计算方法实验
计算方法_实验报告

一、实验目的1. 理解并掌握计算方法的基本概念和原理;2. 学会使用计算方法解决实际问题;3. 提高编程能力和算法设计能力。
二、实验内容本次实验主要涉及以下内容:1. 线性方程组的求解;2. 多项式插值;3. 牛顿法求函数零点;4. 矩阵的特征值和特征向量求解。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 科学计算库:NumPy、SciPy四、实验步骤及结果分析1. 线性方程组的求解(1)实验步骤a. 导入NumPy库;b. 定义系数矩阵A和增广矩阵b;c. 使用NumPy的linalg.solve()函数求解线性方程组。
(2)实验结果设系数矩阵A和增广矩阵b如下:A = [[2, 1], [1, 2]]b = [3, 2]解得:x = [1, 1]2. 多项式插值(1)实验步骤a. 导入NumPy库;b. 定义插值点x和对应的函数值y;c. 使用NumPy的polyfit()函数进行多项式拟合;d. 使用poly1d()函数创建多项式对象;e. 使用多项式对象计算插值点对应的函数值。
(2)实验结果设插值点x和对应的函数值y如下:x = [1, 2, 3, 4, 5]y = [1, 4, 9, 16, 25]拟合得到的二次多项式为:f(x) = x^2 + 1在x = 3时,插值得到的函数值为f(3) = 10。
3. 牛顿法求函数零点(1)实验步骤a. 导入NumPy库;b. 定义函数f(x)和导数f'(x);c. 设置初始值x0;d. 使用牛顿迭代公式进行迭代计算;e. 判断迭代结果是否满足精度要求。
(2)实验结果设函数f(x) = x^2 - 2x - 3,初始值x0 = 1。
经过6次迭代,得到函数零点x ≈ 3。
4. 矩阵的特征值和特征向量求解(1)实验步骤a. 导入NumPy库;b. 定义系数矩阵A;c. 使用NumPy的linalg.eig()函数求解特征值和特征向量。
计算方法实验报告

班级:地信11102班序号: 20姓名:任亮目录计算方法实验报告(一) (3)计算方法实验报告(二) (6)计算方法实验报告(三) (9)计算方法实验报告(四) (13)计算方法实验报告(五) (18)计算方法实验报告(六) (22)计算方法实验报告(七) (26)计算方法实验报告(八) (28)计算方法实验报告(一)一、实验题目:Gauss消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯消去法基础原理2、掌握高斯消去法法解方程组的步骤3、能用程序语言对Gauss消去法进行编程实现四、实验过程代码及结果1、实验算法及其代码模块设计(1)、建立工程,建立Gauss.h头文件,在头文件中建类,如下:class CGauss{public:CGauss();virtual ~CGauss();public:float **a; //二元数组float *x;int n;public:void OutPutX();void OutputA();void Init();void Input();void CalcuA();void CalcuX();void Calcu();};(2)、建立Gauss.cpp文件,在其中对个函数模块进行设计2-1:构造函数和析构函数设计CGauss::CGauss()//构造函数{a=NULL;x=NULL;cout<<"CGauss类的建立"<<endl;}CGauss::~CGauss()//析构函数{cout<<"CGauss类撤销"<<endl;if(a){for(int i=1;i<=n;i++)delete a[i];delete []a;}delete []x;}2-2:函数变量初始化模块void CGauss::Init()//变量的初始化{cout<<"请输入方程组的阶数n=";cin>>n;a=new float*[n+1];//二元数组初始化,表示行数for(int i=1;i<=n;i++){a[i]=new float[n+2];//表示列数}x=new float[n+1];}2-3:数据输入及输出验证函数模块void CGauss::Input()//数据的输入{cout<<"--------------start A--------------"<<endl;cout<<"A="<<endl;for(int i=1;i<=n;i++)//i表示行,j表示列{for(int j=1;j<=n+1;j++){cin>>a[i][j];}}cout<<"--------------- end --------------"<<endl;}void CGauss::OutputA()//对输入的输出验证{cout<<"-----------输出A的验证-----------"<<endl;for(int i=1;i<=n;i++){for(int j=1;j<=n+1;j++){cout<<a[i][j]<<" ";}cout<<endl;}cout<<"---------------END--------------"<<endl;}2-4:消元算法设计及实现void CGauss::CalcuA()//消元函数for(int k=1 ;k<n;k++){for(int i=k+1;i<=n;i++){double lik=a[i][k]/a[k][k];for(int j=k;j<=n+1;j++){a[i][j]-=lik*a[k][j];}a[i][k]=0; //显示消元的效果}}}2-5:回代计算算法设计及函数实现void CGauss::CalcuX()//回带函数{for(int i=n;i>=1;i--){double s=0;for(int j=i+1;j<=n;j++){s+=a[i][j]*x[j];}x[i]=(a[i][n+1]-s)/a[i][i];}}2-6:结果输出函数模块void CGauss::OutPutX()//结果输出函数{cout<<"----------------X---------------"<<endl;for(int i=1 ;i<=n;i++){cout<<"x["<<i<<"]="<<x[i]<<endl;}}(3)、“GAUSS消元法”主函数设计int main(int argc, char* argv[]){CGauss obj;obj.Init();obj.Input();obj.OutputA();obj.CalcuA();obj.OutputA();obj.CalcuX();obj.OutPutX();//obj.Calcu();return 0;2、实验运行结果计算方法实验报告(二)一、实验题目:Gauss列主元消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯列主元消去法基础原理(1)、主元素的选取(2)、代码对主元素的寻找及交换2、掌握高斯列主元消去法解方程组的步骤3、能用程序语言对Gauss列主元消去法进行编程实现四、实验过程代码及结果1、实验算法及其代码模块设计(1)、新建头文件CGuassCol.h,在实验一的基础上建立类CGauss的派生类CGuassCol公有继承类CGauss,如下:#include "Gauss.h"//包含类CGauss的头文件class CGaussCol:public CGauss{public:CGaussCol();//构造函数virtual ~CGaussCol();//析构函数public:void CalcuA();//列主元的消元函数int FindMaxIk(int k);//寻找列主元函数void Exchange(int k,int ik);//交换函数void Calcu();};(2)、建立CGaussCol.cpp文件,在其中对个函数模块进行设计2-1:头文件的声明#include "stdafx.h"#include "CGuassCol.h"#include "math.h"#include "iostream.h"2-2:派生类CGaussCol的构造函数和析构函数CGaussCol::CGaussCol()//CGaussCol类构造函数{cout<<"CGaussCol类被建立"<<endl;}CGaussCol::~CGaussCol()//CGaussCol类析构函数{cout<<"~CGaussCol类被撤销"<<endl;}2-3:高斯列主元消元函数设计及代码实现void CGaussCol::CalcuA()//{for(int k=1 ;k<n;k++){int ik=this->FindMaxIk(k);if(ik!=k)this->Exchange(k,ik);for(int i=k+1;i<=n;i++){float lik=a[i][k]/a[k][k];for(int j=k;j<=n+1;j++){a[i][j]-=lik*a[k][j];}}}}2-4:列主元寻找的代码实现int CGaussCol::FindMaxIk(int k)//寻找列主元{float max=fabs(a[k][k]);int ik=k;for(int i=k+1;i<=n;i++){if(max<fabs(a[i][k])){ik=i;max=fabs(a[i][k]);}}return ik;}2-5:主元交换的函数模块代码实现void CGaussCol::Exchange(int k,int ik)//做交换{for(int j=k;j<=n+1;j++){float t=a[k][j];a[k][j]=a[ik][j];a[ik][j]=t;}}(3)、建立主函数main.cpp文件,设计“Gauss列主元消去法”主函数模块3-1:所包含头文件声明#include "stdafx.h"#include "Gauss.h"#include "CGuassCol.h"3-2:主函数设计int main(int argc, char* argv[]){CGaussCol obj;obj.Init();//调用类Gauss的成员函数obj.Input();//调用类Gauss的成员函数obj.OutputA();//调用类Gauss的成员函数obj.CalcuA();obj.OutputA();obj.CalcuX();obj.OutPutX();return 0;}2、实验结果计算方法实验报告(三)一、实验题目:Gauss完全主元消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯完全主元消去法基础原理;2、掌握高斯完全主元消去法法解方程组的步骤;3、能用程序语言对Gauss完全主元消去法进行编程(C++)实现。
计算方法实验报告册

实验一——插值方法实验学时:4实验类型:设计 实验要求:必修一 实验目的通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。
并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。
二 实验内容通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。
取点越密集,所得折线就越逼近理论上的插值曲线。
本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放于动态数组[]Y n 中。
以Visual C++.Net 2005为例。
本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。
CInterpolation 类为 class CInterpolation { public :CInterpolation();//构造函数CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… …………int n, N;//结点下标上限,采样点下标上限float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放i h ,i α,i β,i a ,i b ,i c ,i d 和i m};其中,有参数的构造函数为CInterpolation(float *x1, float *y1, int n1) {//动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1;N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];for (int i=0;i<=n;i++) {x[i]=x1[i]; y[i]=y1[i]; }for (int i=0;i<=N;i++) X[i]=x[0]+i; }2.1 Lagrange 插值()()nn i i i P x y l x ==∑,其中0,()nj i j j ni jx x l x x x =≠-=-∏对于一个自变量x ,要求插值函数值()n P x ,首先需要计算对应的Lagrange 插值基函数值()i l x float l(float xv,int i) //求插值基函数()i l x 的值 {float t=1;for (int j=0;j<=n;j++) if (j!=i)t=t*(xv-x[j])/(x[i]-x[j]); return t; }调用函数l(float x,int i),可求出()n P xfloat p_l(float x) //求()n P x 在一个点的插值结果 {float t=0;for (int i=0;i<=n;i++) t+=y[i]*l(x,i); return t; }调用p_l(float x)可实现整个区间的插值float *Lagrange() //求整个插值区间上所有采样点的插值结果 {float *Y=new float [N+1]; for (int k=0;k<=N;k++) Y[k]=p_l(x[0]+k*h); return Y; } 2.2Newton 插值010()(,,)()nn i i i P x f x x x x ω==∑,其中101,0()(),0i i j j i x x x i ω-==⎧⎪=⎨-≠⎪⎩∏,0100,()(,,)()ik i nk k j j j kf x f x x x x x ==≠=-∑∏对于一个自变量x ,要求插值函数值()n P x ,首先需要计算出01(,,)i f x x x 和()i x ωfloat *f() {//该函数的返回值是一个长度为n +1的动态数组,存放各阶差商 }float w(float x, int i) {//该函数计算()i x ω }在求()n P x 的函数中调用*f()得到各阶差商,然后在循环中调用w(float x)可得出插值结果 float p_n(float x) {//该函数计算()n P x 在一点的值 }调用p_n(float x)可实现整个区间的插值 float *Newton() {//该函数计算出插值区间内所有点的值 }2.3 三次样条插值三次样条插值程序可分为以下四步编写: (1) 计算结点间的步长i hi 、i α、i β;(2) 利用i hi 、i α、i β产生三对角方程组的系数矩阵和常数向量; (3) 通过求解三对角方程组,得出中间结点的导数i m ; (4) 对自变量x ,在对应区间1[,]i i x x +上,使用Hermite 插值; (5)调用上述函数,实现样条插值。
东南大学计算方法实验报告

计算方法与实习实验报告学院:电气工程学院指导老师:***班级:160093******学号:********实习题一实验1 拉格朗日插值法一、方法原理n次拉格朗日插值多项式为:L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x)n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0)n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。
对节点x i(i=0,1,…,n)中任一点x k(0<=k<=n)作一n 次多项式l k(x k),使它在该点上取值为1,而在其余点x i(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) 上式表明:n 个点x i(i=0,1,…,k-1,k+1,…,n)都是l k(x)的零点。
可求得l k三.计算方法及过程:1.输入节点的个数n2.输入各个节点的横纵坐标3.输入插值点4.调用函数,返回z函数语句与形参说明程序源代码如下:#include<iostream>#include<math.h>using namespace std;#define N 100double fun(double *x,double *y, int n,double p);void main(){int i,n;cout<<"输入节点的个数n:";cin>>n;double x[N], y[N],p;cout<<"please input xiangliang x= "<<endl;for(i=0;i<n;i++)cin>>x[i];cout<<"please input xiangliang y= "<<endl;for(i=0;i<n;i++)cin>>y[i];cout<<"please input LagelangrichazhiJieDian p= "<<endl;cin>>p;cout<<"The Answer= "<<fun(x,y,n,p)<<endl;system("pause") ;}double fun(double x[],double y[], int n,double p){double z=0,s=1.0;int k=0,i=0;double L[N];while(k<n){ if(k==0){ for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);L[0]=s*y[0];k=k+1;}else{s=1.0;for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));for(i=k+1;i<n;i++) s=s*((p-x[i])/(x[k]-x[i]));L[k]=s*y[k];k++;}}for(i=0;i<n;i++)z=z+L[i];return z;}五.实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。
计算方法实验:方程求根

实验一 方程求根一、实验目的用不同方法求任意实函数方程f (x )=0在自变量区间[a ,b]内或某一点附近的实根,并比较方法的优劣性。
二、实验方法 (1)二分法对方程f (x )=0在[a ,b]内求根。
将所给区间二等分,在二分点x=(b-a)/2处判断是否f (x )=0。
若是,则有根x=(b-a)/2;否则继续判断是否f(a)·f(b)<0,若是,则令b=x ,否则令a=x 。
重复此过程,直至求出方程f(x)=0在[a ,b]内的近似根为止。
(2)迭代法将方程f (x )=0等价变换为x=φ(x )的形式并建立相应的近似根为止。
(3)牛顿法设已知方程f (x )=0的一个近似根x 0,则函数f (x )在点x 0附近可用一阶泰勒多项式p 1(x )=f (x 0)+f ’(x 0)(x-x 0)来近似,因此方程f (x )=0可近似表示为f (x 0)+f ’(x 0)(x-x 0)=0。
设f ’(x 0)≠0,则 x=x 0-f (x 0)/’f (x 0)取x 作为原方程新的近似根x 1,然后再将x 1作为x 0代入上式。
迭代公式为 x k+1=x k -f (x k )/f ’(x k )三、实验内容1)在区间[0,1]内用二分法求方程e x +10x-2=0的近似根,要求误差不超过0.5×10-3。
2)取初值x0=0,用迭代公式x k+1=(2-e x k )/10,(k=0,1,2,…)求方程e x + 10x-2=0的近似根,要求误差不超过0.5×10-3。
3)取初值x 0=0用牛顿迭代法求方程e x + 10x-2=0的近似根,要求误差不超过0.5×10-3。
四、实验程序 (1)二分法(2)迭代法(3)牛顿法五、实验结果(仅供参考)(1)x11=0.09033 (2)x5=0.09052 (3)x2=0.09052六、结果分析由上面的对二分法、迭代法、牛顿法三种方法的三次实验结果,我们可以得出这样的结论:二分法要循环k=10次,迭代法要迭代k=4次,牛顿法要迭代k=2次才能达到精度为0.5×10-3的要求,而且方程e x+10x-2=0的精确解经计算,为0.0905250,由此可知,牛顿法和迭代法的精确度要优越于二分法。
计算方法非线性方程求根实验

f (a ) ⋅ f (b) < 0 ;又设 f ( x) 的一个零点 x* ∈ (a, b) 的近似值 (设f ′( x0 ) ≠ 0) 。用过曲
计算方法实验报告(附代码)

实验一 牛顿下山法实验说明:求非线性方程组的解是科学计算常遇到的问题,有很多实际背景.各种算法层出不穷,其中迭代是主流算法。
只有建立有效的迭代格式,迭代数列才可以收敛于所求的根。
因此设计算法之前,对于一般迭代进行收敛性的判断是至关重要的。
牛顿法也叫切线法,是迭代算法中典型方法,只要初值选取适当,在单根附近,牛顿法收敛速度很快,初值对于牛顿迭代 至关重要。
当初值选取不当可以采用牛顿下山算法进行纠正。
牛顿下山公式:)()(1k k k k x f x f x x '-=+λ下山因子 ,,,,322121211=λ下山条件|)(||)(|1k k x f x f <+实验代码:#include<iostream> #include<iomanip> #include<cmath>using namespace std;double newton_downhill(double x0,double x1); //牛顿下山法函数,返回下山成功后的修正初值double Y; //定义下山因子Y double k; //k为下山因子Y允许的最小值double dfun(double x){return 3*x*x-1;} //dfun()计算f(x)的导数值double fun1(double x){return x*x*x-x-1;} //fun1()计算f(x)的函数值double fun2(double x) {return x-fun1(x)/dfun(x);} //fun2()计算迭代值int N; //N记录迭代次数double e; //e表示要求的精度int main(){double x0,x1;cout<<"请输入初值x0:";cin>>x0;cout<<"请输入要求的精度:";cin>>e;N=1;if(dfun(x0)==0){cout<<"f'(x0)=0,无法进行牛顿迭代!"<<endl;}x1=fun2(x0);cout<<"x0"<<setw(18)<<"x1"<<setw(18)<<"e"<<setw(25)<<"f(x1)-f(x0)"<<endl;cout<<setiosflags(ios::fixed)<<setprecision(6)<<x0<<" "<<x1<<" "<<fabs(x1-x0)<<" "<<fabs(fun1(x1))-fabs(fun1(x0))<<endl;if(fabs(fun1(x1))>=fabs(fun1(x0))){ //初值不满足要求时,转入牛顿下山法x1=newton_downhill(x0,x1);} //牛顿下山法结束后,转入牛顿迭代法进行计算while(fabs(x1-x0)>=e){ //当精度不满足要求时N=N+1;x0=x1;if(dfun(x0)==0){cout<<"迭代途中f'(x0)=0,无法进行牛顿迭代!"<<endl;} x1=fun2(x0);cout<<setiosflags(ios::fixed)<<setprecision(6)<<x0<<" "<<x1<<" "<<fabs(x1-x0)<<endl;}cout<<"迭代值为:"<<setiosflags(ios::fixed)<<setprecision(6)<<x1<<'\n';cout<<"迭代次数为:"<<N<<endl;return 0;}double newton_downhill(double x0,double x1){Y=1;cout<<"转入牛顿下山法,请输入下山因子允许的最小值:";cin>>k;while(fabs(fun1(x1))>=fabs(fun1(x0))){if(Y>k){Y=Y/2;}else {cout<<"下山失败!";exit(0);}x1=x0-Y*fun1(x0)/dfun(x0);}//下山成功则cout<<"下山成功!Y="<<Y<<",转入牛顿迭代法计算!"<<endl;return x1;}实验结果:图4.1G-S 迭代算法流程图实验二 高斯-塞德尔迭代法实验说明:线性方程组大致分迭代法和直接法。
计算方法实验报告

实验一:误差传播与算法稳定性实验目的:体会稳定性在选择算法中的地位。
实验内容:考虑一个简单的由积分定义的序列10I ,0,1,10nn x dx n a x==+⎰其中a 为参数,分别对0.05a =及15a =按下列两种方法计算。
方案1:用递推公式11,1,2,,10n n I aI n n-=-+= 递推初值可由积分直接得01lna I a+= 方案2:用递推公式111(),,1,,1n n I I n N N a n-=-+=-根据估计式当1n a n ≥+时,11(1)(1)(1)n I a n a n <<+++或当01n a n ≤<+时,11(1)(1)n I a n n<≤++ 取递推初值 当1n a n ≥+时, 11121()2(1)(1)(1)2(1)(1)N N a I I a N a N a a N +≈+=+++++ 当01n a n ≤<+时,111()2(1)(1)N N I I a N N≈+++ 实验要求:列出结果,并对其稳定性进行分析比较,说明原因。
实验二:非线性方程数值解法实验目的:探讨不同方法的计算效果和各自特点 实验内容:应用算法(1)牛顿法;(2)割线法 实验要求:(1)用上述各种方法,分别计算下面的两个例子。
在达到精度相同的前提下,比较其迭代次数。
(I )31080x x +-=,取00x =;(II) 2281(0.1)sin 1.060x x x -+++=,取00x =;(2) 取其它的初值0x ,结果如何?反复选取不同的初值,比较其结果; (3) 总结归纳你的实验结果,试说明各种方法的特点。
实验三:选主元高斯消去法----主元的选取与算法的稳定性问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算方法实验指导姓名学号院系专业哈尔滨工业大学计算方法实验指导根据实际问题建立的数学模型,一般不能求出所谓的解析解,必须针对数学模型 的特点确定适当的计算方法,编制出计算机能够执行的计算程序,输入计算机,进行 调试,完成运算,如果计算结果存在问题或不知是否正确,还需要重新确定新的计算 方法,再编制出计算程序,输入计算机,重新调试,完成运算,直至获得正确的计算 结果,这就是数值计算的全部过程。
学生在学习“计算方法”和“高级语言”等课程时普遍存在的问题是:只会套用 教科书中的标准程序进行数值计算,很少有人能够独立地将学过的数值算法编制成计 算机程序,至于灵活应用已经掌握的算法求解综合性较大的课题,则更是困难的事情。
编写《计算方法实验指导》的目的是:突出数值计算程序结构化的思想。
提高学 生的编程能力,加深对“计算方法”课程内容的理解和掌握,为”计算方法“课程的 教学服务,进一步奠定从事数值计算工作的基础。
具体地1. 根据“计算方法”课程内容的特点,给出五个典型算法的分析流程,学生可以 利用所掌握的“高级语言”顺利地编制出计算机程序,上机实习,完成实验环节的教 学要求。
2. 所有的计算实习题目都经过任课教师逐一检验,准确无误。
3.充分利用循环的思想、 迭代的思想, 给出算法结构描述和程序语言的对应关系, 有利于学生编制相应的程序。
4. 结合实习题目,提出实验要求,要求学生按规范格式写出相应的实验报告,实 验报告成绩记入期末总成绩。
需要提醒学生:不能简单地套用现成的标准程序完成实 验题目,应当把重点放在对算法的理解、程序的优化设计、上机调试和计算结果分析 上,否则就失去实验课的目的啦。
5. 五个具体的实验题目是:实验题目 实验题目 实验题目 实验题目 实验题目 要求必须完成其中三个(如果全部完成更好) 。
1 拉格朗日 (Lagrange) 插值2 龙贝格 (Romberg) 积分法3 四阶龙格—库塔 (Runge — Kutta) 方法4 牛顿 (Newton) 迭代法5 高斯 (Gauss) 列主元消去法实验题目1拉格朗日(Lagrange)插值考虑下面两个拉格朗日插值问题:方法概要: 给定平面上n 1个不同的数据点(X k ,f (X k )),k 0,1丄,n ,X i X j , i j ;则满足条件 P n (X k )f(X k ),k 0,1,L , n的n 次拉格朗日插值多项式 P n (X)n k0f(X k )l k (X)是存在唯一的。
若X k [a,b], k 0,1,L , n ,且函数f (X )充分光滑,则当X [a,b]时,有误差估计式(n 1)f(x) R(x) f(X X 0)(X X 1)L (X X n ), (n 1)![a,b]拉格朗日插值算法实验实验目的:利用拉格朗日插值多项式Pi(x)求f (x)的近似值输 入:n 1个数据点 (X k ,f(X k )), k 0,1,L ,n ;插值点 X输 出: f (X)在插值点 X 的近似值P n (x)程序流程:0.0 ; k 0问题1 置1 1.0 ;对j 0,1,L ,k 1 置y y lf (X k )置kk 1输出X, y1,L ,n ,置 I I(X X j )/(X k X j )拉格朗日插值多项式的次数n 越大越好吗当k n 时,做一 3停机1(1)设f(x),X [ 5,5],考虑等距节点的拉格朗日插值多项式 巳(X),1 X即将区间[5,5]进行n 等分,记h 100,x k5.0 k h ,k 0,1,L , n ,构造n的函数值。
巳(X),利用拉格朗日插值多项式P n (x)作为f(x)的近似值。
分别取 n 5, n 10, n 20,同时计算P n (x)在X0.75,X 1.75,X 2.75,x 3.75,X 4.75 处⑵设 f(X) e x, X [1,1],考虑等距节点的拉格朗日插值多项式 巳(X),即将区间[1,1]进行n 等分,记h2.0——,x k 1.0 k h ,k0,1,L ,n ,构造巳(X),利用拉格朗日插值多项式 P n (x)作为f(x)的近似值。
分别取n 5,n 10,n 20,同时计算P n (x)在X 0.95,X 0.05,X 0.05,X 0.95 处的函数值。
问题2插值区间越小越好吗考虑下面两个拉格朗日插值问题:1(1)设 f(x)——2,X [1 X1,1],考虑等距节点的拉格朗日插值多项式巳(X),即将区间[1,1]进行n 等分,记h20,X k 1.0 k h ,k 0,1,L , n ,构造巳(x ),n利用拉格朗日插值多项式 P n (x)作为f(x)的近似值。
分别取n 5,n 10,n 20,同时计算P n (x)在X 0.95,X 0.05,X 0.05,x 0.95处的函数值。
(2)设f(x) e x,X [ 5,5],考虑等距节点的拉格朗日插值多项式巳(X),即一 2 0将区间[5,5]进行n 等分,记h ——,x k1.0 k h ,k 0,1,L ,n ,构造巳(x),n利用拉格朗日插值多项式 P n (x)作为f(x)的近似值。
分别取n 5,n 10,n 20,同时计算P n (x)在X 4.75,X 0.25,x 0.25,x 4.75处的函数值。
问题3在区间[1,1]考虑拉格朗日插值问题,为了使得插值误差较小,应如何选取插值节点考虑下面两个拉格朗日插值问题:1("设f(x) L1 XX k cos(生丄,k2(n 1)0,1丄,n,构造P n(x),利用拉格朗日插值多项式P n(X)作f(X)的近似值。
分别取n 5,n 10,n 20,同时计算Pn(x)在x 0.95,0.05,X 0.05,X 0.95处的函数值。
(2)设f(x) e X,X [ 1,1],考虑非等距节点的拉格朗日插值多项式P n(X),(2 k 1)X k cos -------- - ,k 0,1丄,n,构造P n(x),利用拉格朗日插值多项式2(n 1)P n(X)作f(X)的近似值。
分别取n 5,n 10,n 20,同时计算P n(x)在x 0.95,0.05,X 0.05,X 0.95处的函数值。
问题4考虑拉格朗日插值问题,内插比外推更可靠吗考虑下面两个拉格朗日插值问题:(1)设f (X) J X,关于以x0 1,x14,x2 9为节点的拉格朗日插值多项式F2(x),利用拉格朗日插值多项式P2(x)作为f(x)的近似值。
同时计算P2(X)在X 5,X 50,X 115,X 185处的函数值。
(2)设f(x) 丘,关于以x0 36,x1 49,x2 64为节点的拉格朗日插值多项式F2(x),利用拉格朗日插值多项式F2(x)作为f(X)的近似值。
同时计算P2(x)在X 5,X 50,X 115,X 185处的函数值。
设f(x) J X,关于以X0 100,X1 121,X2 144为节点的拉格朗日插(3)值多项式P2(x),利用拉格朗日插值多项式F2(x)作为f (X)的近似值。
同时计算P2(x) X 50,X 115,X 185处的函数值。
设f(x) T x,关于以x o 169,x1 196,x2 225为节点的拉格朗日[1,1],考虑非等距节点的拉格朗日插值多项式巳(X),插值多项式P2(x),利用拉格朗日插值多项式F2(x)作为f(x)的近似值。
同时计算P2(x) 在x 5,x 50,x 115,x 185处的函数值。
思考题:1.2.3.4. 对实验对实验对实验如何理解插值问题中的内插和外推1 存在的问题,应如何解决2 存在的问题的回答,试加以说明3 存在的问题的回答,试加以说明写出实验报告实验题目2 龙贝格(Romberg) 积分法方法概要:利用复化梯形求积公式、复化辛普生求积公式、复化柯特斯求积公式2 输出T 113(4T 2n T n ) -(16S 2n S n )15 1右eOn C n )一般地,利用龙贝格算法计算积分,要输出所谓的龙贝格(Romberg)积分法实验程序流程:的误差估计式计算积分f (x) dx 。
记 h b _a, x k na k h , k 0,1,L , n ,其计算公式: T n:Jf (X k1)f(X k )]T 2n2Tn)f(X k2 k 11h)T 数表T 1 T 2 T 4 T 8MSS2S 4 MC1C 2 R 1 M M OC n 实验目的:利用龙贝格(Romberg)积分法计算积分bf(x)dxa入: a,b, N,出:龙贝格T数表nT1 1h[f(a) f(b)]对i 2,3丄,N,做一3,5置ii 2, 12 输出T110 64停机/ 八1si nx.(1) --- dx ,置 T 21T 12f (a2 k 11 (k 2)h)输出T 2输出S 2m 1,置 C 2输出C 2,转m 2,置 R 2C 2 G)输出R 2, 转m 3,置tol R 2 R如果tol, 则停机,否则转S 2对 对 对 R1R2 , ClT i )hC 2,3S2,Tl T2,h2,m m 1问题1: (1) 利用龙贝格(Romberg)积分法计算积分12 x 沁 x e dx ,106(2)3e xsinxdx ,110 6(3)(4)问题2:14.--- dx , 01 x2 11 . ---- d x , 0x 1 10 610 6如何处理0x提示:f(0)龙叫浮110 610 6(4)(2)10 6提示: 引进变换t(3) 1cosx , —dx ,0仮10 6提示: 利用等式1cos x , —dx J x1-^dx1cos x 10二^dx ,第一个积分值等于2,第二个积分,利用f(0)l x m0 cosx ~i x也可以考虑利用分部积分 1cos x , i^dx 0坂0cosxd(Vx) (4) 1 4 X 2 dx , 10 6 提示:利用第一类 问题3:积分区间无限, Gauss-Chebyshev 求积公式 如何处理(1)x2dx,,10 6提示: 利用10 10 ex2dx 作近似(2)1(x 1)仮dx ,106提示: 利用变换t(3)e x cos 3xdx ,10 6提示:Gauss-Hermite 求积公式提示:思考题:X ・2 .e sinxdx ,Gauss-Lagurre 求积公式1.2.3.4. 输入的参数N 有什么意义在实验在实验在实验1 中二分次数和精度的关系如何2 中给出的提示具有普遍性吗存在其它的方法吗试加以说明。
3 中给出的提示具有普遍性吗存在其它的方法吗试加以说明。
写出实验报告实验题目3 四阶龙格—库塔(Runge—Kutta) 方法方法概要:给定常微分方程初值问题dy一 f (X, y), a X b dx y(a)记X n a n h ,n O,1,L ,N ,利用四阶龙格一库塔方法今) 导)K 3) 2K 2 2K 3 K 4)n 0,1丄,N 1可逐次求出微分方程初值问题的数值解y n ,n 1,2,L ,N 。