高中数学必修5第3章《不等式》基础训练题
高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2课时作业(含解析)新人教A版必修5-新人

课时作业24 基本不等式:ab ≤a +b 2时间:45分钟——基础巩固类——一、选择题1.下列不等式中正确的是( D )A .a +4a≥4 B .a 2+b 2≥4ab C.ab ≥a +b 2D .x 2+3x 2≥2 3 解析:a <0,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b 2,故C 错;由基本不等式可知D 项正确. 2.若lg x +lg y =2,则1x +1y的最小值为( D ) A .10 B.110C .5 D.15解析:∵lg x +lg y =2,∴xy =100.且x >0,y >0.1x +1y ≥21xy =15. 3.已知f (x )=x +1x-2(x <0),则f (x )有( C ) A .最大值为0 B .最小值为0C .最大值为-4D .最小值为-4解析:∵x <0,∴-x >0.∴x +1x -2=-[(-x )+1(-x )]-2≤-2·(-x )·1(-x )-2=-4,等号成立的条件是-x =1-x ,即x =-1.4.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m 、n 的大小关系是( A ) A .m >n B .m <nC .m =nD .不确定解析:∵a >2,∴a -2>0,又∵m =a +1a -2=(a -2)+1a -2+2≥2(a -2)·1a -2+2=4, 当且仅当a -2=1a -2,即a =3时取等号. ∴m ≥4.∵b ≠0,∴b 2>0,∵2-b 2<2,∴22-b 2<4,即n <4,∴m >n .5.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( A )A .5 km 处B .4 km 处C .3 km 处D .2 km 处 解析:设仓库建在离车站x km 处,则土地费用y 1=k 1x(k 1≠0),运输费用y 2=k 2x (k 2≠0),把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45,故总费用y =20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时等号成立. 6.已知x >1,y >1且xy =16,则log 2x ·log 2y ( D )A .有最大值2B .等于4C .有最小值3D .有最大值4解析:因为x >1,y >1,所以log 2x >0,log 2y >0.所以log 2x ·log 2y ≤⎝ ⎛⎭⎪⎫log 2x +log 2y 22=⎣⎡⎦⎤log 2(xy )22=4,当且仅当x =y =4时取等号.故选D.二、填空题7.已知x 、y 都是正数,(1)如果xy =15,则x +y 的最小值是215;(2)如果x +y =15,则xy 的最大值是2254. 解析:(1)x +y ≥2xy =215,即x +y 的最小值是215;当且仅当x =y =15时取最小值.(2)xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1522=2254, 即xy 的最大值是2254. 当且仅当x =y =152时xy 取最大值. 8.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值X 围是⎣⎡⎭⎫15,+∞. 解析:因为x >0,所以x +1x≥2. 当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x+3≤12+3=15即x x 2+3x +1的最大值为15,故a ≥15. 9.若a >0,b >0,a +b =2,则下列不等式①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④1a +1b≥2,对满足条件的a ,b 恒成立的是①③④.(填序号) 解析:因为ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,所以①正确;因为(a +b )2=a +b +2ab =2+2ab ≤2+a +b =4,故②不正确;a 2+b 2≥(a +b )22=2,所以③正确;1a +1b =a +b ab =2ab ≥2,所以④正确.三、解答题10.(1)已知0<x <12,求y =12x (1-2x )的最大值. (2)已知x <3,求f (x )=4x -3+x 的最大值. (3)已知x ,y ∈R +,且x +y =4,求1x +3y的最小值; 解:(1)∵0<x <12,∴1-2x >0. y =14·2x ·(1-2x )≤14⎝ ⎛⎭⎪⎫2x +1-2x 22 =14×14=116. ∴当且仅当2x =1-2x ,即x =14时,y 最大值=116. (2)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3 ≤-243-x ·(3-x )+3=-1, 当且仅当43-x=3-x ,即x =1时取等号, ∴f (x )的最大值为-1.(3)法一:∵x ,y ∈R +,∴(x +y )⎝⎛⎭⎫1x +3y=4+⎝⎛⎭⎫y x +3x y ≥4+2 3.当且仅当y x =3x y ,即x =2(3-1), y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 法二:∵x ,y ∈R +,且x +y =4, ∴1x +3y =x +y 4x +3(x +y )4y=1+⎝⎛⎭⎫y 4x +3x 4y ≥1+2y 4x ·3x 4y=1+32. 当且仅当y 4x =3x 4y, 即x =2(3-1),y =2(3-3)时取“=”号.∴1x +3y 的最小值为1+32. 11.设a ,b ,c ∈R +.求证:(1)ab (a +b )+bc (b +c )+ca (c +a )≥6abc ;(2)(a +b +c )⎝⎛⎭⎫1a +1b +c ≥4. 证明:(1)∵a ,b ,c ∈R +,∴左边=a 2b +ab 2+b 2c +bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc =右边,当且仅当a =b =c 时,等号成立.(2)∵a ,b ,c ∈R +,∴左边=[a +(b +c )]⎝ ⎛⎭⎪⎫1a +1b +c≥2a (b +c )·21a (b +c )=4=右边, 当且仅当a =b +c 时,等号成立.——能力提升类——12.若f (x )=⎝⎛⎭⎫12x ,a ,b 均为正数,P =f ⎝⎛⎭⎫a +b 2,G =f (ab ),H =f ⎝⎛⎭⎫2ab a +b ,则( A ) A .P ≤G ≤H B .P ≤H ≤GC .G ≤H ≤PD .H ≤G ≤P解析:因为a ,b 均为正数,所以a +b 2≥ab =ab ab ≥ab a +b 2=2ab a +b,当且仅当a =b 时等号成立.又因为f (x )=⎝⎛⎭⎫12x 为减函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,所以P ≤G ≤H . 13.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( C ) A .8 B .7C .6D .5解析:由已知,可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a时等号成立,所以9m ≤54,即m ≤6,故选C.14.设a ,b >0,a +b =5,则a +1+b +3的最大值为3 2. 解析:令t =a +1+b +3,则t 2=a +1+b +3+2(a +1)(b +3)=9+2(a +1)(b +3)≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. 15.如图,如在公园建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现有44米铁丝网可供使用(铁丝网可以剩余),若利用x 米墙,(1)求x 的取值X 围;(2)求最少需要多少米铁丝网(精确到0.1米).解:(1)由于矩形草地的面积是144平方米,一边长是x 米,则另一边长为144x米, 则矩形草地所需铁丝网长度为y =x +2×144x. 令y =x +2×144x≤44(x >0), 解得8≤x ≤36,则x 的取值X 围是[8,36].(2)由基本不等式,得y =x +288x≥24 2. 当且仅当x =288x,即x ≈17.0时,等号成立, 则y 最小值=242≈34.0,即最少需要34.0米铁丝网.。
【精品专区】高中数学必修5第三章不等式练习题_高一数学

不等式题组训练一、选择题(六个小题,每题5分,共30分)1.若02522>-+-x x ,则221442-++-x x x 等于 ( )A .54-xB .3-C .3D .x 45- 2.函数y =log21(x +11x --1) (x > 1)取得最大值时x 是 ( )A .-2B .2C .-3D .33.不等式xx --213≥1的解集是 ( )A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2}4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .ba 11< B .ba11>C .a >b 2D .a 2>2b5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小,则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式0212<-+xx 的解集是__________________.2.如果33log log m n +≥4,那么m n +的最小值是__________________.3.已知正项等差数列{}n a 的前10项和为50,则56.a a 的最大值是__________________.4.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3毫克,乙料5毫克,配一剂B 种药 需甲料5毫克,乙料4毫克.今有甲料20毫克,乙料25毫克,若A 、B 两种药至少各配一剂,应满足的条件 是__________________.5. 0≤x, 0≤y 及x y +≤4所围成的平面区域的面积是__________________. 三、解答题(四个小题,每题10分,共40分) 1.解223log (3)0x x -->2.求y x z +=2的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y3.求证:ca bc ab c b a ++≥++2224.某单位决定投资3200元建一仓库(长方形状),高度很定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌转,每米长造价45元,顶部每平方米造价20元.试求: (1)仓库面积的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?[综合训练B 组]一、选择题(六个小题,每题5分,共30分) 1.一元二次不等式ax 2+bx +2>0的解集是(-21,31),则a +b 的值是_____。
高中数学 第三章 不等式 3.3 一元二次不等式及其解法同步训练 新人教B版必修5-新人教B版高二必

3.3一元二次不等式及其解法5分钟训练(预习类训练,可用于课前)1.已知2a+1<0,关于x 的不等式x 2-4ax-5a 2>0的解集是( ) A.{x|x >5a 或x <-a} B.{x|x <5a 或x >-a} C.{x|-a <x <5a} D.{x|5a <x <-a} 解析:x 2-4ax-5a 2>0⇒(x-5a )(x+a )>0.∵a<21-,∴5a<-a.∴x>-a 或x <5a.故选B.答案:B2.不等式x 2-x-2<0的解集是___________.解析:原不等式可以变化为(x+1)(x-2)<0,可知方程x 2-x-2=0的解为-1和2,所以,解集为:{x|-1<x <2}. 答案:{x|-1<x <2}3.不等式423--x x≤1的解集是___________.解析:423--x x ≤1,即423--x x -1≤0,4237--x x≤0.因为两实数的积与商是同号的,所以上述不等式同解于如下的不等式组:⎩⎨⎧≤--≠-.0)2)(37(,042x x x即⎪⎩⎪⎨⎧≥--≠.0)2)(37(,2x x x 所以,原不等式的解集为{x|x <2或x≥37}. 答案:{x|x <2或x≥37} 4.)1(-x x <0的解集为____________.解析:根据条件有⎩⎨⎧<->.01,0x x 即0<x <1,解集为:{x|0<x <1}.答案:{x|0<x <1}10分钟训练(强化类训练,可用于课中)1.已知不等式ax 2+bx+c >0的解集为{x|31-<x <2},则不等式cx 2+bx+a <0的解集为( ) A.{x|-3<x <21} B.{x|x <-3或x >21}C.{x|-2<x <31}D.{x|x <-2或x >31}解法一:ax 2+bx+c >0的解集为{x|31-<x <2}⇔3x 2-5x-2<0⇔-3x 2+5x+2>0.设a=-3k ,b=5k ,c=2k (k >0),则cx 2+bx+a <0⇔2kx 2+5kx-3k <0⇔2x 2+5x-3<0⇔-3<x <21,故选A.解法二:由题意知a <0,且a b -=(31-)+2,a c =(31-)×2,即a b =35-,a c =32-,而cx 2+bx+a <0⇔a c x 2+a b x+1>0⇔32-x 235-x+1>0⇔2x 2+5x-3<0⇔-3<x <21,所以应该选A.答案:A2.下列不等式中,解集是R 的是( )A.x 2+2x+1>0 B.2x >0C.(31)x +1>0 D.xx 121<- 解析:因为x 2+2x+1=(x+1)2≥0,所以A 不正确,又2x =|x|≥0,所以B 也不正确,而(31)x>0,所以(31)x+1>1>0(x∈R ). 答案:C3.不等式21-+x x >0的解集是______________. 解析:21-+x x >0⇔(x+1)(x-2)>0⇔x <-1或x >2.答案:{x|x <-1或x >2} 4.解下列不等式(1)x 2-x-2>0(2)-2x 2+x+3>0解:(1)∵Δ>0,对应方程x 2-x-2=0的根分别为-1,2.∴不等式x 2-x-2>0的解集:{x|x <-1 或x >2};(2)原不等式可以变为2x 2-x-3<0. ∴对应方程2x 2-x-3=0的根分别为-1,23. ∴原不等式的解集为{x|-1<x <23}. 5.解关于x 的不等式(m+3)x 2+2mx+m-2>0(m∈R ).解:(1)当m+3=0,即m=-3时,原不等式可化为-6x-3-2>0,即x <65-; (2)当m+3>0,即m >-3时,Δ=4m 2-4(m+3)(m-2)=4(6-m). 当Δ≥0,即-3<m≤6时,原不等式的解为:x <36+---m m m 或x >36+-+-m mm ;当Δ<0,即m >6时,原不等式的解集为R ; (3)当m+3<0,即m <-3时,Δ=4(6-m)>0所以,解为:36+-+-m m m <x <36+---m mm .综上所述,当m <-3时,不等式的解集为:{x|36+-+-m m m <x <36+---m mm };m=-3时,不等式的解集为{x|x <65-};当-3<m≤6时,不等式的解集为{x|x <36+---m m m }或x >36+-+-m mm .6.已知a >1,P :a (x-2)+1>0,Q :(x-1)2>a (x-2)+1.试寻求使得P 、Q 都成立的x 的集合.解:由题意得⎪⎩⎪⎨⎧>--->⇒⎪⎩⎪⎨⎧>++-->⇒⎩⎨⎧+->->+-0)2)((1202)2(121)2()1(01)2(22x a x a x a x a x a x x a x x a 若1<a <2,则有⎪⎩⎪⎨⎧<>->,2,12a x x ax 或而a-(2-a 1)=a+a 1-2>0,所以a >2-a 1.故x∈{x|x>2或2-a1<x <a}. 若a=2,则有x∈{x|x>21且x≠2}. 若a >2,则有⎪⎩⎪⎨⎧<>->.2,12x a x ax 或 故x∈{x|x>a 或2-a1<x <2}. 30分钟训练(巩固类训练,可用于课后) 1.函数f (x )=⎩⎨⎧≤->,1,1,1,x x x 则不等式xf (x )-x≤2的解集为( )A.[-2,2]B.[-2,-1]∪[1,2]C.[1,2]D.[-1,2] 解法一:(排除法)∵x=0时,xf (x )-x=0≤2成立,而B 、C 中均不含有0,故排除B 、C.只需验证x=-2即可,当x=-2时,xf (x )-x=(-2)·(-1)+2=4>2,∴排除A 而选D.解法二:(直接法)①当x >1时,xf (x )-x≤2可化为x 2-x≤2,即x 2-x-2≤0,解得-1≤x≤2.又x >1,∴1<x≤2.②当x≤1时,xf (x )-x≤2可化为-2x≤2,∴x≥-1.此时有-1≤x≤1,故适合原不等式的解集为①②两部分的并集,为[-1,2]. 答案:D2.不等式11-x >x+1的解集为( ) A.{x|x <-3} B.{x|x >1} C.{x|x <2-|∪{x|1<x <2}D.{x|34<x <2} 解析:原不等式可以化为11-x -(x+1)>0,即122--x x >0,即(x+2)(x 2-)(x-1)<0,由高次不等式的标根法可得C 正确.答案:C3.已知集合M={x|x 2-3x-28≤0},N={x|x 2-x-6>0},则M∩N 为( ) A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7} C.{x|x≤-2或x >3} D.{x|x <-2或x≥3}解析:M={x|-4≤x≤7},N={x|x<-2或x >3},再把M 、N 两个集合对应的范围在数轴上表示出来即可看出答案. 答案:A4.二次函数y=ax 2+bx+c 的图象开口向上,对称轴为x=1,图象与x 轴的两个交点中,一个交点的横坐标x 1∈(2,3),则有( )A.a-b-c >0B.a+b+c <0C.a+c <bD.3b <2c解析:由题意知另一交点必在(-1,0)之间,且f (-1)>0,即a-b+c >0(*).又知ab2-=1,得a=2b -,代入(*)式得21-b-b+c >0,即3b <2c.故选D. 答案:D5.若x 1、x 2是方程x 2-2kx+1-k 2=0的两个实根,则x 12+x 22的最小值是( ) A.-2 B.0 C.1 D.2解析:由题意得⎪⎩⎪⎨⎧-==+≥---=∆)3(1)2(2)1()1(4)2(2212122kx x kx x k k ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=4k 2-2(1-k 2)=6k 2-2.由①式得k 2≥21, ∴6k 2-2≥6×21-2=1.∴x 12+x 22的最小值为1. 答案:C2x -3 -2 -1 0 1 2 3 4 y 6-4-6-6-46则不等式ax 2+bx+c >0的解集是___________________.解析:根据所给数表中函数的单调性可以看出a >0,且方程ax 2+bx+c=0的两个解分别为-2和3.答案:(-∞,-2)∪(3,+∞)7.某大楼共有20层,有19人在第一层上了电梯,他们分别要去第二至第二十层,每层1人,而电梯只允许停1次,只可使1人满意,其余18人都要步行上楼或下楼,假定乘客每向下走1层的不满意度为1,每向上走1层的不满意度为2,所有人的不满意度的和为S ,为使S 最小,电梯应当停在第_______________层. 解析:设电梯停在第x 层(2≤x≤20),则 S=[1+2+…+(x-3)+(x-2)]×1+[1+2+…+(19-x )+(20-x )]×2 =2)20(12)2(2)2(1x x x -+⨯++-+×(20-x ) =)2485421()685(2342128523222-+-=+-x x x .∵x 取正整数,∴取x=14即可. 答案:148.据气象部门预报,在距离某码头南偏东45°方向600 km 处的热带风暴中心正以20 km/h 的速度向正北方向移动,距风暴中心450 km 以内的地区都受到影响(见右图).从现在小时__________后,该码头将受到热带风暴的影响,影响时间大约为__________.解析:设风暴中心坐标为(a ,b ),则a=3002,所以22)2300(b +<450,即-150<b <150.而20300),122(215201502300-=-=15.所以经过215(22-1)小时码头将受到风暴的影响,影响时间为15小时. 答案:215(22-1) 15小时9.已知函数f(x)=bax x +2(a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3, x 2=4.(1)求函数f(x)的解析式;(2)设k >1,解关于x 的不等式: f(x)<xkx k --+2)1(.解:(1)将x 1=3,x 2=4分别代入方程b ax x +2-x+12=0得⎪⎪⎩⎪⎪⎨⎧-=+-=+.8416,939ba ba解得⎩⎨⎧=-=.2,1b a 所以f(x)=x x -22(x≠2).(2)不等式即为x k x k x x --+<-2)1(22,可化为xk x k x -++-2)1(2<0, 即(x-2)(x-1)(x-k)>0.①当1<k <2,解集为x∈(1,k)∪(2+∞).②当k=2时,不等式为(x-2)2(x-1)>0解集为x∈(1,2)∪(2,+∞). ③当k >2时,解集为x∈(1,2)∪(k,+∞). 10.若不等式23+>ax x 的解集为(4,b ),求实数a 、b 的值. 解法一:(换元法)设u=x (u≥0),则原不等式可化为u >232+au , 即au 2-u+23<0. ∵原不等式的解集为(4,b ),∴方程au 2-u+23=0的两根分别为2、b . 由韦达定理知⎪⎪⎩⎪⎪⎨⎧==+.232,12a b ab解得⎪⎩⎪⎨⎧==.36,81b a解法二:(图象法)设y 1=x ,y 2=23+ax (x≥0),其图象如上图所示,不等式x >ax+23的解是当y 1=x 的图象在y 2=ax+23(x≥0)的图象上方时相应的x 的取值范围.由于不等式的解集为(4,b ),故方程x =ax+23有一个解x=4,将x=4代入得2344+=a ,∴a=81,再求方程x =2381+x 的另一个解得x=36,即b=36.。
新版高中数学人教A版必修5习题:第三章不等式 3.4.1

3.4基本不等式:√ab≤a+b2第1课时基本不等式课时过关·能力提升基础巩固1若x>0,则x+4x的最小值为().A.2B.3C.2√2D.4答案:D2若x,y满足x+y=40,且x,y都是正数,则xy的最大值是().A.400B.100C.40D.20解析:xy≤(x+y2)2=400,当且仅当x=y=20时,等号成立.答案:A3若0<x<13,则x(1−3x)取最大值时x的值是().A.13B.16C.34D.23解析:∵0<x<13,∴0<1−3x<1.∴y=x(1-3x)=13×3x(1−3x)≤13×(3x+1-3x 2)2=112. 当且仅当3x=1-3x ,即x =16时取等号.答案:B 4设a ,b ∈R ,若a ≠b ,a+b=2,则必有( ).A.1≤ab ≤a 2+b 22B.ab <1<a 2+b22C.ab <a 2+b22<1D.a 2+b 22<ab <1解析:令a=-1,b=3,则ab=-3,a 2+b 22=5,则有ab<1<a 2+b22,所以排除选项A,C,D,故选B .答案:B5若M =a 2+4a (a ∈R ,a ≠0),则M 的取值范围为( ).A.(-∞,-4]∪[4,+∞)B.(-∞,-4]C.[4,+∞)D.[-4,4]解析:当a>0时,M =a 2+4a =a +4a ≥2√a ·4a =4,当且仅当a =4a,即a=2时取“=”; 当a<0时,M =a 2+4a=a +4a =−[(-a )+(-4a )]≤-2√(-a )·(-4a )=−4,当且仅当-a=−4a,即a=-2时取“=”.综上,M的取值范围为(-∞,-4]∪[4,+∞).答案:A6若a>b>1,P=√lgalgb,Q=lga+lgb2,R=lg a+b2,则下列结论正确的是().A.R<P<QB.P<Q<RC.Q<P<RD.P<R<Q 解析:∵a>b>1,∴lg a>0,lg b>0.∴R=lg a+b2>lg√ab=12lg(ab)=lga+lgb2=Q>√lgalgb=P.∴P<Q<R.答案:B7若a>0,b>0,则2ba +ab的最小值是.解析:2ba +ab≥2√2ba·ab=2√2,当且仅当2ba=ab,即a=√2b时取“=”.答案:2√28当函数y=x2(2-x2)取最大值时,x=. 解析:当−√2<x<√2时,y=x2(2-x2)≤(x 2+2-x22)2=1,当且仅当x2=2-x2,即x=±1时,等号成立,当x2≥2时,y=x2(2-x2)≤0,不可能取最大值.所以当x=±1时,y=x2(2-x2)有最大值为1.答案:±19已知2x +3y=2(x>0,y>0),求xy的最小值.解∵x>0,y>0,2x +3y=2,∴2=2x +3y≥2√6xy(当x=2,y=3时,等号成立),即1≥√6xy.∴√xy≥√6,从而xy≥6,即xy的最小值为6.10已知x>-1,试求函数y=x 2+7x+10x+1的最小值.解∵x>-1,∴x+1>0,∴y=x 2+7x+10x+1=(x+1)2+5(x+1)+4x+1=x+1+4x+1+5≥2√(x+1)·4x+1+5=9.当且仅当x+1=4x+1,即x=1时,等号成立.所以函数y=x 2+7x+10x+1的最小值为9.能力提升1若2a+b=1,a>0,b>0,则1a +1b的最小值是().A.2√2B.3−2√2C.3+2√2D.3+√2解析:1a +1b=2a+ba+2a+bb=2+1+ba +2ab=3+ba+2ab.∵a>0,b>0,∴1a +1b =3+b a +2a b ≥3+2√b a ·2a b =3+2√2,当且仅当b a =2a b ,即b =√2a =√2−1时“=”成立.∴1a +1b 的最小值为3+2√2.答案:C 2若x+3y-2=0,则函数z=3x +27y +3的最小值是( ).A.323B.3+2√2C.6D.9解析:z=3x +27y +3≥2√3x ·27y +3=2√3x+3y +3. ∵x+3y-2=0,∴x+3y=2.∴z ≥2√3x+3y +3=2√32+3=9,当且仅当3x =27y ,即x=3y=1时取“=”.答案:D3若a>0,b>0,a+b=2,则y =1a +4b 的最小值是( ).A .72B.4C.92D.5解析:依题意得1a +4b =12(1a +4b )(a +b)=12[5+(b a +4a b )]≥12(5+2√b a ·4a b )=92,当且仅当{a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 答案:C4当x >12时,函数y =x +82x -1的最小值为( ).A .92B.4C.5D.9 解析:∵x >12,∴2x −1>0. ∴y=x +82x -1=x +4x -12=x −12+4x -12+12 ≥2√(x -12)·4x -12+12=4+12=92, 当且仅当x −12=4x -12,即x =52时取等号. 答案:A 5设a ,b>0,a+b=5,则√a +1+√b +3的最大值为 .解析:因为a ,b>0,a+b=5,所以(a+1)+(b+3)=9.令x=a+1,y=b+3,则x+y=9(x>1,y>3),于是√a +1+√b +3=√x +√y,而(√x +√y)2=x +y +2√xy ≤x+y+(x+y )=18,所以√x +√y ≤3√2.此时x=y ,即a+1=b+3,结合a+b=5可得a=3.5,b=1.5,故当a=3.5,b=1.5时,√a +1+√b +3的最大值为3√2. 答案:3√2★6函数y=log a (x-1)+1(a>0,且a ≠1)的图象恒过定点A ,若点A 在一次函数y=mx+n 的图象上,其中m ,n>0,则1m +2n 的最小值为 .解析:由题意,得点A (2,1),则1=2m+n.又m ,n>0,所以1m +2n =2m+n m +2(2m+n )n =4+n m +4m n ≥4+2√4=8.当且仅当n m =4m n ,即m =14,n =12时取等号,则1m+2n的最小值为8.答案:8★7若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是.解析:因为x>0,所以x+1x≥2,当且仅当x=1时取等号,所以有xx2+3x+1=1x+1x+3≤12+3=15,即xx2+3x+1的最大值为15,故a≥15.答案:[15,+∞)★8已知f(x)=a x(a>0,且a≠1),当x1≠x2时,比较f(x1+x22)与f(x1)+f(x2)2的大小.解∵f(x)=a x,∴f(x1+x22)=ax1+x22,∴12[f(x1)+f(x2)]=12(a x1+a x2).∵a>0,且a≠1,x1≠x2,∴a x1>0,a x2>0,且a x1≠a x2,∴12(a x1+a x2)>√a x1·a x2=ax1+x22,即f(x1+x22)<f(x1)+f(x2)2.9若正实数x,y满足2x+y+6=xy,求xy与2x+y的最小值.解∵2x+y+6=xy,x>0,y>0,∴xy=2x+y+6≥2√2·√xy +6, 即xy-2√2√xy −6≥0,当且仅当{2x =y ,2x +y +6=xy时,等号成立. ∴(√xy −3√2)(√xy +√2)≥0. ∵√xy +√2>0,∴√xy ≥3√2,xy ≥18.又2x+y+6=12×2xy ≤12·(2x+y 2)2, ∴(2x+y )2-8(2x+y )-48≥0,∴(2x+y-12)(2x+y+4)≥0.∵2x+y+4>0,∴2x+y ≥12.∴xy 的最小值为18,2x+y 的最小值为12.。
高中数学人教版必修5课时练习:第三章 不等式3-2 一元二次不等式及其解法

∴M∩N={x|0≤x≤2},故选 D.
3.若{x|2<x<3}为 x2+ax+b<0 的解集,则 bx2+ax+1>0 的解集为( )
A.{x|x<2 或 x>3}
B.{x|2<x<3}
C.{x|31<x<12}
D.{x|x<31或 x>21}
[答案] D
[解析] 由 x2+ax+b<0 的解集为{x|2<x<3},知方程 x2+ax+b=0 的根分别为 x1=2,x2 =3.
则不等式 ax2+bx+c>0 的解集是________.
[答案] {x|x<-2 或 x>3}
[解析] 由表知 x=-2 时 y=0,x=3 时,y=0. ∴二次函数 y=ax2+bx+c 可化为 y=a(x+2)(x-3),又当 x=1 时,y=-6,∴a=1. ∴不等式 ax2+bx+c>0 的解集为{x|x<-2 或 x>3}. 三、解答题
<x<1},选 D.
2.设集合 M={x|0≤x≤2},N={x|x2-2x-3<0},则 M∩N 等于( )
A.{x|0≤x<1}
B.{x|0≤x≤2}
C.{x|0≤x≤1}
D.{x|0≤x≤2}
[答案] D
[解析] ∵N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x≤2},
C.{x|x<1t 或 x>t}
D.{x|t<x<1t }
[答案] D
[解析] 化为(x-t)(x-1t )<0,
∵0<t<1,∴1t >1>t,∴t<x<1t .
6.已知不等式 x2+ax+4<0 的解集为空集,则 a 的取值范围是( )
高二数学必修5第三章不等式章末训练题精选(含解析)

⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分)1.原点和点(1,1)在直线x+y=a两侧,则a的取值范围是( )A.a<0或a>2B.0答案 B2.若不等式ax2+bx-2>0的解集为x|-2A.-18B.8C.-13D.1答案 C解析 ∵-2和-14是ax2+bx-2=0的两根.∴-2+-14=-ba -2 ×-14=-2a,∴a=-4b=-9.∴a+b=-13.3.如果a∈R,且a2+a<0,那么a,a2,-a,-a2的⼤⼩关系是( )A.a2>a>-a2>-aB.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2答案 B解析 ∵a2+a<0,∴a(a+1)<0,∴-1a2>-a2>a.4.不等式1x<12的解集是( )A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)答案 D解析 1x<12⇔1x-12<0⇔2-x2x<0⇔x-22x>0⇔x<0或x>2.5.设变量x,y满⾜约束条件x+y≤3,x-y≥-1,y≥1,则⽬标函数z=4x+2y的值为( )A.12B.10C.8D.2答案 B解析 画出可⾏域如图中阴影部分所⽰,⽬标函数z=4x+2y可转化为y=-2x+z2,作出直线y=-2x并平移,显然当其过点A时纵截距z2.解⽅程组x+y=3,y=1得A(2,1),∴zmax=10.6.已知a、b、c满⾜cA.ab>acB.c(b-a)>0C.ab2>cb2D.ac(a-c)<0答案 C解析 ∵c0,c<0.⽽b与0的⼤⼩不确定,在选项C中,若b=0,则ab2>cb2不成⽴.7.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为( )A.{x|-4≤xB.{x|-4C.{x|x≤-2或x>3}D.{x|x答案 A解析 ∵M={x|x2-3x-28≤0}={x|-4≤x≤7},N={x|x2-x-6>0}={x|x3},∴M∩N={x|-4≤x8.在R上定义运算⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意实数x成⽴,则( )A.-1答案 C解析 (x-a)⊗(x+a)=(x-a)(1-x-a)<1⇔-x2+x+(a2-a-1)<0恒成⽴⇔Δ=1+4(a2-a-1)<0⇔-129.在下列各函数中,最⼩值等于2的函数是( )A.y=x+1xB.y=cos x+1cos x (0C.y=x2+3x2+2D.y=ex+4ex-2答案 D解析 选项A中,x>0时,y≥2,x<0时,y≤-2;选项B中,cos x≠1,故最⼩值不等于2;选项C中,x2+3x2+2=x2+2+1x2+2=x2+2+1x2+2,当x=0时,ymin=322.选项D中,ex+4ex-2>2ex•4ex-2=2,当且仅当ex=2,即x=ln 2时,ymin=2,适合.10.若x,y满⾜约束条件x+y≥1x-y≥-12x-y≤2,⽬标函数z=ax+2y仅在点(1,0)处取得最⼩值,则a的取值范围是( )A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)答案 B解析 作出可⾏域如图所⽰,直线ax+2y=z仅在点(1,0)处取得最⼩值,由图象可知-1即-411.若x,y∈R+,且2x+8y-xy=0,则x+y的最⼩值为( )A.12B.14C.16D.18答案 D解析 由2x+8y-xy=0,得y(x-8)=2x,∵x>0,y>0,∴x-8>0,得到y=2xx-8,则µ=x+y=x+2xx-8=x+ 2x-16 +16x-8=(x-8)+16x-8+10≥2 x-8 •16x-8+10=18,当且仅当x-8=16x-8,即x=12,y=6时取“=”.12.若实数x,y满⾜x-y+1≤0,x>0,则yx-1的取值范围是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.[1,+∞)答案 B解析 可⾏域如图阴影,yx-1的⼏何意义是区域内点与(1,0)连线的斜率,易求得yx-1>1或yx-1⼆、填空题(本⼤题共4⼩题,每⼩题4分,共16分)13.若A=(x+3)(x+7),B=(x+4)(x+6),则A、B的⼤⼩关系为________.答案 A14.不等式x-1x2-x-30>0的解集是________________________________________________________________________.答案 {x|-56}15.如果a>b,给出下列不等式:①1a<1b;②a3>b3;③a2>b2;④2ac2>2bc2;⑤ab>1;⑥a2+b2+1>ab+a+b.其中⼀定成⽴的不等式的序号是________.答案 ②⑥解析 ①若a>0,b<0,则1a>1b,故①不成⽴;②∵y=x3在x∈R上单调递增,且a>b.∴a3>b3,故②成⽴;③取a=0,b=-1,知③不成⽴;④当c=0时,ac2=bc2=0,2ac2=2bc2,故④不成⽴;⑤取a=1,b=-1,知⑤不成⽴;⑥∵a2+b2+1-(ab+a+b)=12[(a-b)2+(a-1)2+(b-1)2]>0,∴a2+b2+1>ab+a+b,故⑥成⽴.16.⼀批货物随17列货车从A市以v千⽶/⼩时匀速直达B市,已知两地铁路线长400千⽶,为了安全,两列货车的间距不得⼩于v202千⽶,那么这批货物全部运到B市,最快需要________⼩时.答案 8解析 这批货物从A市全部运到B市的时间为t,则t=400+16v202v=400v+16v400≥2 400v×16v400=8(⼩时),当且仅当400v=16v400,即v=100时等号成⽴,此时t=8⼩时.三、解答题(本⼤题共6⼩题,共74分)17.(12分)若不等式(1-a)x2-4x+6>0的解集是{x|-3(1)解不等式2x2+(2-a)x-a>0;(2)b为何值时,ax2+bx+3≥0的解集为R.解 (1)由题意知1-a<0且-3和1是⽅程(1-a)x2-4x+6=0的两根,∴1-a<041-a=-261-a=-3,解得a=3.∴不等式2x2+(2-a)x-a>0即为2x2-x-3>0,解得x32.∴所求不等式的解集为x|x32.(2)ax2+bx+3≥0,即为3x2+bx+3≥0,若此不等式解集为R,则b2-4×3×3≤0,∴-6≤b≤6.18.(12分)解关于x的不等式56x2+ax-a2<0.解 原不等式可化为(7x+a)(8x-a)<0,即x+a7x-a8<0.①当-a70时,-a7②当-a7=a8,即a=0时,原不等式解集为∅;③当-a7>a8,即a<0时,a8综上知,当a>0时,原不等式的解集为x|-a7当a=0时,原不等式的解集为∅;当a<0时,原不等式的解集为x|a819.(12分)证明不等式:a,b,c∈R,a4+b4+c4≥abc(a+b+c).证明 ∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴2(a4+b4+c4)≥2(a2b2+b2c2+c2a2)即a4+b4+c4≥a2b2+b2c2+c2a2.⼜a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,c2a2+a2b2≥2a2bc.∴2(a2b2+b2c2+c2a2)≥2(ab2c+abc2+a2bc),即a2b2+b2c2+c2a2≥abc(a+b+c).∴a4+b4+c4≥abc(a+b+c).20.(12分)某投资⼈打算投资甲、⼄两个项⽬,根据预测,甲、⼄项⽬可能的盈利率分别为100%和50%,可能的亏损率分别为30%和10%,投资⼈计划投资⾦额不超过10万元,要求确保可能的资⾦亏损不超过1.8万元,问投资⼈对甲、⼄两个项⽬各投资多少万元,才能使可能的盈利?解 设投资⼈分别⽤x万元、y万元投资甲、⼄两个项⽬,由题意知x+y≤10,0.3x+0.1y≤1.8,x≥0,y≥0.⽬标函数z=x+0.5y.上述不等式组表⽰的平⾯区域如图所⽰,阴影部分(含边界)即可⾏域.作直线l0:x+0.5y=0,并作平⾏于直线l0的⼀组直线x+0.5y=z,z∈R,与可⾏域相交,其中有⼀条直线经过可⾏域上的M点,且与直线x+0.5y=0的距离,这⾥M点是直线x+y=10和0.3x+0.1y=1.8的交点.解⽅程组x+y=10,0.3x+0.1y=1.8,得x=4,y=6,此时z=1×4+0.5×6=7(万元).∵7>0,∴当x=4,y=6时,z取得值.答 投资⼈⽤4万元投资甲项⽬、6万元投资⼄项⽬,才能在确保亏损不超过1.8万元的前提下,使可能的盈利.21.(12分)设a∈R,关于x的⼀元⼆次⽅程7x2-(a+13)x+a2-a-2=0有两实根x1,x2,且0解 设f(x)=7x2-(a+13)x+a2-a-2.因为x1,x2是⽅程f(x)=0的两个实根,且0所以f 0 >0,f 1 <0,f 2 >0⇒a2-a-2>0,7- a+13 +a2-a-2<0,28-2 a+13 +a2-a-2>0⇒a2-a-2>0,a2-2a-8<0,a2-3a>0⇒a2,-23⇒-2所以a的取值范围是{a|-222.(14分)某商店预备在⼀个⽉内分批购买每张价值为20元的书桌共36台,每批都购⼊x台(x是正整数),且每批均需付运费4元,储存购⼊的书桌⼀个⽉所付的保管费与每批购⼊书桌的总价值(不含运费)成正⽐,若每批购⼊4台,则该⽉需⽤去运费和保管费共52元,现在全⽉只有48元资⾦可以⽤于⽀付运费和保管费.(1)求该⽉需⽤去的运费和保管费的总费⽤f(x);(2)能否恰当地安排每批进货的数量,使资⾦够⽤?写出你的结论,并说明理由.解 (1)设题中⽐例系数为k,若每批购⼊x台,则共需分36x批,每批价值20x.由题意f(x)=36x•4+k•20x,由x=4时,y=52,得k=1680=15.∴f(x)=144x+4x (0(2)由(1)知f(x)=144x+4x (0∴f(x)≥2144x•4x=48(元).当且仅当144x=4x,即x=6时,上式等号成⽴.故只需每批购⼊6张书桌,可以使资⾦够⽤.。
【高中数学新人教B版必修5】第三章《不等式》测试

《不等式》专项训练1.设a b <,c d <,则下列不等式中一定成立的是 ( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ 2.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 3.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .104.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 5.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+6.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 7.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . xx -+228.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A . }8|{<a aB . }8|{>a aC . }8|{≥a aD . }8|{≤a a9.若+∈R b a ,,则b a 11+与b a +1的大小关系是 . 10.函数121lg +-=x xy 的定义域是 .11.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.12. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.13.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 14.解不等式:21582≥+-x x x15.已知1<a ,解关于x 的不等式12>-x ax.16.已知0=++c b a ,求证:0≤++ca bc ab .17.对任意]1,1[-∈a ,函数a x a x x f 24)4()(2-+-+=的值恒大于零,求x 的取值范围.18.已知函数b ax x x f ++=2)(.(1)若对任意的实数x ,都有a x x f +≥2)(,求b 的取值范围; (2)当]1,1[-∈x 时,)(x f 的最大值为M ,求证:1+≥b M ;参考答案一、选择题1.C ; 2.D ; 3.C ; 4.C ; 5.D ; 6.A ; 7.D ; 8.A . 二、填空题 9.b a b a +>+111; 10.)21,1(-; 11. 20 ; 12. ]1,(-∞;13. {|20,}x x -<<或0<x<2 三、解答题14.解:原不等式等价于:0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x ∴原不等式的解集为]6,5()3,25[15.解:不等式12>-x ax 可化为022)1(>-+-x x a . ∵1<a ,∴01<-a ,则原不等式可化为0212<---x a x , 故当10<<a 时,原不等式的解集为}122|{ax x -<<; 当0=a 时,原不等式的解集为φ; 当0<a 时,原不等式的解集为}212|{<<-x ax . 16.证明:法一(综合法)0=++c b a , 0)(2=++∴c b a展开并移项得:02222≤++-=++c b a ca bc ab 0≤++∴ca bc ab法二(分析法)要证0≤++ca bc ab ,0=++c b a ,故只要证2)(c b a ca bc ab ++≤++ 即证0222≥+++++ca bc ab c b a ,也就是证0])()()[(21222≥+++++a c c b b a ,而此式显然成立,由于以上相应各步均可逆,∴原不等式成立. 法三:0=++c b a ,b a c +=-∴222223()()[()]024b b ab bc ca ab b a c ab a b a b ab a ∴++=++=-+=---=-++≤ 0≤++∴ca bc ab法四:,222ab b a ≥+ bc c b 222≥+,ca a c 222≥+ ∴由三式相加得:ca bc ab c b a ++≥++222两边同时加上)(2ca bc ab ++得:)(3)(2ca bc ab c b a ++≥++ 0=++c b a , ∴0≤++ca bc ab17.解:设22)2()2(24)4()(-+-=-+-+=x a x a x a x a g ,则)(a g 的图象为一直线,在]1,1[-∈a 上恒大于0,故有⎩⎨⎧>>-0)1(0)1(g g ,即⎩⎨⎧>+->+-02306522x x x x ,解得:1<x 或3>x ∴x 的取值范围是),3()1,(+∞⋃-∞18. 解:(1)对任意的R x ∈,都有⇔+≥a x x f 2)(对任意的R x ∈,0)()2(2≥-+-+a b x a x 0)(4)2(2≤---=∆⇔a b a)(1412R a b a b ∈≥⇔+≥⇔ ∴),1[+∞∈b .(2)证明:∵,1)1(M b a f ≤++=,1)1(M b a f ≤+-=-∴222+≥b M ,即1+≥b M .(3)证明:由210<<a 得,0241<-<-a ∴)(x f 在]2,1[a --上是减函数,在]1,2[a-上是增函数.∴当1||≤x 时,)(x f 在2ax -=时取得最小值42a b -,在1=x 时取得最大值b a ++1.故对任意的]1,1[-∈x ,.1414111|)(|22a b a a b b a x f -≤≤-⇔⎪⎩⎪⎨⎧-≥-≤++⇔≤。
(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5第三章《不等式》基础训练题
一、选择题
1.若b <0,a +b >0,则a -b 的值( )
A .大于0
B .小于0
C .等于0
D .不能确定
2.已知M =x 2+y 2-4x +2y ,N =-5,若x ≠2或y ≠-1,则( )
A .M >N
B .M <N
C .M =N
D .不能确定
3.不等式(x -2)(x +3)>0的解集是( )
A .(-3,2)
B .(2,+∞)
C .(-∞,-3)∪(2,+∞)
D .(-∞,-2)∪(3,+∞)
4.函数y =x (x -1)+x 的定义域为( )
A .{x |x ≥0}
B .{x |x ≥1}
C .{x |x ≥1}∪{0}
D .{x |0≤x ≤1}
5.不论x 为何值,二次三项式ax 2+bx +c 恒为正值的条件是( )
A .a >0,b 2-4ac >0
B .a >0,b 2-4ac ≤0
C .a >0,b 2-4ac <0
D .a <0,b 2-4ac <0
6.下列命题中正确的是( )
A .不等式x 2>1的解集是{x |x >±1}
B .不等式-4+4x -x 2≤0的解集是R
C .不等式-4+4x -x 2≥0的解集是空集
D .不等式x 2-2ax -a -54
>0的解集是R
7.若关于x 的不等式2x -1>a (x -2)的解集是R ,则实数a 的取值范围是( )
A .a >2
B .a =2
C .a <2
D .a 不存在
8.已知点M (x 0,y 0)与点A (1,2)在直线l :3x +2y -8=0的两侧,则( )
A .3x 0+2y 0>10
B .3x 0+2y 0<0
C .3x 0+2y 0>8
D .3x 0+2y 0<8
9.不等式组⎩⎪⎨⎪⎧
(x -y +1)(x +y -1)≥00≤x ≤2,表示的平面区域的面积是( )
A .2
B .4
C .6
D .8
10.在直角坐标系内,满足不等式x 2-y 2≤0的点(x ,y )的集合(用阴影表示)是( )
二、填空题
11.一个两位数个位数字为a ,十位数字为b ,且这个两位数大于50,可用不等关系表示为________.
12.已知x <1,则x 2+2与3x 的大小关系为________.
13.设集合A ={x |(x -1)2<3x -7,x ∈R },则集合A ∩Z 中有________个元素.
14.不等式x +1x -2
>0的解集是________.
15.原点O (0,0)与点集A ={(x ,y )|x +2y -1≥0,y ≤x +2,2x +y -5≤0}所表示的平面区域的位置关系
是________,点M (1,1)与集合A 的位置关系是________.
必修5第三章《不等式》基础训练题
命题:水果湖高中 胡显义
答案
1.解析:由题意知a >0,又b <0,
∴a -b >0.
答案:A
2.解析:∵M =x 2+y 2-4x +2y
=(x -2)2+(y +1)2-5>-5=N ,
∴M >N .
答案:A
3.解析:不等式(x -2)(x +3)>0的解集是(-∞,-3)∪(2,+∞),故选C.
答案:C
4.解析:要使函数有意义,需,即x ≥1,或x =0.所以函数的定义域为{x |x ≥1}∪{0},故选C.
答案:C
5.解析:须a >0且Δ<0.
答案:C
6.解析:结合三个二次的关系.
答案:B
7.解析:不等式即为(2-a )x >1-2a ,当a ≠2时,不等式为条件不等式,不合要求;当a =2时,不等式即0·x >-3对一切x 成立,故a 的取值范围是a =2.
答案:B
8.解析:∵点M 和点A 在直线l 的两侧,又把点A 代入得3×1+2×2-8=-1<0,
∴3x 0+2y 0-8>0,即3x 0+2y 0>8,故选C.
答案:C
9.解析:如图,不等式组
⎩⎪⎨⎪⎧ (x -y +1)(x +y -1)≥00≤x ≤2
表示的平面区域为一等腰直角三角形,其斜边长为4,斜边上的高为2,得其面积为4.故选B.
答案:B
10.解析:不等式x 2-y 2≤0可化为(x +y )(x -y )≤0,即⎩⎪⎨⎪⎧ x +y ≥0x -y ≤0或⎩
⎪⎨⎪⎧
x +y ≤0x -y ≥0,作出直线x +y =0和x -y =0,判定区域,可知选D.
答案:D
11.答案:50<10b +a <100
12.解析:(x 2+2)-3x =(x -1)(x -2).
∵x<1,∴x-1<0,x-2<0,
∴(x-1)(x-2)>0,∴x2+2>3x.
答案:x2+2>3x
13.解析:由(x-1)2<3x-7得x2-5x+8<0,
∵Δ<0,∴集合A为Ø,因此A∩Z的元素不存在.
答案:0
14.解析:不等式等价于(x+1)·(x-2)>0,∴x>2或x<-1.
答案:{x|x<-1,或x>2}
15.解析:若点满足各不等式⇒点在不等式组所表示的平面区域内,否则,点不在不等式组所表示的平面区域内,代入原点(0,0),显然0+2×0-1<0.故原点不满足不等式x+2y-1≥0.∴点O在平面区域之外,同理点M在平面区域之内.
答案:原点O在集合A所表示的平面区域之外点M在集合A所表示的平面区域之内。