2. (10分)已知函数f=f^f+ff,其中f为非零常数。
(1)求函数的导函数;(2)若函数的导函数图像过点(1, 2),求常数f的值。
四、应用题1. (15分)某公司产品的销售额随时间的变化关系可以用方程f(f)=100(1+f^(−0.2f))来表示,其中f(f)表示销售额(万元),f表示时间(年)。
求当f=3时,该公司的销售额。
2. (15分)某球队在一场足球比赛中,上半场进球数的平方与下半场进球数的平方之和为40。
如果下半场进球数为非负整数,求解上半场进球数。
五、证明题证明:三角形的任意两个角的外角之和等于180°。
【解析】本试卷总分为100分,共分为选择题、填空题、解答题、应用题和证明题五个部分。
其中选择题包括三道题目,每题4分,共计12分;填空题包括两道题目,每题2分,共计4分;解答题包括两道题目,每题12分,共计24分;应用题包括两道题目,每题15分,共计30分;证明题为15分。
成人高考专升本高等数学一考试真题及参考答案

20XX年成人高考专升本高等数学一考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B
参考答案:A
参考答案:B
参考答案:A
二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题
第22题
第23题
第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题
第28题。
成人高考专升本高等数学(一)试题及答案

普通高校专升本《高等数学》试卷一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有8个小题,每一小题3分,共24分)1. 曲线 ⎪⎩⎪⎨⎧=++-=01e 2y t tt x y在 0=t 处的切线方程为 .2. 已知 )(x f 在 ),(∞+-∞ 内连续 , 1)0(=f , 设 ⎰=2sin d )()(x xt t f x F , 则)0(F '= . 3. 设 ∑ 为球面 2222a z y x =++ (0>a ) 的外侧 , 则⎰⎰∑++y x z x z y z y x d d d d d d 333 = . 4. 幂级数 ∑∞=-+-1)1(3)2(n n nn x n 的收敛域为 . 5. 已知 n 阶方阵 A 满足 022=++E A A , 其中 E 是 n 阶单位阵, k 为任意实数 , 则1)(--kE A= .6. 已知矩阵 A 相似于矩阵 ⎪⎪⎪⎭⎫ ⎝⎛-100011211 , 则 =+*E A .7. 已知 6.0)(,2.0)(==B A P B P , 则 )|(B A P = . 8. 设 )(x f ξ 是随机变量 ξ 的概率密度函数 , 则随机变量ξη= 的概率密度函数)(y f η= .二.选择题. (本题共有8个小题,每一小题3分,共24分,每个小题给出的选项中,只有一项符合要求)1. ⎥⎦⎤⎢⎣⎡+++∞→n n n n n n πππsin 2sin sin 1lim= ( ). (A ) 2(B )21(C )2π(D )π2 2. 微分方程0d )2(d )2(=-+-y x y x y x 的通解为 ( ). (C 为任意常数) (A ) C y xy x =++22 (B ) C y xy x =+-22 (C ) C y xy x =+-2232 (D ) C y xy x =++22323. x x n x x x x nn d e !)1(!3!2!1121032⎰⎥⎦⎤⎢⎣⎡+-++-+- = ( ) .(A ) 1e - (B ) e(C ))1(e 313-(D )1e 3-4. 曲面 z y x =+22,422=+y x 与 x O y 面所围成的立体体积为 ( ).(A ) π2(B ) π4(C ) π6(D ) π85. 投篮比赛中,每位投手投篮三次, 至少投中一次则可获奖.某投手第一次投中的概率为 21; 若第一次未投中, 第二次投中的概率为107 ; 若第一, 第二次均未投中, 第三次投中的概率为 109 , 则该投手未获奖的概率为 ( ). (A ) 2001(B )2002(C )2003(D )20046. 设 k ααα,,,21 是 k 个 m 维向量 , 则命题 “ k ααα,,,21 线性无关 ” 与命题 ( ) 不等价 。
全国各类成人高等学校招生考试《高等数学(一)》模拟卷三

全国各类成人高等学校招生考试《高等数学(一)》模拟卷三1. 【选择题】( )A. 1B. 0C. 2D. 1/2正确答案:C参考解析:(江南博哥)的知识点.【应试指导】1)=2.2. 【选择题】( )A.B. x2C. 2xD.正确答案:C参考解析:本题考查了一元函数的一阶导数的知识点.【应试指导】3. 【选择题】函数y=ex+e-x的单调增加区间是( )A. (-∞,+∞)B. (-∞,0]C. (-1,1)D. [0,+∞)正确答案:D参考解析:本题考查了函数的单调区间的知识点.【应试指导】y=ex+e-x则y'=ex-e-x,当x>0时,y'>0,所以y在区间[0,+∞)上单调递增.4. 【选择题】 ( )A.B.C.D.正确答案:C参考解析:本题考查了换元积分法的知识点.【应试指导】5. 【选择题】讨点(0,2,4)且平行于平面x+2z=1,y-3z=2的直线方程为( )A.B.C.D.正确答案:C参考解析:本题考查了直线方程的知识点.【应试指导】6. 【选择题】( )A. dx+dyB.C.D. 2(dx+dy)正确答案:C参考解析:本题考查了二元函数的全微分的知识点.【应试指导】注:另解如下,由一阶微分形式不变性得7. 【选择题】( )A. I1=I2B. I1>I2C. I1<I2D. 无法比较正确答案:C参考解析:本题考查了二重积分的性质的知识点.【应试指导】因积分区域D是以点(2,1)为圆心的一单位圆,且它位于直线x+y=1的上方,即在D内恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.8. 【选择题】( )A.B.C.D.正确答案:A参考解析:本题考查了级数收敛的必要性的知识点.【应试指导】9. 【选择题】( )A.B.C.D.正确答案:C参考解析:本题考查了一阶微分方程的通解的知识点.【应试指导】10. 【选择题】设方程y´´-2y´-3y=f(x)有特解y*,则它的通解为( )A.B.C.D.正确答案:A参考解析:本题考查了二阶常系数微分方程的通解的知识点. 【应试指导】考虑对应的齐次方程y''-2y'-3y=0的通解.11. 【填空题】我的回答:正确答案:参考解析:【答案】In2应用的知识点.【应试指导】12. 【填空题】我的回答:正确答案:参考解析:【答案】0本题考查了函数在一点处的连续性的知识点.【应试指导】又,f(0)=a,则若,f(x)在x=0连续,应有a=0.13. 【填空题】我的回答:正确答案:参考解析:【答案】90本题考查了莱布尼茨公式的知识点. 【应试指导】由莱布尼茨公式得,14. 【填空题】我的回答:正确答案:参考解析:【答案】-1本题考查了洛必迭法则的知识点. 【应试指导】15. 【填空题】我的回答:正确答案:参考解析:【答案】本题考查了不定积分的知识点.【应试指导】16. 【填空题】我的回答:正确答案:参考解析:【答案】本题考查了分段函数的定积分的知识点. 【应试指导】注:分段函数的积分必须分段进行.17. 【填空题】我的回答:正确答案:参考解析:【答案】本题考查了二元函数的二阶偏导数的知识点. 【应试指导】18. 【填空题】我的回答:正确答案:参考解析:【答案】本题考查了利用极坐标求积分的知识点. 【应试指导】19. 【填空题】我的回答:正确答案:参考解析:【答案】R本题考查了幂级数的收敛半径的知识点. 【应试指导】20. 【填空题】方程cosxsinydx+sinxcosydy=0的通解为 .我的回答:正确答案:参考解析:【答案】sinx·siny=C本题考查了可分离变量微分方程的通解的知识点.【应试指导】由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=0,即d(siny·siny)=0,两边积分得sinx·siny=C,这就是方程的通解.21. 【解答题】确定函数f(x,y)=3axy-x3-y3(a>0)的极值点.我的回答:参考解析:22. 【解答题】我的回答:参考解析:23. 【解答题】我的回答:参考解析:所以级数收敛.24. 【解答题】我的回答:参考解析:25. 【解答题】证明:ex>1+x(x>0). 我的回答:参考解析:26. 【解答题】我的回答:参考解析:27. 【解答题】求方程y´´-2y´+5y=ex的通解. 我的回答:参考解析:28. 【解答题】我的回答:参考解析:。
成人高考专升本《高等数学一》模拟试题

《2017年成人高考专升本《高等数学一》模拟试题【四篇】》希望对大家有帮助。
一、选择题:1~10小题。
每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的。
把所选项前的字母填在题后的括号内。
第1题
答案:C
第2题
答案:C
第3题
答案:D
第4题
答案:A
第5题
答案:B
第6题
答案:B
第7题
答案:A
第8题
答案:A
第9题
答案:C
第10题
答案:C
二、填空题:11~20小题。
每小题4分,共40分.把答案填在题中横线上。
第11题
答案:
第12题
答案:y=1
第13题
答案:f(-2)=28
第14题
答案:0
第15题
答案:
第16题
答案:8
第17题
答案:
第18题
答案:
第19题
答案:
第20题
答案:
三、解答题:21~28题,前5小题各8分,后3小题各10分。
共70分.解答应写出推理、演算步骤。
第21题
答案:
第22题
答案:
第23题
答案:第23题
答案:第24题答案:第25题答案:第26题答案:第27题答案:第28题答案:。
成人高考数学模拟试卷

成人高考数学模拟试卷(一)1、设集合{}M=1012-,,,,{}N=123,,,则集合M N=(A ){}01, (B ){}012,, (C ){}101-,, (D ){}10123-,,,, 2、设甲:1x =;乙:20x x -=.(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件;(C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
3、不等式2|1|<+x 的解集为( )(A )}13|{>-<x x x 或 ( B )}13|{<<-x x (C )}3|{-<x x (D )}1|{>x x 4、021log 4()=3-(A )9 (B )3 (C )2 (D )102221log 4()=log 21=21=13⎡⎤---⎢⎥⎣⎦5、下列函数中为偶函数的是(A )2xy = (B )2y x = (C )2log y x = (D )2cos y x = 6、函数23()log (3)f x x x =-的定义域是(A )(,0)(3,+)-∞∞ (B )(,3)(0,+)-∞-∞ (C )(0,3) (D )(3,0)-71,1)和(-2,0),则该函数的解析式为(B )1233y x =- (C )21y x =- (D )2y x =+ 8、在等比数列n a 中, 2=6a ,4=24a ,6=a(A )8 (B )24 (C )96 (D )384 9、若平面向量(3,)x =a ,(4,3)=-b ,⊥a b ,则x 的值等于(A )1 (B )2 (C )3 (D )4[]34(3)0, 4x x ⨯+-== 10、设1sin =2α,α为第二象限角,则cos =α(B )2- (C )12(D )211、sincos=1212ππ(A )12 11sin 264π⎤==⎥⎦原式 (C 12、函数1sin 3y x =的最小正周期为 (A )3π(B )2π (C )6π (D )8π 13、点P(3,2)关于y 轴的对称点的坐标为( )(A ))2,3(- (B )(3,2)- (C ))2,0( (D ))2,3(--ABC14、设椭圆的标准方程为2211612x y +=,则该椭圆的离心率为12c e a ⎫===⎪⎪⎭(B)3 (C)2 (D)2 15、袋中装有3只黑球,2只白球,一次取出2) (A )51 (B )103 (C )52 (D16、函数(1)y x x =+在2x =处的导数值为 22(21)5x x y x =='⎡=+=⎤⎣⎦17、点P(12),到直线21y x =+的距离为5d ⎡===⎢⎢⎥⎣⎦18、经验表明,某种药物的固定剂量会使人心率增加,现有8个病人服用同一剂量的这种药物,心率增加的次数分别为1315 14 10 812 13 1119、过点21(,)且与直线1y x=+20、 已知锐角ABC ∆的边长AB=10,BC=8,面积留小数点后两位)2222211 S=AB BC sin B=108sin B=322243sin B=553AC =AB BC 2AB BCcosB=1082108=6858.25••⨯⨯ +-•+-⨯⨯⨯≈得:,,解21、已知数列{}n a 的前n 项和为(21)n S n n =+,(Ⅰ)求该数列的通项公式; (Ⅱ)判断39n a =是该数列的第几项.解(Ⅰ) 当2n ≥时,[]-1(21)(1)2(1)141n n n a S S n n n n n =-=+---+=-当1n =时,111(211)3a S ==⨯⨯+=,满足41n a n =-, 所以,41n a n =-(Ⅱ) 4139n a n =-=,得10n =.22、已知函数425f x x mx =++(),且224f '=() (Ⅰ)求m 的值(Ⅱ)求f x ()在区间[]22-,上的最大值和最小值解(Ⅰ)342f x x mx '=+(),32422224f m '=⨯+⨯=(),2m =-(Ⅱ)令3342=440f x x mx x x '=+-=(),得:10x =,21x =-,31x = =5f (0),1=125=4f --+(),=125=4f -+(1),=1685=13f -+(-2),=1685=13f -+(2)所以,f x ()在区间[]22-,上的最大值为13,最小值为4.23、已知双曲线的中心在原点,焦点在x 轴上,离心率等于3,并且过点38-(,),求: (Ⅰ)双曲线的标准方程(Ⅱ)双曲线焦点坐标和准线方程解(Ⅰ)由已知得双曲线的标准方程为22221x y a b-=,33c c a a ==,,故22222238b c a a a a =-=-=(),222218x y a a-= 将点38-(,)代入222218x y a a-=, 得:22183a b c ===,,故双曲线的标准方程为2218y x -=(Ⅱ)双曲线焦点坐标:30-(,),30(,)双曲线准线方程:213a x c =±=±成人高考数学模拟试卷(二)1、设集合M=}5,3,1{,}4,3,,2,1{=N ,}6,5,4,3,,2,1{=U ,则=⋂N M C U ( B ) A 、}6,4,2{ B 、}4,2{ C 、}3,1{ D 、U2、函数x x y cos 4sin 3+=的最小值是 ( A )A 、5B 、5C 、-1D 、-53、已知α=(4,2),b =(6,Y ),且α∥b ,则Y 是 (C )A 、1B 、2C 、3D 、64.不等式062>--x x 的解集是 ( D ) A 、}32|{<<-x x B 、 3|{-<x x 或}2>x C 、}23|{<<-x x D 、 2|{-<x x 或}3>x5、已知等差数列{}n a 中,17,962==a a ,则1a = ( B ) A 、5 B 、7 C 、3 D 、16、椭圆方程 4 X 2 + 9 Y 2 = 3 6 中 ,它的离心率是 ( A ) (A )35 (B )25 (C )37 (D )217、二次函数142++=x x y 的最小值是 ( B ) (A ) 1 (B )-3 (C ) 3 (D )-4 8、函数)34sin(2π+=x y 的周期是 ( D )A 、π2B 、 π4C 、4πD 、2π9、已知准线方程为 x = 3 的抛物线方程是 ( C ) (A )x 2 =12y (B )y 2 = -12x (C )x 2 =-12y (D )x 2 =-6y 10.已知圆的方程为9)4()1(22=-++y x ,过)0,2(P 作该圆的一条切线,切点为A ,则PA 的长度为( A )A .4B .5C .10D .1211. 到两定点A (-1,1)和B (3,5)距离相等的点的轨迹方程为 ( A ) A. x+y-4=0 B .x+y-5=0 C .x+y+5=0 D. x-y+2=0 12、.掷两枚硬币,两枚的币值面都朝上的概率是 ( B )A. 12B. 14C. 13D. 18 13. 函数31y ax bx =++(a ,b 为常数),f (2)=3,则f (-2)的值为( B ) A.-3 B.-1 C.3 D.114、两条直线012=++y x 和02=++m y x 的位置关系是( D ) A .平行 B .相交 C .垂直 D .根据m 的值确定15、求抛物线22x y =在点A (1,-2)的切线方程 ( D ) (A )0642=-+y x (B )064=-+y x (C )0642=+-y x (D )064=--y x16、已知α=(3,2),b=(―3,―1),则3α- b= (12,7)17、求函数xy ⎪⎭⎫⎝⎛-=211的定义域是 {}0|≥x x18、在ABC ∆中,若AB=1,AC=3,0120=A ,求BC = 13。
2023年全国各类成人高等学校招生考试《高等数学(一)》模拟卷一

2023年全国各类成人高等学校招生考试《高等数学(一)》模拟卷一1. 【选择题】(江南博哥)A. 0B. 1C. ∞D. 不存在但不是∞正确答案:D参考解析:2. 【选择题】A. -1B. 0C.D. 1正确答案:C参考解析:3. 【选择题】下列函数中,在x=0处可导的是A. y=|x|B.C. y=x3D. y=lnx正确答案:C参考解析:4. 【选择题】函数y=ex+arctanx在区间[-1,1]上A. 单调减少B. 单调增加C. 无最大值D. 无最小值正确答案:B参考解析:单调增加.5. 【选择题】A. y=2B. y=-2C. y=1D. y=-1正确答案:D参考解析:6. 【选择题】设y=cosx,则y''=A. sinxB. cosxC. -cosxD. -sinx正确答案:C参考解析:7. 【选择题】A. 0B. 1C. 2D. -1正确答案:C参考解析:8. 【选择题】二元函数z=x3-y3+3x2+3y2—9x的极小值点为A. (1,0)B. (1,2)C. (-3,0)D. (-3,2)正确答案:A参考解析:9. 【选择题】A.B.C.D.正确答案:C参考解析:10. 【选择题】下列级数中发散的是A.B.C.D.正确答案:D参考解析:11. 【填空题】我的回答:正确答案:参考解析:12. 【填空题】我的回答:正确答案:参考解析:13. 【填空题】我的回答:正确答案:参考解析:14. 【填空题】我的回答:正确答案:参考解析:tanθ—cotθ+C15. 【填空题】我的回答:正确答案:参考解析:1连续应有a=1.16. 【填空题】我的回答:正确答案:参考解析:17. 【填空题】设函数z=x2ey,则全微分dz=________.我的回答:正确答案:参考解析:dz=2xeydx+x2eydy18. 【填空题】我的回答:正确答案:参考解析:19. 【填空题】微分方程y''+6y'+13y=0的通解为_____. 我的回答:正确答案:参考解析:y=e-3x(C1cos2x+C2sin2x)20. 【填空题】我的回答:正确答案:参考解析:4π21. 【解答题】我的回答:参考解析:22. 【解答题】我的回答:参考解析:23. 【解答题】我的回答:参考解析:24. 【解答题】我的回答:参考解析:25. 【解答题】我的回答:参考解析:用极坐标系进行计算.26. 【解答题】我的回答:参考解析:27. 【解答题】我的回答:参考解析:28. 【解答题】我的回答:参考解析:。
2023年成人高等考试《数学一》(专升本)模拟试卷一

2023年成人高等考试《数学一》(专升本)模拟试卷一[单选题]1.下列不等式成立的是()。
A.B.C.D.参考答案:B参考解析:在[0,1]上,x2≥x3,由定积分的性质可知选B。
同样在[1,2]上,x2≤x3,可知D不正确。
[单选题]2.()。
A.exB.2exC.-exD.-2ex参考答案:D参考解析:[单选题]3.设z=ysinx,则等于()。
A.-cosxB.-ycosxC.cosxD.ycosx参考答案:C参考解析:本题考查的知识点为二阶偏导数。
可知应选C。
[单选题]4.()。
A.-1/2B.0C.1/2D.1参考答案:B参考解析:[单选题]5.()。
A.0B.1C.π/2D.π参考答案:C[单选题]6.()。
A.1/2B.1C.π/2D.π参考答案:B参考解析:[单选题]7.微分方程的通解为()。
A.B.C.D.参考答案:C参考解析:[单选题]8.在空间直角坐标系中,方程x2+z2=z的图形是()。
A.圆柱面B.圆C.抛物线D.旋转抛物面参考答案:A参考解析:线为圆、母线平行于y轴的圆柱面。
[单选题]9.()。
A.x=-2B.x=1C.x=2D.x=3参考答案:B参考解析:所给级数为不缺项情形,[单选题]10.设区域D是由直线y=x,x=2,y=1围成的封闭平面图形,()。
A.B.C.D.参考答案:D参考解析:积分区域如右图中阴影部分所示。
D可以表示为1≤x≤2,1≤y≤x 或1≤y≤2,y≤x≤2,对照所给选项,知应选D。
[问答题]1.参考答案:无参考解析:[问答题]2.参考答案:无参考解析:[问答题]3.参考答案:无参考解析:[问答题]4.参考答案:无参考解析:[问答题]5.设F(x)为f(x)的一个原函数,且f(x)=xlnx,求F(x)。
参考答案:无参考解析:本题考查的知识点为两个:原函数的概念和分部积分法。
由题设可得知:[问答题]6.(1)将f(x)展开为x的幂级数;(2)利用(1)的结果,求数项级数的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年成人高考《高等数学一》模拟试卷(3)
总分:150分及格:90分考试时间:150分
一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,选出正确选项。
(1)
A. 单调减少
B. 单调增加
C. 无最大值
D. 无最小值
(2)
A. 0
B. 1
C. 2
D. 任意值
(3)
A. 条件收敛
B. 绝对收敛
C. 发散
D. 收敛性与k有关
<span></span>
(4)
(5)
A. 2
B. 3/2
C. 1
D. 2/3
(6)
A. 0
B. 1/4
C. 1/2
D. 1
(7)
A. (1,1)
B. (-1,1)
C. (0,-1)
D. (0,1)
(8)
(9)
A. (-2,2)
B. (-∞,0)
C. (0,+∞)
D. (-∞,+∞)
(10),在点x=0处连续,则k等于()
A. 0
B. 1/4
C. 1/2
D. 2
二、填空题:本大题共10个小题,共10个空,每空4分,共40分.把答案填在题中横线上。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
三、解答题:本大题共8个小题,共70分.解答应写出推理、演算步骤。
(1)判定下列级数的收敛性:
(2)
(3)
(4)
(5)
(6)求下列函数的极值与极值点
(7)
(8)求下列函数的极值与极值点
答案和解析
一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,选出正确选项。
(1) :B
(2) :B
(3) :A
(4) :A
(5) :B
(6) :B
(7) :C
(8) :D
(9) :A
(10) :B
二、填空题:本大题共10个小题,共10个空,每空4分,共40分.把答案填在题中横线上。
(1) :
(2) :
0(3) :
(4) :
0(5) :
(6) :
(7) :
2(8) :
-2(9) :
(10) :
三、解答题:本大题共8个小题,共70分.解答应写出推理、演算步骤。
(1) :
收敛.利用比较判别法.(2) :
(3) :
(4) :
(5) :
(6) :
(7) :
Y=-2为水平渐近线,x=0为铅直渐近线.(8) :。