统计学习题区间估计假设检验..

合集下载

梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。

1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。

2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。

3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。

4. 单侧检验:备择假设符号为大于或小于时的假设检验。

5. 显著性水平:原假设为真时,拒绝原假设的概率。

6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。

二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。

1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。

1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。

1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。

1. 在任何情况下,假设检验中的两类错误都不可能同时降低。

( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。

推断统计习题及参考答案

推断统计习题及参考答案

推断统计习题及参考答案统计学是一门重要的学科,旨在通过数据收集和分析来推断出有关总体特征的信息。

在学习统计学的过程中,解决习题是不可或缺的一部分。

本文将提供一些推断统计学习题,并附上相应的参考答案,以帮助读者巩固对推断统计学的理解。

第一节:抽样与估计问题1:某公司想要了解全员的满意度,但受时间和资源限制,只能对部分员工进行调查。

该公司选择从员工名单中随机抽取100人,并得到了他们对公司满意度的评分。

在这种情况下,我们可以将这100位员工的满意度评分作为全员满意度的估计吗?为什么?参考答案1:我们可以将这100位员工的满意度评分作为全员满意度的估计。

这是基于抽样理论的基本假设,即随机抽样的结果能够代表总体的特征。

通过适当的抽样方法和样本容量大小,我们可以确保抽样误差在可接受范围内,从而较准确地估计出总体特征。

问题2:某调查机构为了估计某城市的失业率,从该城市的人口中随机抽取500人进行调查。

发现有25人失业。

在95%的置信水平下,该城市的失业率的置信区间是多少?对于二项分布来说,当样本容量大于30且成功次数和失败次数均大于5时,可以使用正态分布近似。

由此可知,失业率的置信区间可以利用正态分布的性质来计算。

根据公式,我们可以得出该城市失业率的置信区间为:(23.09%,29.91%)。

第二节:假设检验问题3:某研究者想要验证某种新药对高血压患者的治疗效果。

他将100名患者随机分为两组,一组使用新药治疗,另一组使用常规药物治疗。

并在治疗结束后测量两组患者的血压水平。

研究者想要知道新药是否显著降低了患者的血压水平。

应该使用什么类型的假设检验?参考答案3:在这种情况下,应该使用成对样本t检验。

因为两组患者是通过随机分组方法确定的,并且每个患者都参与了两次测量(使用新药前和使用新药后),所以我们可以通过比较这两次测量的差异来判断新药是否对血压产生显著影响。

问题4:某汽车制造商声称其新产品的平均燃油效率为20升/百公里。

计量经济学----.区间估计和假设检验

计量经济学----.区间估计和假设检验
2

P[ 2 t se( 2 ) 2 2 t se( 2 )] 1
2 2
8
^
^
^
^
假设检验


检验某一给定的观测是否与虚拟假设(原假设)相符, 若相符,则接受假设,反之拒绝。 当我们拒绝虚拟假设时,我们说该统计量是统计上显 著的,反之则不是统计上显著的。
的临界值 t 2 (n 2) ,则有
ˆ ˆ P{[YF t 2 SE (eF )] YF [YF t 2 SE (eF )]} 1
1 因此,一元回归时 Y 的个别值的置信度为 的 预测区间上下限为 1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
给定,查t分布表得t (n 2) 2 ( )若t -t 2 (n 2), 或t t 2 (n 2),则拒绝原假设 1 H 0: 2 0,接受备择假设H1: 2 0; (2)若 - t 2 (n 2) t t 2 (n 2), 则接受原假设。
30
^
^
应变量Y 区间预测的特点
1、Y 平均值的预测值与真实平均值有误差,主要是 受抽样波动影响
YF Y F t 2
^ ^
1 ( X F X )2 n xi2
Y 个别值的预测值与真实个别值的差异,不仅受抽
样波动影响,而且还受随机扰动项的影响
1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
^
1 ( X F X )2 ˆ SE (YF ) n xi2
Y F 服从正态分布,将其标准化,
^

2
2 ei2 (n 2) 代替,这时有 未知时,只得用 ˆ ˆ YF E (YF X F ) t ~ t (n 2) 1 ( X F X )2 ˆ n xi2

统计学中的假设检验与置信区间

统计学中的假设检验与置信区间

统计学中的假设检验与置信区间统计学中最常用的方法就是假设检验和置信区间,它们是常见的统计推断方法,常用于判断总体参数是否满足某种假设或估计总体参数。

在不同的场景下,假设检验和置信区间都有非常重要的应用,本文将深入探讨它们的原理和应用。

假设检验假设检验是一种通过样本推断总体参数是否满足某种假设的方法,我们通常会根据样本推断总体参数的值,然后尝试去证伪原来的假设。

其中,假设又分为零假设和备择假设,我们通常来验证零假设是否成立。

在进行假设检验之前,我们需要先确定显著性水平,通常设定为5%或1%。

在假设检验的过程中,如果得到的P值小于设定的显著性水平,则可以拒绝原来的零假设。

例如,对于一组数据,我们要验证其均值是否等于30,其中零假设为均值等于30,备择假设为均值不等于30。

如果得到的P值小于设定的显著性水平,即P < 0.05,我们可以拒绝零假设,认为该数据的均值不等于30。

置信区间置信区间是指在一定置信水平下,总体参数的估计范围。

一般情况下,我们希望用样本数据去推断总体参数,但因为样本的局限性,我们无法确定总体参数的真实值,只能给出一个范围,这个范围就是置信区间。

置信区间的计算方法通常分为两种:参数法和非参数法。

参数法通常用于正态总体或样本量大于30的情况,非参数法则适用于小样本或未知总体分布的情况。

例如,我们要估计某城市成年人的平均收入,样本数据总共100个人,根据样本数据可以得到平均收入为5000元/月,标准差为1000元/月。

如果我们希望在95%的置信水平下估计总体平均收入,那么置信区间的计算公式为:置信区间 = 样本平均数 ± Z值 ×标准误差其中,Z值为95%置信水平下的标准正态分布的分位数,一般为1.96;标准误差是指样本平均数的标准误差,可以通过标准差除以样本量的平方根来计算。

通过计算,置信区间为:5000 ± 1.96 × (1000 / 10) = (4679, 5321)也就是说,在95%的置信水平下,我们可以估计该城市成年人的平均收入范围为4679元/月到5321元/月之间。

管理统计学习题参考答案第八章

管理统计学习题参考答案第八章

第八章1. 解:(1)假设检验的基本思想是,样本平均数与总体平均数出现差异不外乎两种可能:一是改革后的总体平均长度不变,但由于抽样的随机性使样本平均数与总体平均数之间存在抽样误差;二是由于工艺条件的变化,使总体平均数发生了显著的变化。

因此,可以这样推断:如果样本平均数与总体平均数之间的差异不大,未超出抽样误差范围,则认为总体平均数不变;反之,如果样本平均数与总体平均数之间的差异超出了抽样误差范围,则认为总体平均数发生了显著的变化。

根据样本平均数的抽样分布定理,有x Z σx μ±=或Z /σμx x ≤-。

当0=Z 时,表明样本均值等于总体均值,即μx =;当Z 很大时,表明样本均值离总体均值很远,即∆很大。

后一种情况是小概率事件。

在正常情况下,小概率事件是不会发生的,那么在一次抽样中小概率事件居然发生了,我们就有理由认为样本均值是不正常的,它与原总体相比,性质已经发生变化,应该拒绝接受原假设。

(2)假设检验的一般步骤包括:① 提出原假设和备择假设;对每个假设检验问题,一般可同时提出两个相反的假设:原假设和备择假设。

原假设又称零假设,是正待检验的假设,记为H 0;备择假设是拒绝原假设后可供选择的假设,记为H 1。

原假设和备择假设是相互对立的,检验结果二者必取其一。

接受H 0,则必须拒绝H 1;反之,拒绝H 0则必须接受H 1。

② 选择适当的统计量,并确定其分布形式;不同的假设检验问题需要选择不同的统计量作为检验统计量。

在例中,我们所用的统计量是Z ,在H 0为真时,N Z ~(0,1)。

③选择显著性水平α,确定临界值;显著性水平表示H 0为真时拒绝H 0的概率,即拒绝原假设所冒的风险,用α表示。

假设检验就是应用了小概率事件实际不发生的原理。

这里的小概率就是指α。

但是要小到什么程度才算小概率? 对此并没有统一的标准。

通常取α=0.1,0.05,0.01。

给定了显著性水平α,就可由有关的概率分布表查得临界值,从而确定H 0的接受区域和拒绝区域。

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系统计学原理一、简介假设检验与区间估计是统计学中两个重要的概念,它们都是基于样本数据对总体参数进行推断的方法。

假设检验主要用于判断总体参数是否符合某种特定假设,而区间估计则用于对总体参数进行范围性的估计。

本文将从统计学原理角度出发,详细介绍假设检验与区间估计之间的关系。

二、假设检验1. 假设检验的基本思想在进行假设检验时,我们首先要提出一个关于总体参数的假设(称为原假设),然后根据样本数据来判断这个假设是否成立。

具体来说,我们会根据样本数据计算出一个统计量(如t值、F值等),然后通过比较这个统计量与某个临界值(也称为拒绝域)来决定是否拒绝原假设。

2. 假设检验中的错误类型在进行假设检验时,有可能会犯两种错误:一种是将一个正确的原假设错误地拒绝了(称为第一类错误),另一种是将一个错误的原假设错误地接受了(称为第二类错误)。

通常情况下,我们会将第一类错误的概率控制在一个较小的水平(如0.05或0.01),这个水平被称为显著性水平。

3. 假设检验的步骤进行假设检验时,通常需要按照以下步骤进行:(1)提出原假设和备择假设;(2)选择适当的检验统计量,并计算出样本数据所对应的值;(3)确定显著性水平,并找到相应的拒绝域;(4)比较样本统计量与拒绝域,得出结论。

三、区间估计1. 区间估计的基本思想在进行区间估计时,我们会根据样本数据来构建一个区间,这个区间包含了总体参数真值的可能范围。

具体来说,我们会根据样本数据计算出一个点估计量(如样本均值、比例等),然后根据中心极限定理和大数定律等原理来构建置信区间。

2. 区间估计中的置信度在进行区间估计时,我们通常会给出一个置信度,表示该区间包含总体参数真值的概率。

例如,如果我们给出了一个95%置信度,则意味着在大量重复实验中,有95%的置信区间都会包含总体参数真值。

3. 区间估计的步骤进行区间估计时,通常需要按照以下步骤进行:(1)选择适当的点估计量,并计算出样本数据所对应的值;(2)确定置信度,并找到相应的置信区间;(3)解释置信区间的含义,得出结论。

假设检验例题和习题

假设检验例题和习题

超过1cm3。如果达到设计要求 -0.6 0.7 -1.5 -0.2 -1.9
,表明机器的稳定性非常好。 -0.5 1 -0.2 -0.6 1.1
现从该机器装完的产品中随机
抽取25瓶,分别进行测定(用样
本减1000cm3),得到如下结果
。检验该机器的性能是否达到
设计要求 (=0.05)
8 - 30
双侧检验
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
H0: 2% H1: < 2%
8 -7
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
统计学
(第二版)
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜 单
第2步:选择“函数”点击
第3步:在函数分类中点击“统计”,在函数名的 菜
单下选择字符“NORMSDIST”然后确定
?( = 0.05)
统计学
(第二版)
均值的单尾 t 检验
(计算结果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23

数理统计总复习(题型归纳)

数理统计总复习(题型归纳)

56学 考题8(2005级 256学时) 三 、 ( 本 题 8 分 ) 设 X 1 , X 2 , L , X n为 服 从 泊 松 分 布 )的 π(λ )的总体X的一个样本,求λ的极大似然估计量。
32 考题9(2004级 32学时) 三、(本题8分)设总体X的概率密度为: ( θ + 1) x θ , 0 < x < 1, f ( x) = 0, 其它 其中θ > −1是未知参数,X 1 , X 2 , L , X n为总体X 的一个容量为n简单随机样本,求参数θ的极大 似然估计量。
考题5(2007级 64学时 作业P153 四) 七、(本题8分)设X 1 , L , X n为总体X的样本, X的密度函数为: 0< x<1 θ, f ( x , θ) = 1 − θ, 1 ≤ x < 2;其中未知参数θ > 0 0, 其他 设N为样本值x1 , L , xn中小于1的个数,求θ的极 大似然估计。
1 2 n
32学 考题4(2007级 32学时) 10分 六、(本题10分)设随机变量X的概率密度为 2x 2 , 0< x<θ f ( x) = θ ,其中未知参数θ > 0, 0, 其他 X 1 , L , X n是样本,求θ的矩估计和最大似然估计。
(此题和2008级的第三大题一样的.)
: 解(1)检验假设H 0:σ 2 = 1,H 1:σ 2 ≠ 1; ( n − 1) S 2 取统计量:χ 2 = 2 σ0
2 拒绝域为:χ 2 ≤ χ 2 α ( n − 1) = χ 0.975 ( 9) = 2.70 1−
或χ 2 ≥ χ 2 ( n − 1) = χ α
2
2 2 0.025
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学习题区间估计假设检验..第五章抽样与参数估计一、单项选择题1、某品牌袋装糖果重量的标准是(500±5)克。

为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。

下列说法中错误的是( B )A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于( D )A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加( C )A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的( A )A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加( C )A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是( C )A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使( B )尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( D )A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用( A )A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P应选( A )A、85%B、87.7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有( ADE )A、总体各单位标志值的差异程度B、调查人员的素质C 、样本各单位标志值的差异程度D 、抽样组织方式E 、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格。

根据抽样结果进行推断,下列说法正确的有( ADE )A 、n=200B 、n=30C 、总体合格率是一个估计量D 、样本合格率是一个统计量E 、合格率的抽样平均误差为2.52%3、用样本成数来推断总体成数时,至少要满足下列哪些条件才能认为样本成数近似于正态分布( BCE )A 、np ≤5B 、np ≥5C 、n (1–p )≥5D 、p ≥1%E 、n ≥30三、填空题1、对某大学学生进行消费支出调查,采用抽样的方法获取资料。

请列出四种常见的抽样方法:、、、,当对全校学生的名单不好获得时,你认为方法比较合适,理由是。

四、简答题1、分层抽样与整群抽样有何异同?它们分别适合于什么场合?2、解释抽样推断的含义。

五、计算题1、某糖果厂用自动包装机装糖,每包重量服从正态分布,某日开工后随机抽查10包的重量如下:494,495,503,506,492,493,498,507,502,490(单位:克)。

对该日所生产的糖果,给定置信度为95%,试求:(1)平均每包重量的置信区间,若总体标准差为5克;(2)平均每包重量的置信区间,若总体标准差未知;(8125.1,8331.1,2281.2,2622.210,05.09,05.010,025.09,025.0====t t t t );2、某广告公司为了估计某地区收看某一新电视节目的居民人数所占比例,要设计一个简单随机样本的抽样方案。

该公司希望有90%的信心使所估计的比例只有2个百分点左右的误差。

为了节约调查费用,样本将尽可能小,试问样本量应该为多大?3、为调查某单位每个家庭每天观看电视的平均时间是多长,从该单位随机抽取了16户,得样本均值为6.75小时,样本标准差为2.25小时。

(1)试对家庭每天平均看电视时间进行区间估计。

(2)若已知该市每个家庭看电视时间的标准差为2.5小时,此时若再进行区间估计,并且将边际误差控制在(1)的水平,问此时需要调查多少户才能满足要求?(α=0.05)答案:一、B ,D ,C ,A ,C ;C ,B ,D ,A ,A 。

二、ADE ,ADE ,BCE 。

三、简单随机抽样,分层抽样,等距抽样,整群抽样,分层抽样,不用调查单位的名单,以院系为单位,而且各院系的消费差异也大,不宜用整群抽样。

四、1、答:都要事先按某一标志对总体进行划分的随机抽样。

不同在于:分层抽样的划分标志与调查标志有关,而整群抽样不是;分层抽样在层内随机抽取一部分,而整群抽样对一部分群做全面调查。

分层抽样用于层间差异大而层内差异小,以及为了满足分层次管理决策时;而整群抽样用于群间差异小而群内差异大时,或只有以群体为抽样单位的抽样框时。

2、答:简单说,就是用样本中的信息来推断总体的信息。

总体的信息通常无法获得或者没有必要获得,这时我们就通过抽取总体中的一部分单位进行调查,利用调查的结果来推断总体的数量特征。

五、1、解:n=10,小样本(1)方差已知,由x ±z α/2nσ得,(494.9,501.1)(2)方差未知,由x ±t α/2ns 得,(493.63,502.37)2、解:n=222/1xp p z ?-??)(α=2202.05.05.01.6448??=1691 3、解:(1)x ±t α/2ns =6.75±2.131×1625.2=(5.55,7.95)(2)边际误差E= t α/2ns =2.131×1625.2=1.2n=2222/E z σα?=2222.15.21.96?=17第六章假设检验练习题一、单项选择题1、按设计标准,某自动食品包装及所包装食品的平均每袋中量应为500克。

若要检验该机实际运行状况是否符合设计标准,应该采用( C )。

A 、左侧检验B 、右侧检验C 、双侧检验D 、左侧检验或右侧检验2、假设检验中,如果原假设为真,而根据样本所得到的检验结论是否定元假设,则可认为( C )。

A 、抽样是不科学的B 、检验结论是正确的C 、犯了第一类错误D 、犯了第二类错误3、当样本统计量的观察值未落入原假设的拒绝域时,表示( B )。

A 、可以放心地接受原假设B 、没有充足的理由否定与原假设C 、没有充足的理由否定备择假设D 、备择假设是错误的4、进行假设检验时,在其它条件不变的情况下,增加样本量,检验结论犯两类错误的概率会( A )。

A、都减少B、都增大C、都不变D、一个增大一个减小5、关于检验统计量,下列说法中错误的是( B )。

A、检验统计量是样本的函数B、检验统计量包含未知总体参数C、在原假设成立的前提下,检验统计量的分布是明确可知的D、检验同一总体参数可以用多个不同的检验统计量二、多项选择题1、关于原假设的建立,下列叙述中正确的有( CD )。

A、若不希望否定某一命题,就将此命题作为原假设B、尽量使后果严重的错误成为第二类错误C、质量检验中若对产品质量一直很放心,原假设为“产品合格(达标)”D、若想利用样本作为对某一命题强有力的支持,应将此命题的对立命题作为原假设E、可以随时根据检验结果改换原假设,以期达到决策者希望的结论2、在假设检验中,α与β的关系是( CE )。

A、α和β绝对不可能同时减少B、只能控制α,不能控制βC、在其它条件不变的情况下,增大α,必然会减少βD、在其它条件不变的情况下,增大α,必然会增大βE、增大样本容量可以同时减少α和β三、判断分析题(判断正误,并简要说明理由)1、对某一总体均值进行假设检验,H0:X=100,H1:X≠100。

检验结论是:在1%的显著性水平下,应拒绝H0。

据此可认为:总体均值的真实值与100有很大差异。

2、有个研究者猜测,某贫困地区失学儿童中女孩数是男孩数的3倍以上(即男孩数不足女孩数的1/3)。

为了对他的这一猜测进行检验,拟随机抽取50个失学儿童构成样本。

那么原假设可以为:H0:P≤1/3。

四、简答题1、采用某种新生产方法需要追加一定的投资。

但若根据实验数据,通过假设检验判定该新生方法能够降低产品成本,则这种新方法将正式投入使用。

(1)如果目前生产方法的平均成本是350元,试建立合适的原假设和备择假设。

(2)对你所提出的上述假设,发生第一、二类错误分别会导致怎样的后果?五、计算题1、某种感冒冲剂的生产线规定每包重量为12克,超重或过轻都是严重的问题。

从过去的资料知σ是0.6克,质检员每2小时抽取25包冲剂称重检验,并做出是否停工的决策。

假设产品重量服从正态分布。

(1)建立适当的原假设和备择假设。

(2)在α=0.05时,该检验的决策准则是什么?(3)如果x =12.25克,你将采取什么行动?(4)如果x =11.95克,你将采取什么行动?答案:一、1、C 2、C 3、B 4、A 5、B 二、1、CD 2、CE三、1、错误。

“拒绝原假设”只能说明统计上可判定总体均值不等于100,但并不能说明它与100之间的差距大。

2、错误。

要检验的总体参数应该是一个比重,因此应该将男孩和女孩的人数的比率转换为失学儿童中女孩所占的比例P (或男孩所占的比例P*)所以原假设为:H 0:P=3/4(或P ≤3/4);H 1:P >3/4。

也可以是:H 0:P*=1/4(或P ≥1/4);H 1:P*<1/4。

四、1、(1)H 0:x ≥350;H 1:x <350。

(2)针对上述假设,犯第一类错误时,表明新方法不能降低生产成本,但误认为其成本较低而被投入使用,所以此决策错误会增加成本。

犯第二类错误时,表明新方法确能降低生产成本,但误认为其成本不低而未被投入使用,所以此决策错误将失去较低成本的机会。

五、1、(1)H 0:μ=120;H 1:μ≠12。

(2)检验统计量:Z=nx /0σμ-。

在α=0.05时,临界值z α/2=1.96,故拒绝域为|z|>1.96。

(3)当x =12.25克时,Z=nx /0σμ-=25/0.61212.25-=2.08。

由于|z|=2.08>1.96,拒绝H 0:μ=120;应该对生产线停产检查。

(4)当x =11.95克时,Z=nx /0σμ-=25/0.61211.95-=-0.42。

由于|z|=-0.42<1.96,不能拒绝H 0:μ=120;不应该对生产线停产检查。

第七章相关与回归分析一、单项选择题1、下面的关系中不是相关关系的是( D )A 、身高与体重之间的关系B 、工资水平与工龄之间的关系C 、农作物的单位面积产量与降雨量之间的关系D 、圆的面积与半径之间的关系2、具有相关关系的两个变量的特点是( A )A 、一个变量的取值不能由另一个变量唯一确定B 、一个变量的取值由另一个变量唯一确定C 、一个变量的取值增大时另一个变量的取值也一定增大D 、一个变量的取值增大时另一个变量的取值肯定变小3、下面的假定中,哪个属于相关分析中的假定( B )A 、两个变量之间是非线性关系B 、两个变量都是随机变量C 、自变量是随机变量,因变量不是随机变量D 、一个变量的数值增大,另一个变量的数值也应增大4、如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,则称这两个变量之间为( A )A 、完全相关关系B 、正线性相关关系C 、非线性相关关系D 、负线性相关关系5、根据你的判断,下面的相关系数取值哪一个是错误的( C )A 、–0.86B 、0.78C 、1.25D 、06、设产品产量与产品单位成本之间的线性相关关系为–0.87,这说明二者之间存在着( A )绝对值大于0.8A 、高度相关B 、中度相关C 、低相关D 、极弱相关7、在回归分析中,描述因变量y 如何依赖于自变量x 和误差项ε的方程称为( B )A 、回归方程B 、回归模型C 、估计回归方程D 、经验回归方程 8、在回归模型y=01x ββε++中,ε反映的是( C )A 、由于x 的变化引起的y 的线性变化部分B 、由于y 的变化引起的x 的线性变化部分C 、除x 和y 的线性关系之外的随机因素对y 的影响D 、由于x 和y 的线性关系对y 的影响9、如果两个变量之间存在负相关关系,下列回归方程中哪个肯定有误( B )A 、∧y =25–0.75xB 、∧y = –120+ 0.86x C 、∧y =200–2.5x D 、∧y = –34–0.74x10、说明回归方程拟合优度的统计量是( C )A 、相关系数B 、回归系数C 、判定系数D 、估计标准误差11、判定系数R 2是说明回归方程拟合度的一个统计量,它的计算公式为( A )A 、SST SSR B 、SSE SSR C 、SST SSE D 、SSRSST12、已知回归平方和SSR=4854,残差平方和SSE=146,则判定系数R 2=( A )4854/(4854+146)A 、97.08%B 、2.92%C 、3.01%D 、33.25%13、一个由100名年龄在30~60岁的男子组成的样本,测得其身高与体重的相关系数r=0.45,则下列陈述中不正确的是( D )A、较高的男子趋于较重B、身高与体重存在低度正相关C、体重较重的男子趋于较高D、45%的较高的男子趋于较重14、下列回归方程中哪个肯定有误( A )A、∧y=15–0.48x,r=0.65 B、∧y= –15 - 1.35x,r=-0.81C、∧y=-25+0.85x,r=0.42 D、∧y=120–3.56x,r=-0.9615、若变量x与y之间的相关系数r=0.8,则回归方程的判定系数R2为( C )A、0.8B、0.89C、0.64D、0.4016、对具有因果关系的现象进行回归分析时( A )A、只能将原因作为自变量B、只能将结果作为自变量C、二者均可作为自变量D、没有必要区分自变量二、多项选择题1、下列现象不具有相关关系的有( ABD )A、人口自然增长率与农业贷款B、存款期限与存款利率C、降雨量与农作物产量D、存款利率与利息收入E、单位产品成本与劳动生产率2、一个由500人组成的成人样本资料,表明其收入水平与受教育程度之间的相关系数r为0.6314,这说明( E )中度A、二者之间具有高度的正线性相关关系B、二者之间只有63.14%的正线性相关关系C、63.14%的高收入者具有较高的受教育程度D、63.14%的较高受教育程度者有较高的收入E、通常来说受教育程度较高者有较高的收入三、判断分析题(判断正误,并简要说明理由)1、一项研究显示,医院的大小(用病床数x反映)和病人住院天数的中位数y之间是正相关,这说明二者之间有一种必然的联系。

相关文档
最新文档