光催化剂s型异质结
先进光催化剂设计与制备

(7) Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37 (6), 2008030. [刘阳, 郝旭强, 胡海强, 靳治良. 物理化学学报, 2021, 37 (6), 2008030.] doi: 10.3866/PKU.WHXB202008030
(12) Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37 (6), 2010027. [费新刚, 谭海燕, 程蓓, 朱必成, 张留 洋. 物理化学学报, 2021, 37 (6), 2010027.] doi: 10.3866/PKU.WHXB202010027
3 School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
Emails: yujiaguo93@, jiaguoyu@ (J.Y.); Xinliscau@ (X.L.); weejun.ong@.my, ongweejun@ (W.J.O.); zly2017@ (L.Z.) Published online: December 21, 2020.
2 Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
光催化材料的异质结电荷分离研究现状

光催化材料的异质结电荷分离研究现状摘要随着环境污染与能源短缺等问题日益严重,各个国家对新能源的开发与研究也日益加快,而光催化技术因为其高效便捷,光催化材料成本低无污染等特点,正逐步成为各国研究的焦点。
然而,光催化剂受到光生电子空穴分离-复合机制的约束,降低了光催化技术在多领域应用的普适性,因此,本文从构建异质结改性方法出发,综述该领域内研究现状,总结诱导电荷分离的主要策略,探索诱导电荷分离的机理,展望未来提升光催化性能的主要策略。
关键词:光催化;电荷分离;异质结1引言近年来,光催化材料成本低无污染等特点,受到研究人员广泛关注。
然而,极高的光生电子与空穴的复合率令其光催化性能受到限制,而表面反应活性又由表面原子结构、与环境物质的配位状态及吸附性能等条件决定,表面反应活性同时也决定了反应物分子的吸附、光激发电子和反应物分子之间的电荷转移,甚至产物分子的脱附,对光催化材料的利用、光催化技术的效率与产能有巨大的影响。
因此,光催化材料的进一步深化研究需要将重点放到精确调控表面状态和采取改性策略诱导电荷分离上来。
本文从极化诱导、构建异质结等改性方法出发,综述该领域内研究现状,总结诱导电荷分离的主要策略,探索诱导电荷分离的机理,展望未来提升光催化性能的主要策略。
2构建异质结诱导电荷分离异质结为2种或多种材料在界面上形成的特殊的结构。
现阶段研究人员所报道的异质结主要可分为四种,其中主要可探讨碳材料和半导体所形成的异质结的肖特基异质结和半导体与半导体所形成的异质结的II型异质结、Z-scheme型异质结、面内异质结来推进对光催化材料的研究。
在形成肖特基异质结后,他的能带结构会产生弯曲变换,形成内建电场后会使电荷存留在贵金属纳米颗粒的部分。
Grabowska等[1]基于水热法成功制备了TiO2前驱体原位转化的SrTiO3,并采取光沉积法沉积Rh, Ru,Pt纳米颗粒,构建肖特基异质结,揭示了原位转化制备机理,并利用13C标记法,研究了苯酚降解原理。
异质结 内建电场 光催化 光催化 产氢 硫化物 单原子-概述说明以及解释

异质结内建电场光催化光催化产氢硫化物单原子-概述说明以及解释1.引言1.1 概述概述随着环境污染和能源危机的日益加剧,开发高效、环保的能源转化技术成为当前重要的研究方向之一。
光催化产氢技术作为一种可持续发展的能源转化方式,具有巨大的应用潜力。
在光催化产氢过程中,异质结、内建电场和硫化物单原子等材料起着重要的作用。
本文将首先介绍异质结的概念和特点,其中异质结作为一种具有不同晶体结构或化学成分的界面结构,其在光催化中扮演着重要角色。
其次,我们将探讨内建电场在光催化过程中的作用机制,内建电场能够调控光生载流子的分离和传输,从而提高光催化产氢的效率。
最后,我们将详细介绍硫化物单原子在光催化产氢中的应用,硫化物单原子具有良好的光催化活性和稳定性,可有效促进水的光解产氢反应。
通过对这些关键材料和机制的研究,我们有望为光催化产氢技术的发展提供新的思路和解决方案,推动能源领域的创新和进步。
1.2 文章结构文章结构部分包括引言、正文和结论三个部分。
在引言中,我们将介绍文章的主题和研究背景,引出文章的研究目的。
在正文中,我们将详细探讨异质结的概念和特点,内建电场在光催化中的作用,以及硫化物单原子在光催化产氢中的应用。
最后,在结论部分,我们将对整个研究进行总结,并展望未来的研究方向,最终得出结论。
整个文章结构分明,逻辑清晰,有助于读者对研究内容进行系统地理解和掌握。
1.3 目的本文的目的是探讨异质结内建电场在光催化中的作用以及硫化物单原子在光催化产氢中的应用。
通过对这些关键概念的深入研究,我们希望能够揭示它们在光催化领域中的重要性和潜在应用,为开发更高效的光催化材料提供理论基础和实践指导。
同时,本文也旨在为读者提供对光催化产氢技术的深入了解,促进相关领域的研究和发展。
通过系统的分析和讨论,我们希望为光催化产氢技术的发展做出贡献,推动清洁能源产业的进步与发展。
2.正文2.1 异质结的概念和特点异质结是指两种不同材料的结合界面,具有不同晶格结构和能带结构的区域。
S_型异质结H2O2_光催化剂的研究进展

物 理 化 学 学 报Acta Phys. -Chim. Sin. 2023, 39 (6), 2212010 (1 of 18)Received: December 5, 2022; Revised: January 20, 2023; Accepted: January 25, 2023; Published online: February 3, 2023. *Correspondingauthors.Emails:****************.cn(Y.L.),***************.cn(L.Z.);Tel.:+86-131********(Y.L).This work is supported by the National Natural Science Foundation of China (22008185, 22008187), Shaanxi Provincial Key Research and Development Program, China (2022GY-166; 2022GY-161), Scientific Research Program Funded by Shaanxi Provincial Education Department, China (22JK0406), and Training Program of Innovation and Entrepreneurship for Undergraduates, China (S202210709063).国家自然科学基金(22008185, 22008187), 陕西省科技厅重点研发计划项目(2022GY-166, 2022GY-161), 陕西省教育厅自然专项(22JK0406), 西安工程大学大学生创新创业训练计划项目(S202210709063)© Editorial office of Acta Physico-Chimica Sinica[Review]doi: 10.3866/PKU.WHXB202212010Review of S-Scheme Heterojunction Photocatalyst for H 2O 2 ProductionKeyu Zhang, Yunfeng Li *, Shidan Yuan, Luohong Zhang *, Qian WangCollege of Environmental and Chemical Engineering, Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi’ an Polytechnic University, Xi’ an 710048, China.Abstract: Rapid industrialization throughout the 20th and 21st centuries has led to the excessive consumption of fossil fuels to satisfy global energy demands. The dominant use of these fuel sources is the main cause of the ever-increasing environmental issues that greatly threaten humanity. Therefore, the development of renewable energy sources is fundamental to solving environmental issues. Solar energy has received widespread attention over the past decades as a green and sustainable energy source. Solar radiation-induced photocatalytic processes on the surface of semiconductor materials are able to convert solar energy into other energy sources for storage and further applications. However, the preparation of highly efficient and stable photocatalysts remains challenging. Recently, a new step-scheme (S-scheme) carrier migration mechanism was reported that solves the drawbacks of carrier migration inconventional heterojunction photocatalysts. The S-scheme heterojunction not only effectively solves the carrier migration problem and achieves fast separation but also preserves the powerful redox abilities and improves the catalytic performance of the photocatalytic system. To date, various S-scheme heterojunctions have been developed and employed to convert solar energy into useful chemical fuels to decrease the reliance on fossil fuels. Furthermore, these systems can also be used to degrade pollutants and reduce the harmful impact on the environment associated with the consumption of fossil fuels, including H 2 evolution, pollutant degradation, and the reduction of CO 2. H 2O 2 has been used as an effective, multipurpose, and green oxidizing agent in many applications including pollutant purification, medical disinfection, and chemical synthesis. It has also been used as a high-density energy carrier for fuel cells, with only water and oxygen produced as by-products. Photocatalytic technology provides a low-cost, environmentally friendly, and safe way to produce H 2O 2, requiring only solar energy, H 2O, and O 2 gas as raw materials. This paper reviews new S-scheme heterojunction designs for photocatalytic H 2O 2 production, including g-C 3N 4-, sulfide-, TiO 2-, and ZnO-based S-scheme heterojunctions. The main principles of photocatalytic H 2O 2 production and the formation mechanism of the S-scheme heterojunction are also discussed. In addition, effective advanced characterization methods for S-scheme heterojunctions have been analyzed. Finally, the challenges that need to be addressed and the direction of future research are identified to provide new methods for the development of high-performance photocatalysts for H 2O 2 production. Key Words: Photocatalysis; S-scheme heterojunction;H 2O 2 generation; Charge transferS型异质结H2O2光催化剂的研究进展张珂瑜,李云锋*,袁仕丹,张洛红*,王倩西安工程大学环境与化学工程学院,纺织化工助剂西安重点实验室,西安710048摘要:随着现代经济和工业的快速发展,传统化石能源的过度开发和消耗造成了日益严重的环境污染和能源危机,极大地威胁着我们的健康和生活。
AgIAgBrSiO2异质结纳米复合材料的制备及其光催化降解研究

AgI-AgBr/SiO2异质结纳米复合材料的制备及其光催化降解研究随着经济水平的不断发展,人们生活质量的不断提高,人们的健康意识也不断加深,追求健康的生存环境已经成为人们目标。
然而目前在治理水体中难以降解的有机污染物时通常采用的大部分光催化剂只有在紫外光下才具有催化活性,不能够有效利用自然界的大部分可见光,因此利用半导体技术制备具有可见光催化活性的光催化剂成为了目前研究的热点,本研究主要目的是研究一种利用可见光对水体中有机污染物进行降解的半导体光催化剂。
本研究以有序介孔SiO2为载体,首先用沉积-沉淀法制备AgBr/SiO2复合材料,利用AgI的溶度积比AgBr的小,采用简单的离子交换手段,用I-取代AgBr中的部分Br-即可在AgBr的表面生成AgI,构建AgI/AgBr异质结,制备AgI-AgBr/SiO2异质结构纳米复合材料,这样就将介孔SiO2与AgX有效的结合起来,形成了具有高比表面积及特殊性能的纳米复合颗粒。
Ag本身具有的光敏性能在与介孔二氧化硅复合后将得到进一步的继承甚至加强,这种具有新颖结构的无机复合材料在催化、吸附分离、光电、生物等领域具有更加广泛的应用。
国内外研究现状:有序介孔二氧化硅材料具有以下主要特征:(1)大的比表面积和孔道容量;(2)材料颗粒外形规则,且具有可控性;(3)孔道结构规则并且保持高度的有序性;(4)孔径均匀分布窄,并在一定纳米范围内(2nm~10nm)连续可调;(5)具有很好的水热稳定性[1,2]。
这些特性使其在催化、吸附脱附方面有很重要的应用,并且近几年逐渐发展成为一种良好的载体材料。
由于氧化硅材料具有无毒、原材料丰富、生物兼容性好并且制备技术成熟等优点使其成为目前研究开发的热点[3]。
各种新型的二氧化硅复合材料也不断的被研究出来,并且应用于各个领域。
AgX由于其独特的光敏性,目前已越来越多的被应用到光催化剂制备领域,通常通过沉积-沉淀法负载到各种载体上,形成各种复合型光催化剂。
生物炭异质结光催化剂

生物炭异质结光催化剂-概述说明以及解释1.引言1.1 概述生物炭异质结光催化剂是一种具有潜在应用前景的新型功能材料。
随着环境污染日益严重和可再生能源需求不断增长,光催化技术被广泛应用于水处理、空气净化以及能源转化等领域。
生物炭作为一种来源广泛、价格低廉且可再生的碳材料,其表面结构多孔且具有丰富的官能团,使其成为理想的光催化剂载体。
相较于传统的生物炭光催化剂,生物炭异质结光催化剂通过引入不同种类的异质结,可以有效提高光催化性能,并拓展其应用范围。
本文将对生物炭异质结光催化剂的制备方法、光催化剂的基本原理以及其研究现状进行全面介绍,旨在为读者提供对该领域的深入了解,并探讨其应用前景和未来研究方向。
通过对相关文献的梳理和分析,我们将总结生物炭异质结光催化剂在环境保护和能源转化方面的重要性,以及其在实际应用中的潜在挑战和机遇。
1.2 文章结构文章结构部分的内容:本文主要分为引言、正文和结论三个部分。
引言部分将首先概述生物炭异质结光催化剂的研究背景和意义,介绍生物炭的制备方法以及光催化剂的基本原理,引出本文的研究重点。
文章结构部分将简要介绍本文的结构框架,让读者对整篇文章的内容有一个整体的了解。
正文部分将包括生物炭的制备方法、光催化剂的基本原理以及生物炭异质结光催化剂的研究现状。
通过对生物炭的制备方法和光催化剂原理的介绍,使读者对生物炭异质结光催化剂有一个更深入的了解,从而理解本文的研究意义和现状。
结论部分将探讨生物炭异质结光催化剂的应用前景、未来研究方向以及总结本文的主要内容。
通过对生物炭异质结光催化剂的应用前景和未来研究方向的探讨,展望该领域的发展前景,为读者提供对该领域未来发展方向的参考。
同时,总结本文的主要内容,强调研究的重点和成果,为读者对整篇文章的理解提供一个概括性的结论。
1.3 目的:本文旨在介绍生物炭异质结光催化剂的研究现状和应用前景,探讨其在环境保护、能源开发等领域的潜在应用价值。
通过深入分析生物炭的制备方法、光催化剂的基本原理以及生物炭异质结光催化剂的特点,旨在促进该领域的研究进展,推动现有技术的应用和改进,为解决环境污染、减少能源消耗等问题提供新的解决方案。
一种2D-2D结构的CuInP2S6基异质结光催化剂及其制备方法

(54)发明名称一种2D/2D结构的CuInP 2S 6基异质结光催化剂及其制备方法(57)摘要本发明公开了一种2D/2D结构的CuInP 2S 6基异质结光催化剂及其制备方法,包括以下步骤:21)依次将Zn(NO 3)2·6H 2O、In(NO 3)3·4H 2O及二水合柠檬酸三钠溶解于去离子水中,并在室温下搅拌;22)CuInP 2S 6分散至步骤21)所得溶液中,然后在室温下搅拌;23)称取硫代乙酰胺,再溶解于去离子水中,同时将其逐滴加入步骤22)所得溶液中,然后在室温下继续搅拌,得前驱体溶液;24)将步骤23)所得前驱体溶液转移至高压釜中,再进行水热反应,然后冷却至室温,将反应产物进行离心洗涤,然后再进行干燥,得到2D/2DZnIn 2S 4/CuInP 2S 6复合光催化剂,该光催化剂具有较好的光生载流子分离效率、高比表面积和高光催化制氢活性的特点,且制备方法较为简单。
C N 115672361 A1.一种2D/2D结构的CuInP 2S 6基异质结光催化剂,其特征在于,基于2D CuInP 2S 6制备而成。
2.根据权利要求1所述的2D/2D结构的CuInP 2S 6基异质结光催化剂,其特征在于,所述2D/2D ZnIn 2S 4/CuInP 2S 6复合光催化剂中ZnIn 2S 4与CuInP 2S 6质量分数比为(0.5‑4):1。
3.一种权利要求1所述2D/2D结构的CuInP 2S 6基异质结光催化剂的制备方法,其特征在于,包括:以2D CuInP 2S 6为基础,通过柠檬酸钠辅助的水热法合成2D/2D结构的CuInP 2S 6基异质结光催化剂。
4.根据权利要求1所述的2D/2D结构的CuInP 2S 6基异质结光催化剂的制备方法,其特征在于,具体包括以下步骤:21)依次将Zn(NO 3)2·6H 2O、In(NO 3)3·4H 2O及二水合柠檬酸三钠溶解于去离子水中,并在室温下搅拌;22)CuInP 2S 6分散至步骤21)所得溶液中,然后在室温下搅拌;23)称取硫代乙酰胺,再溶解于去离子水中,同时将其逐滴加入步骤22)所得溶液中,然后在室温下继续搅拌,得前驱体溶液;24)将步骤23)所得前驱体溶液转移至高压釜中,再进行水热反应,然后冷却至室温,将反应产物进行离心洗涤,然后再进行干燥,得到2D/2DZnIn 2S 4/CuInP 2S 6复合光催化剂。
TiO2/SrTiO3异质结纳米管薄膜的制备及光电化学性能研究

TiO2/SrTiO3异质结纳米管薄膜的制备及光电化学性能研究Study on Preparation andPhotoelectrochemical Performance of TiO2/SrTiO3 Heterojunction NanotubeArrays领域:环境工程作者姓名:胡文丽指导教师:谭欣教授企业导师:张曙光高级工程师天津大学环境科学与工程学院二零一四年十二月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。
特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交论文的复印件和磁盘。
(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日摘要锐钛矿TiO2晶体通常暴露{101}晶面,而非高活性的{001}晶面,光生电子-空穴对复合率高,量子效率低,进而抑制了TiO2光催化活性。
此外,TiO2纳米材料具有较大的禁带宽度(3.2 eV),太阳光中仅占3~5 %的紫外光才能被其利用。
因此,这些缺点极大地限制了它的实际应用。
本研究中TiO2纳米管阵列被用作支撑反应物,与Sr(OH)2溶液反应,得到暴露TiO2{001}晶面的TiO2/SrTiO3纳米管阵列,该材料在紫外光下的光催化活性得到极大的提高。
采用扫描电显微镜(SEM)、X-射线衍射(XRD)、透射电子显微镜(TEM)、拉曼散射光谱(Raman)、X-射线能谱分析(XPS)等表征手段对样品进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光催化剂s型异质结
S型异质结(S-type heterojunction)是一种光催化剂结构,具有广泛的应用潜力。
它由两种不同的半导体材料组成,形成一个界面。
这种异质结的形成可以改变材料的能带结构,从而实现光催化反应的增强效果。
在S型异质结中,一种半导体材料的导带较高,而另一种半导体材料的导带较低。
这种能带结构的差异导致了电子在界面处的迁移,从而产生了电荷分离效应。
当光照射到S型异质结上时,光子被吸收并激发电子从价带跃迁到导带,形成电子空穴对。
由于能带结构的差异,电子会迁移到导带较高的半导体材料中,而空穴则会迁移到导带较低的半导体材料中。
这种电荷分离的效应增加了光催化反应的效率。
S型异质结的光催化性能主要取决于两种材料的能带结构、界面缺陷以及表面反应活性等因素。
例如,选择合适的半导体材料可以使能带结构的差异更大,从而增强电子和空穴的分离效应。
同时,通过控制界面缺陷的形成,可以提高光催化剂的表面反应活性,进一步增强光催化性能。
S型异质结具有多种应用领域。
一方面,它可以用于光催化水分解产氢。
通过光照射,S型异质结可以激活水分子中的电子和空穴,从而促进水分子的分解反应,生成氢气和氧气。
这种光催化产氢技术具有环保、高效的特点,有望成为未来清洁能源的重要来源。
另一方面,S型异质结还可以用于光催化降解有机污染物。
许多有机污染物对环境和人类健康造成严重威胁,传统的处理方法往往效果有限。
而S型异质结作为一种高效的光催化剂,可以利用光子的能量激发电子和空穴,从而产生活性物种,降解有机污染物。
这种光催化降解技术具有高效、无二次污染的特点,具有广阔的应用前景。
S型异质结作为一种光催化剂结构,具有广泛的应用潜力。
通过调控材料的能带结构和界面缺陷等因素,可以增强光催化反应的效率。
未来,我们可以进一步研究和探索S型异质结的性能和应用,为环境治理和能源开发提供新的解决方案。