统计学假设检验习题答案
梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
人大版统计学 习题加答案第四章 假设检验

第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
假设检验基本概念习题

假设检验的基本概念练习题一、最佳选择题1.在两均数u检验中,其无效假设为()。
A.两个总体均数不同 B. 两个样本均数不同C.两个总体均数相同 D. 两个样本均数相同E. 两个总体位置不同2.当u检验的结果为P<0.05时,可以认为()。
A.两个总体均数不同 B. 两个样本均数不同C.两个总体均数相同 D. 两个样本均数相同E.还不能认为两总体均数有不同3.现有A、B两资料,经u检验得:A资料检验结果为P<0.01, B资料的检验结果为0.01<P<0.05, 可以认为()。
A.A资料两总体均数差别较B资料大B.B资料两总体均数差别较A资料大C.作推断两总体均数有差别时,A资料较B资料犯错误概率更大D.作推断两总体均数无差别时,B资料较A资料犯错误概率更小E.A资料更有理由推断两总体均数有差别4.两样本均数比较时,在其它条件相同情况下,下列四种选择中,()时检验效能最大。
A.α=0.05, n1=n2=20 B.α=0.01, n1=n2=30 C.α=0.05, n1=n2=30D.α=0.01, n1=n2=20 E. =0.05, n1=20, n2=305. 下列哪一种说法是正确的()。
A.两样本u检验时,要求两总体方差齐性B .当P >α接受0H 时,犯Ⅰ型错误概率很小C .单侧检验较双侧检验更易拒绝0HD .当P <α接受1H 时,犯Ⅱ型错误概率很小E .当P >α接受0H 时,犯Ⅰ型错误概率很大6.两样本率比较的单侧u 检验中,其1H 为( )。
A .1H :21ππ>或21ππ<B .1H : 21ππ≠C .1H :21p p >或21p p <D .1H :21p p ≠E .10ππ≠7.下列哪一种说法是正确的( )。
A .两样本均数比较均可用u 检验B .大样本时多个率比较可以用u 检验C .多个样本均数比较可以进行重复多次u 检验D .大样本时两均数比较和两个率比较可以用u 检验E .两个样本率比较均可用u 检验8.( )时,应作单侧检验。
管理统计学习题参考答案第八章

第八章1. 解:(1)假设检验的基本思想是,样本平均数与总体平均数出现差异不外乎两种可能:一是改革后的总体平均长度不变,但由于抽样的随机性使样本平均数与总体平均数之间存在抽样误差;二是由于工艺条件的变化,使总体平均数发生了显著的变化。
因此,可以这样推断:如果样本平均数与总体平均数之间的差异不大,未超出抽样误差范围,则认为总体平均数不变;反之,如果样本平均数与总体平均数之间的差异超出了抽样误差范围,则认为总体平均数发生了显著的变化。
根据样本平均数的抽样分布定理,有x Z σx μ±=或Z /σμx x ≤-。
当0=Z 时,表明样本均值等于总体均值,即μx =;当Z 很大时,表明样本均值离总体均值很远,即∆很大。
后一种情况是小概率事件。
在正常情况下,小概率事件是不会发生的,那么在一次抽样中小概率事件居然发生了,我们就有理由认为样本均值是不正常的,它与原总体相比,性质已经发生变化,应该拒绝接受原假设。
(2)假设检验的一般步骤包括:① 提出原假设和备择假设;对每个假设检验问题,一般可同时提出两个相反的假设:原假设和备择假设。
原假设又称零假设,是正待检验的假设,记为H 0;备择假设是拒绝原假设后可供选择的假设,记为H 1。
原假设和备择假设是相互对立的,检验结果二者必取其一。
接受H 0,则必须拒绝H 1;反之,拒绝H 0则必须接受H 1。
② 选择适当的统计量,并确定其分布形式;不同的假设检验问题需要选择不同的统计量作为检验统计量。
在例中,我们所用的统计量是Z ,在H 0为真时,N Z ~(0,1)。
③选择显著性水平α,确定临界值;显著性水平表示H 0为真时拒绝H 0的概率,即拒绝原假设所冒的风险,用α表示。
假设检验就是应用了小概率事件实际不发生的原理。
这里的小概率就是指α。
但是要小到什么程度才算小概率? 对此并没有统一的标准。
通常取α=0.1,0.05,0.01。
给定了显著性水平α,就可由有关的概率分布表查得临界值,从而确定H 0的接受区域和拒绝区域。
统计学第五版第八章课后习题答案

决策: ∵Z值落入接受域, ∴在α=0.05的显著水平上接受 H 0 。
结论:有证据表明现在生产的铁水平均含碳量与以前没有显著差 异,可以认为现在生产的铁水平均含碳量为4.55。
8.2 一种元件,要求其使用寿命不得低于700小时。现从一批这种 元件中随机抽取36件,测得其平均寿命为680小时。已知该元件寿 命服从正态分布,σ=60小时,试在显著性水平0.05下确定这批元 件是否合格。
甲法:31 34 29 32 35 38 34 30 29 32 31 26 乙法:26 24 28 29 30 29 32 26 31 29 32 28 两总体为正态总体,且方差相同。问两种方法的装配时 间有无显著差别(α =0.05)? 解: 正态总体,小样本,σ²未知但相同,独立样本t检验 H 0 : 甲 -乙 = 0 H1 : 甲 - 乙 ≠ 0
由Excel制表得:
由图可知:
已知:α = 0.05,n1 = n2=12 2 2 x甲 =31.75 x乙 =28.67 S甲=10.20 S乙 =6.06 t=1.72 t∈(-1.72,1.72)接受,否则拒绝。 t=(31.75-28.67)/(8.08* 0.41)=0.93 0.93∈(-1.72,1.72) 决策:在α = 0.05的水平上接受H 0 。 结论: 两种方法的装配时间无显著不同。
σ²≤100 H 1 : σ²>100 α= 0.05,n=9,自由度= 9 - 1 = 8, S² =215.75, x =63 采用χ²检验 临界值(s): χ² =15.5 )S 2 (9 - 1) * 215.75 2 (n - 1 17.26 15.5 检验统计量: 2 100 决策:在 a = 0.05的水平上拒绝 H 0 结论: σ²>100
统计学:假设检验习题与答案

一、单选题1、在假设检验中,我们认为()。
A.原假设是不容置疑的B.拒绝域总是位于检验统计量分布的两边C.小概率事件在一次抽样中实际上不会发生D.检验统计量落入拒绝域是不可能的正确答案:C2、在假设检验中,显著性水平确定后()。
A.双边检验的拒绝域小于单边检验的拒绝域B.双边检验的拒绝域大于单边检验的拒绝域C.双边检验的拒绝域与单边检验的拒绝域不可简单直接对比D.双边检验的拒绝域等于单边检验的拒绝域正确答案:C3、单个正态总体均值的检验时若总体方差已知,()。
A.设计的检验统计量服从卡方分布B.设计的检验统计量服从F分布C.设计的检验统计量服从标准正态分布D.设计的检验统计量服从t分布正确答案:C4、总体成数的假设检验()。
A.设计的检验统计量服从标准正态分布B.设计的检验统计量服从卡方分布C.设计的检验统计量近似服从卡方分布D.设计的检验统计量近似服从标准正态分布正确答案:D5、两个正态总体均值之差的检验中,如果两个总体方差未知但相等,检验统计量t的自由度是()。
A.两样本容量之和B.两样本容量之和减2C.两样本容量之积D.两样本容量之和减1正确答案:B6、假设检验是检验()的假设值是否成立。
A.总体均值B.总体指标C.样本方差D.样本指标正确答案:B7、在大样本条件下,样本成数的抽样分布近似为()。
A.均匀分布B.卡方分布C.二项分布D.正态分布正确答案:D8、下列关于假设检验的说法,不正确的是()。
A.作出“拒绝原假设”决策时可能会犯第一类错误B.作出“不能拒绝原假设”决策时意味着原假设正确C.作出“不能拒绝原假设”决策时可能会犯第二类错误D.作出“接受原假设”决策时意味着没有充分的理由认为原假设是错误的正确答案:B9、将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两,每边占显著性水平的二分之一,这是()。
A.右侧检验B.单侧检验C.左侧检验D.双侧检验正确答案:D10、如果使用者偏重于担心出现纳伪错误而造成的损失,则应把显著性水平定得()。
假设检验例题和习题

超过1cm3。如果达到设计要求 -0.6 0.7 -1.5 -0.2 -1.9
,表明机器的稳定性非常好。 -0.5 1 -0.2 -0.6 1.1
现从该机器装完的产品中随机
抽取25瓶,分别进行测定(用样
本减1000cm3),得到如下结果
。检验该机器的性能是否达到
设计要求 (=0.05)
8 - 30
双侧检验
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
H0: 2% H1: < 2%
8 -7
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
统计学
(第二版)
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜 单
第2步:选择“函数”点击
第3步:在函数分类中点击“统计”,在函数名的 菜
单下选择字符“NORMSDIST”然后确定
?( = 0.05)
统计学
(第二版)
均值的单尾 t 检验
(计算结果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23
(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料收集于网络,如有侵权 请联系网站删除只供学习与交流
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量n
x t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=
t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?
解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量n
x z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100
/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?
资料收集于网络,如有侵权 请联系网站删除只供学习与交流
解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2
Z z α>,
取0.05,α=26,n =
0.0250.9752 1.96
z z z α===,由检验统计量
1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.
4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?
解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.0252
0.05, 1.96z z αα===,
100,n =由检验统计量
3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.
5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,792,612,407,506.假定重量服从正态分布,试问以95%的显著性检验机器工作是否正常?
解: 01:500 :500H vs H μμ=≠,总体标准差σ未知,拒绝域为2
(1)t t n α>-,10,n =经计算得到x =502, s =6.4979,取
0.0250.05,(9) 2.2622t α==,由检验统计量
资料收集于网络,如有侵权 请联系网站删除只供学习与交流
0.9733t ===<2.2622, 接受0:500 H μ= 即, 以95%的把握认为机器工作是正常的.
6,一车床工人需要加工各种规格的工件,已知加工一工件所需的时间服从正态分布),(2
σμN ,均值为18分,标准差为4.62分。
现希望测定,是否由于对工作的厌烦影响了他的工作效率。
今测得以下数据:
21.01, 19.32, 18.76, 22.42, 20.49, 25.89, 20.11, 18.97, 20.90
试依据这些数据(取显著性水平05.0=α),检验假设: 18:,18:10>≤μμH H 。
解:这是一个方差已知的正态总体的均值检验,属于右边检验问题, 检验统计量为
n x Z /18
σ-=。
代入本题具体数据,得到8665.19/62.418
874.20=-=Z 。
检验的临界值为645.105.0=Z 。
因为645.18665.1>=Z ,所以样本值落入拒绝域中,故拒绝原假设0H ,即认为该工人加工一工件所需时间显著地大于18分钟。
11 设我国出口凤尾鱼罐头,标准规格是每罐净重250克,根据以往经验,标准差是3克。
现在某食品工厂生产一批供出口用的这种罐头,从中抽取100罐检验,其平均净重是251克。
假定罐头重量服从正态分布,按规定显著性水平α = 0.05,问这批罐头是否合乎标准,即净重确为250克? 解:(1)提出假设。
现在按规定净重为250克,考虑到买卖双方的合理经济利益,当净重远远超过250克时,工厂生产成本增加,卖方吃亏;当净重远远低于250克时,买方如果接受了这批罐头就会吃亏。
所以要求罐头不过于
资料收集于网络,如有侵权 请联系网站删除只供学习与交流
偏重或偏轻。
从而提出假设为:
H 0: µ = 250克
H 1: µ ≠ 250克
(2)建立统计量并确定其分布。
由于罐头重量服从正态分布,即X ~ N (250,
32
),因此: ),(~10032502N ξ )1,0(~/N n x z σμ
-=
(3)确定显著水平α = 0.05。
此题为双侧检验。
(4)根据显著水平找出统计量分布的临界值,961±=±2α
.ζ。
只要
ζζZ Z 2
α2α-≤≥或就否定原假设。
(5)计算机观察结果进行决策:
33.3100/3250
251/=-=-=n x z σμ
(6)判断。
由于196=333=2α
ζζ远远大于临界值,.,故否定原假设,
H 0,接受即认为罐头的净重偏高。
双侧检验与区间估计有一定联系,我们可以通过求μ的(1-α)的置信区间来检验该假设。
如果求出的区间包含μ,就不否定假设H 0。
例10-1中μ的95%的置信区间为:
()588251421250σ961±.,..即νξ
由于μ=250未包含在该区间内,所以否定H 0,结果与上述结论一致。
7.一家食品加工公司的质量管理部门规定,某种包装食品净重不得少于20千克。
经验表明,重量近似服从标准差为1.5千克的正态分布.假定从一个由50包食品构成的随机样本中得到平均重量为19.5千克,问有无充分证据说明这些包装食品的平均重量减少了?
资料收集于网络,如有侵权 请联系网站删除只供学习与交流
解:把平均重量保持不变或增加作为原假设的内容,只要能否定原甲设,就能说明样本数据提供了充分证据证明均重量减少了,于是有:
H 0: µ ≧20 千克,H 1: µ <20千克
由于食品净重近似服从正态分布,故统计量 )1,0(~/N n x z σμ
-=
令α=0.05,由于是左单侧检验,拒绝域的临界值是6451-=α.ζ,当
6451-=<α.ζζ时就拒绝H 0,计算z 值: 8261-=30
5120-519=σμ-=.../νξζ 由于6451-=<α.ζζ,所以拒绝H 0: µ ≧20,而接受H 1: µ <20千克,即检验结果能提供充分证据说明这些包装食品的平均重量减少了。