PCB布局布线规则与EMI

合集下载

电脑主板layout规范EMI及EMC

电脑主板layout规范EMI及EMC

Layout规范一:机构尺寸:①A TX:305?CM(12000mil×?) ※“?”可调整尺寸。

②MIC-A TX:245×?CM(9600MIL×?③PCB四角应有50mil斜角。

定位孔:①定位孔圆心距板边(5,5)mm,(200,200)mil.②定位孔尺寸4mm(157mil),孔为NPTH.③一片板子最少需有三个(含)以上定位孔.光学点:①光学点圆心距离板边(5,10)mm,(200,400)mil.最小不得小于5mm.②光学点直径1mm(40mil),使用圆形。

③光学点防焊层直径3mm.(layer28、layer29 copper)④一片板子最少需有三个(含)以上光学点。

⑤若背面有放SMD零件,也须放光学点。

螺丝孔:①目前板子有A TX和MIC-A TX二种,螺丝孔位置有些许不同。

②螺丝孔正中间的孔为NPTH,不接任何NET。

③螺丝孔外圈8个P AD NET须接到此区域GND。

固定零件:须依坐标放在固定位置,不可任意更动:KB、USB(LAN)、COM、PRN、VGA、Sound、Game port AGP、PCI、CNR、AMP二:Placement顺序: 1.机构零件先摆。

(须用坐标去摆,全部过程中要用键盘,不可用鼠标)2.大零件先摆定:CPU、北桥、南桥、PWM、DIMM、CLK、A TK、A TX-CON、IDE、FDC、Sound\、Super l/O、BIOS3.须看线路图一页一页依据大零件摆零件,不可摆在不相关位置或摆的很远。

在摆同时须依照走线将方向确定,不是摆了就可以。

(有时线路图画在这一页,但不见得就摆在这里,须注意NET的接法)注意事项:1.放置零件时格点需设定为G25,零件原点固定朝左或朝上。

2.零件不可排的过近(外框不可有重迭现象),尤其同是DIP零件如:EC对EC、EC对CHOKE…会使生产加工零件产生挤推,造成零件浮件状况。

PCB电路板 EMI设计规范及步骤

PCB电路板 EMI设计规范及步骤

PCB电路板 EMI设计规范及步骤来源:华强PCB1 、IC的电源处理1.1)保证每个IC的电源PIN都有一个0.1UF的去耦电容,对于BGA CHIP,要求在BGA 的四角分别有0.1UF、0.01UF的电容共8个。

对PCB走线的电源尤其要注意加滤波电容,如VTT等。

这不仅对稳定性有影响,对EMI也有很大的影响。

2、时钟线的处理2.1)建议先走时钟线。

2.2)频率大于等于66M的时钟线,每条过孔数不要超过2个,平均不得超过1.5个。

2.3)频率小于66M的时钟线,每条过孔数不要超过3个,平均不得超过2.5个2.4)长度超过12inch的时钟线,如果频率大于20M,过孔数不得超过2个。

2.5)如果时钟线有过孔,在过孔的相邻位置,在第二层(地层)和第三层(电源层)之间加一个旁路电容,以确保时钟线换层后,参考层(相邻层)的高频电流的回路连续。

旁路电容所在的电源层必须是过孔穿过的电源层,并尽可能地靠近过孔,旁路电容与过孔的间距最大不超过300MIL。

图2.5-1过孔处的旁路电容2.6)所有时钟线原则上不可以穿岛。

下面列举了穿岛的四种情形。

2.6.1) 跨岛出现在电源岛与电源岛之间。

此时时钟线在第四层的背面PCB走线,第三层(电源层)有两个电源岛,且第四层的PCB走线必须跨过这两个岛。

2.6.2) 跨岛出现在电源岛与地岛之间。

此时时钟线在第四层的背面PCB走线,第三层(电源层)的一个电源岛中间有一块地岛,且第四层的PCB走线必须跨过这两个岛。

如图2.6-2所示。

2.6.3) 跨岛出现在地岛与地层之间。

此时时钟线在第一层PCB走线,第二层(地层)的中间有一块地岛,且第一层的PCB走线必须跨过地岛,相当于地线被中断。

如图2.6-3所示。

2.6.4) 时钟线下面没有铺铜。

若条件限制实在做不到不穿岛,保证频率大于等于66M的时钟线不穿岛,频率小于66M的时钟线若穿岛,必须加一个去耦电容形成镜像通路。

在两个电源岛之间并靠近跨岛的时钟线,放置一个0.1UF的电容。

PCB EMI设计规范

PCB EMI设计规范

開關電源的PCB設計規範在任何開關電源設計中,pcb板的物理設計都是最後一個環節,如果設計方法不當,pcb可能會輻射過多的電磁干擾,造成電源工作不穩定,以下針對各個步驟中所需注意的事項進行分析:一、從原理圖到pcb的設計流程建立元件參數->輸入原理網表->設計參數設置->手工佈局->手工佈線->驗證設計->複查->cam輸出。

二、參數設置相鄰導線間距必須能滿足電氣安全要求,而且為了便於操作和生產,間距也應儘量寬些。

最小間距至少要能適合承受的電壓,在佈線密度較低時,信號線的間距可適當地加大,對高、低電平懸殊的信號線應盡可能地短且加大間距,一般情況下將走線間距設為8mil。

焊盤內孔邊緣到印製板邊的距離要大於1mm,這樣可以避免加工時導致焊盤缺損。

當與焊盤連接的走線較細時,要將焊盤與走線之間的連接設計成水滴狀,這樣的好處是焊盤不容易起皮,而是走線與焊盤不易斷開。

三、元器件佈局實踐證明,即使電路原理圖設計正確,印製電路板設計不當,也會對電子設備的可靠性產生不利影響。

例如,如果印製板兩條細平行線靠得很近,則會形成信號波形的延遲,在傳輸線的終端形成反射雜訊;由於電源、地線的考慮不周到而引起的干擾,會使產品的性能下降,因此,在設計印製電路板的時候,應注意採用正確的方法。

每一個開關電源都有四個電流回路:(1). 電源開關交流回路(2). 輸出整流交流回路(3). 輸入信號源電流回路(4). 輸出負載電流回路輸入回路通過一個近似直流的電流對輸入電容充電,濾波電容主要起到一個寬頻儲能作用;類似地,輸出濾波電容也用來儲存來自輸出整流器的高頻能量,同時消除輸出負載回路的直流能量。

所以,輸入和輸出濾波電容的接線端十分重要,輸入及輸出電流回路應分別只從濾波電容的接線端連接到電源;如果在輸入/輸出回路和電源開關/整流回路之間的連接無法與電容的接線端直接相連,交流能量將由輸入或輸出濾波電容並輻射到環境中去。

EMI有关PCB布局布线规则

EMI有关PCB布局布线规则
EMI有关PCB布局布线规则
模块电源布局
模块电源旁路电容布局
EMI有关PCB布局布线规则
PCB布线 传输线
传输线要求走线线宽一致,拐线时尤其要注意
EMI有关PCB布局布线规则
PCB布线 传输线
传输线怕过孔引起的阻抗突变,信号线CLK ,RGB RAM BUS 总 VIA不要超过4个
EMI有关PCB布局布线规则
串扰强度和频率正比
EMI有关PCB布局布线规则
PCB布线 串扰
减少串扰措施
➢ 加大线间距,减小线平行长度,必要时可以以jog方式走线;
➢ 加入端接匹配可以减小或消除反射,从而减小串扰; ➢ 信号层限制在高于地线平面10mil以内; ➢ 在串扰较严重的两条线之间插入一条地线,可以起到隔离的作 用,从而减小串扰。
EMI有关PCB布局布线规则
PCB敷铜 地分割
信号线跨越分割地,引起的空间辐射场强
EMI有关PCB布局布线规则
PCB敷铜 地分割
信号线跨越分割地,走线下要有地桥已减小回流
EMI有关PCB布局布线规则
EMI有关PCB布局布线规则
PCB板的堆叠与分层
B种情况,S2S3层信号完整性好, S2层为好的布线层,S3 层次之。电源平面阻抗较好,层电容较大,利于整板EMI抑制。 但S1S2和信号层相邻,有较大层间干扰,且离电源和底层 较远,EMI空间辐射强度较大,需要外加屏蔽壳。 C种情况,这种情况是六层板中最好的情况,S1,S2,S3都 是好的布线层。电源平面阻抗较好。美中不足的是S4层离参 考层远。 D种情况,在六层板中,性能虽优于前三种,但布线层少于 前两种。此种情况多在背板中使用。
EMI有关PCB布局布线规则
PCB板的堆叠与分层

PCB EMI设计规范说明

PCB EMI设计规范说明

PCB EMI设计规范1 、IC的电源处理1.1)保证每个IC的电源PIN都有一个0.1UF的去耦电容,对于BGA CHIP,要求在BGA 的四角分别有0.1UF、0.01UF的电容共8个。

对PCB走线的电源尤其要注意加滤波电容,如VTT等。

这不仅对稳定性有影响,对EMI也有很大的影响。

2、时钟线的处理2.1)建议先走时钟线。

2.2)频率大于等于66M的时钟线,每条过孔数不要超过2个,平均不得超过1.5个。

2.3)频率小于66M的时钟线,每条过孔数不要超过3个,平均不得超过2.5个2.4)长度超过12inch的时钟线,如果频率大于20M,过孔数不得超过2个。

2.5)如果时钟线有过孔,在过孔的相邻位置,在第二层(地层)和第三层(电源层)之间加一个旁路电容,以确保时钟线换层后,参考层(相邻层)的高频电流的回路连续。

旁路电容所在的电源层必须是过孔穿过的电源层,并尽可能地靠近过孔,旁路电容与过孔的间距最大不超过300MIL。

图2.5-1过孔处的旁路电容2.6)所有时钟线原则上不可以穿岛。

下面列举了穿岛的四种情形。

2.6.1) 跨岛出现在电源岛与电源岛之间。

此时时钟线在第四层的背面PCB走线,第三层(电源层)有两个电源岛,且第四层的PCB走线必须跨过这两个岛。

2.6.2) 跨岛出现在电源岛与地岛之间。

此时时钟线在第四层的背面PCB走线,第三层(电源层)的一个电源岛中间有一块地岛,且第四层的PCB走线必须跨过这两个岛。

如图2.6-2所示。

2.6.3) 跨岛出现在地岛与地层之间。

此时时钟线在第一层PCB走线,第二层(地层)的中间有一块地岛,且第一层的PCB走线必须跨过地岛,相当于地线被中断。

如图2.6-3所示。

2.6.4) 时钟线下面没有铺铜。

若条件限制实在做不到不穿岛,保证频率大于等于66M 的时钟线不穿岛,频率小于66M的时钟线若穿岛,必须加一个去耦电容形成镜像通路。

在两个电源岛之间并靠近跨岛的时钟线,放置一个0.1UF的电容。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。

比如,将稳压电路、放大电路、数字电路等放在不同的区域内。

-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。

因此,尽量把线路缩短,减少线路长度。

-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。

因此,尽量避免线路的交叉,使布局更加清晰。

-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。

-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。

2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。

-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。

-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。

-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。

-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。

总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。

通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。

EMI相关PCB布局布线规则共47页文档

EMI相关PCB布局布线规则共47页文档

PCB布线 串扰
减少串扰措施 避开噪声源
电感、晶体肚子邻近表层严禁走线打过孔。CPU肚子邻近表层不要穿线。
PCB布线 环流
信号线和信号回流构成电流环路,布线要遵循 环流最小原则
PCB布线 过孔
高速信号线换层时附近要有地孔提供回流环路 整板要有地孔阵列保证整板阻抗小,回环小。
PCB布线 过孔
高速信号线换层时附近要有地孔提供回流环路
PCB板层结构——层电容
PCB的介电系数影响
电源/地层间距的影响
电源/地层相邻
整板EMC较大,SI性能较好 层间串扰小 环流环路小
电源和地层在两个表层
整板EMC较小,SI性能较差 交互电容增大,层间串扰增大 最大的环流 阻抗失控
层/信号层间距的影响
地层与信号层分别为14.4mils、7.2mils、3.6mils被 干扰的近端和远端串扰强度
第一 第二层 第三层 第四层 层
第一种 GND 情 况
S1+PO WE R
S2+PO WE R
GND
第二种 SIG1 GND POWER SIG2

第一况种情况,是四层板中理想的一种情况。因为外层是地层,对EMI有 屏第蔽三作种用,G同ND时电S源1 层同地S层2 也可靠P得OW很E近,使得电源内阻较小,取得 最佳情郊果。但当本板器件密度比较大时不R 能保证第一层地的完整性,这 样第况二层信号会变得更差;信号层相邻层间串扰增大。
PCB板的堆叠与分层
B种情况,S2S3层信号完整性好, S2层为好的布线层,S3 层次之。电源平面阻抗较好,层电容较大,利于整板EMI抑制。 但S1S2和信号层相邻,有较大层间干扰,且离电源和底层 较远,EMI空间辐射强度较大,需要外加屏蔽壳。 C种情况,这种情况是六层板中最好的情况,S1,S2,S3都 是好的布线层。电源平面阻抗较好。美中不足的是S4层离 参考层远。 D种情况,在六层板中,性能虽优于前三种,但布线层少于 前两种。此种情况多在背板中使用。

PCB板布局布线基本规则

PCB板布局布线基本规则

PCB板布局布线基本规则PCB(Printed Circuit Board,印刷电路板)布局布线是电子产品设计中非常重要的一步,它决定了电路板的性能和可靠性。

下面将介绍一些PCB板布局布线的基本规则。

1.尽量规划好电路板的整体布局。

合理的整体布局可以降低电磁干扰和噪声,提高信号的可靠性。

布局过程中,需要考虑各个电路模块的电源分布、信号线的走向和电路板边缘的保留空间等因素。

2.尽量减少信号线的长度。

信号线过长会引起信号衰减、时钟偏差和串扰等问题。

因此,应尽量减少长距离信号线的使用,并将不同功能模块的信号线放在靠近彼此的位置,以缩短线路长度。

3.引脚布局要合理。

电路板上的引脚布局应遵循一定的规则,如相同功能的引脚应该靠近彼此,避免交叉连接;高频信号线和低频信号线应分开布局,以防止互相干扰;输入和输出信号一般不要使用同一个引脚。

4.电源和地线的布局要合理。

电源和地线是电路工作的基础,其布局质量直接影响整体性能。

应尽量减少电源和地线的长度,避免共享电源或地线的引脚。

此外,电源和地线的宽度也要足够,以满足电流的要求。

5.差分线路应尽量成对布线。

差分信号线路通常由两根线组成,它们相互平行,保持相同的长度和间距。

这种布线方式可以减小干扰并提高抗干扰能力。

6.避免使用尖锐的角度和过窄的宽度。

锐角和过窄的线路会增加信号的传输损耗,并增加线路的阻抗。

在布局和布线过程中,应尽量避免生成锐角,选择合适的宽度。

7.需要进行地线屏蔽的信号要有相应的地线屏蔽层。

一些对干扰非常敏感的信号线,如高频信号线和时钟信号线,需要有地线屏蔽层进行保护,防止外界干扰。

8.PCB板的散热设计。

在布局布线过程中,需要考虑板上发热器件的散热问题。

可以尽量将发热器件靠近PCB板的边缘,以方便散热或使用附加的散热设计。

9.电路板边缘的保留空间。

为了使电路板在安装时能够与其他组件或设备连接,需要在板的边缘预留一定的空间。

这个空间通常被称为边际空间,用于放置连接器、插座等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB和信号完整性
•板层结构
•布局
•布线
•电源/地层敷铜
PCB板层结构
地层和电源层的电容模型层间距小
堆叠面积大
层电容越大
环流越小
抑制越有效
PCB板层结构——层电容
地层和电源层间距引起层电容的容值变化E=2.8 H=0.6mm C=0.2022nF
E=9.6 H=1mm C=0.4159nF
PCB板层结构——层电容PCB的介电系数影响
电源/地层间距的影响
电源/地层相邻
整板EMC较大,SI性能较好 层间串扰小
环流环路小
电源和地层在两个表层
整板EMC较小,SI性能较差
交互电容增大,层间串扰增大 最大的环流
阻抗失控
地层/信号层间距的影响
地层与信号层分别为14.4mils、7.2mils、3.6mils被干扰的近端和远端串扰强度
地层/信号层间距的影响
地层与信号层分别为14.4mils、7.2mils、3.6mils被干扰的近端和远端串扰波形
地层/信号层间距的影响
地层与信号层分别为14.4mils、7.2mils、3.6mils被干扰的近端和远端串扰波形
PCB板的堆叠与分层
第二种情况,是常用的一种方式。

因为在这种结构中,有较好的层电容效应,整个PCB的层间串扰很小。

信号层能够映射了完整的平面,能够取得较好的信号完整性。

在此种结构中,由于信号线层在表层,空间辐射强度增大,需加外加屏蔽壳,才能减少EMI。

第三种情况,电源和地层在表层,信号完整性较好。

S1层上信号线质量最好。

S2次之。

对EMI有屏蔽作用。

但环流环路较大,器件密度大小直接影响PCB的信号质量,信号层相邻有不能避免层间干扰。

总体上不如第一种板层结构,除非是对电源功率有特殊要求。

PCB板的堆叠与分层
B种情况,S2S3层信号完整性好,S2层为好的布线层,S3
层次之。

电源平面阻抗较好,层电容较大,利于整板EMI抑制。

但S1S2和信号层相邻,有较大层间干扰,且离电源和底层
较远,EMI空间辐射强度较大,需要外加屏蔽壳。

C种情况,这种情况是六层板中最好的情况,S1,S2,S3都是好的布线层。

电源平面阻抗较好。

美中不足的是S4层离
参考层远。

D种情况,在六层板中,性能虽优于前三种,但布线层少于
前两种。

此种情况多在背板中使用。

电源布局
•电源布局尽量采用星形,少用菊花链布局,减少电源的公共回路。

•电源的输入和输出分开布局,避免串扰
•主PMU芯片,Charger芯片,背光芯片,5V升压芯片需要放置屏蔽壳内
•供各个功能模块使用的电源芯片需要就近放置在模块电源端,注意电源走线避开射频区域
•电感器件不要靠近并排摆放,形成互感
•电容、电感摆放要靠近芯片管脚并有利于电源的单点接地。

电源布局
菊花链和星形走线
电源布局
LDO器件布局
LDO器件布局
LDO器件布局
DCDC器件布局
•保持通路在Vin、Vout之间,Cin、Cout接地很短,以降低噪音和干扰;
•R和C的反馈成份必须保持靠近VFB反馈脚,以防噪音;
•大面积地直接联接2脚和Cin、Cout的负端
DCDC器件布局
SW vs L1 距离<4mm,尽可能短
Cout vs L1 距离<4mm,尽可能短
SW、Vin、Vout、GND 的线必须粗短FB信号线要细、短
高速器件布局
•DDR,SDRAM ,NAND FLASH 靠近CPU放置,相对集中在屏蔽壳内摆放,并注意CPU的Memory出线方向,减少线长和交叉线数量。

•相邻层是完整地镜像
•屏的插座应顺着CPU出线的方向,中间的RC滤波器件尽量放在CPU侧
•高速器件(MCP , CPU ,屏的插座)远离天线及模块如果高速器件离RF模块和天线较近(200mils以内),请将信号的过孔(尤其是SDRAM的时钟SDCLK)远离RF模块和天线,远离1/2芯片长度,如果无法避免,在背面露铜用于贴屏蔽贴.
高速器件布局
低频的最小电阻路径和高频的最小电感路径
高速器件布局
左边的是电容在芯片Pin与Via之间,环路较小,右边的是Via在power Pin与电容之间,增大了环路大小,去藕效果较差,应避免
射频模块布局
RF模块和天线不要正对主屏蔽壳的内凹角,和RF模块相邻的屏蔽壳边需要加焊。

射频模块布局
RF模块和天线周边不要有金属器件,其它金属器件影响天线的频率点,阻抗等参数
模块电源布局
模块电源旁路电容布局
PCB布线传输线
传输线要求走线线宽一致,拐线时尤其要注意
PCB布线传输线
传输线怕过孔引起的阻抗突变,信号线CLK ,RGB RAM BUS 总VIA不要超过4个
PCB布线传输线
传输线即使很短的桩线也会有反射
PCB布线串扰
平行走线的串扰——电流走向反向电流的平行线串扰更大
PCB布线串扰
平行走线的串扰——线间距和平行线长串扰强度和走线长度成正比,和间距成反比
PCB布线串扰串扰强度和频率正比
PCB布线串扰
减少串扰措施
加大线间距,减小线平行长度,必要时可以以jog方式走线;
加入端接匹配可以减小或消除反射,从而减小串扰;
信号层限制在高于地线平面10mil以内;
在串扰较严重的两条线之间插入一条地线,可以起到隔离的作用,从而减小串扰。

PCB布线串扰
减少串扰措施
信号线( CLK , audio ,video, RESET ,USB)用3W法则, 70%的电场不互相干扰USB差分线对间距为air gap USB的线宽W,与其他的信号线的间距为2W
音频等模拟信号一般使用5W法则,用铺铜屏蔽隔离
PCB布线串扰
减少串扰措施避开噪声源
电感、晶体肚子邻近表层严禁走线打过孔。

CPU肚子邻近表层不要穿线。

PCB布线环流
信号线和信号回流构成电流环路,布线要遵循环流最小原则
PCB布线过孔
高速信号线换层时附近要有地孔提供回流环路整板要有地孔阵列保证整板阻抗小,回环小。

PCB布线过孔
高速信号线换层时附近要有地孔提供回流环路
PCB布线地屏蔽
对噪声敏感的电路考虑用地屏蔽,在信号层的四周布宽度大于50mail地线,地孔间距小于300mail。

PCB布线地屏蔽
电源线不要走表层,利用表层作地屏蔽。

PG728D01B VPack+走在表层,1.57542GHz附近噪声很大,导致GPS信号很差
PCB布线地屏蔽
信号线不要走表层,利用表层作地屏蔽。

无法避免时尽量放置屏蔽壳内malata 画的74306LCD的排线,在滤波之前就出现在表层,导致辐射超标
PCB布线地屏蔽
多层PCB中,电源平面尺寸比地平面尺寸内缩相互间距地20倍。

通过20-H规则,单板边缘辐射可减小80%。

将电源的外层用地包起来,并打上GND VIA以减少power辐射
PCB敷铜地分割
信号线跨越分割地,引起的空间辐射场强
PCB敷铜地分割
信号线跨越分割地,走线下要有地桥已减小回流
PCB敷铜地分割
信号线跨越分割地,走线下要有地桥已减小回流
PCB敷铜孤铜
孤铜超过150mils(尤其是表层)不能打GND VIA,将该区域删除,以免形成悬空的天线。

相关文档
最新文档