(完整版)第9章飞机飞行参数传感器及检测
飞机飞行速度测量的原理简介

飞机飞行速度测量的原理简介在飞机的前边安装有一个叫空速管的管子,也叫皮托管,总压管,风向标气流方向传感器或流向角感应器,当飞机向前飞行时,气流便冲进空速管,在管子末端的感应器会感受到气流的冲击力量,即动压。
飞机飞得越快,动压就越大。
如果将空气静止时的压力即静压和动压相比就可以知道冲进来的空气有多快,也就是飞机飞得有多快。
比较两种压力的工具是一个用上下两片很薄的金属片制成的表面带波纹的空心圆形盒子,称为膜盒。
这盒子是密封的,但有一根管子与空速管相连。
如果飞机速度快,动压便增大,膜盒内压力增加,膜盒会鼓起来。
用一个由小杠杆和齿轮等组成的装置可以将膜盒的变形测量出来并用指针显示,这就是最简单的飞机空速表。
现代的空速管除了正前方开孔外,还在管的四周开有很多小孔,并用另一根管子通到空速表内来测量静止大气压力,这一压力称静压。
空速表内膜盒的变形大小就是由膜盒外的静压与膜盒内动压的差别决定的。
空速管测量出来的静压还可以用来作为高度表的计算参数。
如果膜盒完全密封,里面的压力始终保持相当于地面空气的压力。
这样当飞机飞到空中,高度增加,空速管测得的静压下降,膜盒便会鼓起来,测量膜盒的变形即可测得飞机高度。
这种高度表称为气压式高度表。
利用空速管测得的静压还可以制成"升降速度表",即测量飞机高度变化快慢(爬升率)。
表内也有一个膜盒,不过膜盒内的压力不是根据空速管测得的动压而是通过专门一根在出口处开有一小孔的管子测得的。
这根管子上的小孔大小是特别设计的,用来限制膜盒内气压变化的快慢。
如果飞机上升很快,膜盒内的气压受小孔的制约不能很快下降,而膜盒外的气压由于有直通空速管上的静压孔,可以很快达到相当于外面大气的压力,于是膜盒鼓起来。
测量膜盒的变形大小即可算出飞机上升的快慢。
飞机下降时,情况正相反。
膜盒外压力急速增加,而膜盒内的气压只能缓慢升高,于是膜盒下陷,带动指针,显示负爬升率,即下降速率。
飞机平飞后,膜盒内外气压逐渐相等,膜盒恢复正常形状,升降速度表指示为零。
直升机上几种常用的传感器介绍资料

直升机上几种常用的传感器介绍直升机作为20世纪航空技术极具特色的创造之一,极大地拓展了飞行器的应用范围。
它不仅可以作低速、低空和机头方向不变的机动飞行,还可以小场地进行垂直升降。
这些优点使得直升机具有广阔的前景和使用价值。
作为一个复杂的系统,直升机内部安装了大量的传感器来保证直升机的安全、平稳、正确地飞行,其中包括了测量攻角的归零压差式攻角传感器,保证直升机平稳飞行的姿态传感器,测量油箱油位的变介电常数电容传感器,以及测量高度的高度传感器。
1 归零压差式攻角传感器攻角,也称迎角,是指气流与直升机旋翼之间的夹角。
飞机的火力控制系统、巡航控制系统以及失速警告系统都离不开飞机的攻角信息,攻角可以校正静压和动压,而静压和动压可以进一步计算气压高度和空速,因此获得精确的攻角对于飞机的大气数据系统具有十分重要的意义[1]。
美国等一些国家将其用于运输机、轰炸机、战斗机和导弹上,我国也曾将其应用在歼5战斗机和运1运输机上。
1.1 工作原理传感器的结构如图1-1所示,主要包括:敏感部分——探头;变换传动部分——气道、气室和桨叶;输出部分——电位器;温控部分——加热器和恒温器[2]。
归零压差式攻角传感器是一种空气动力装置,探头纵轴与飞行器纵轴相垂直,其上有两排互成90度的测压口,根据柏努利定理,圆柱表面的压力分布与该点径线相对气流的夹角有关。
因此,其压力分布系数θ2sin 41-=P当攻角不变时,两排测压口的气压是相等的。
而当攻角改变时,测压口在流场中敏感的压力差为()1212212sin sin 2θθρ-=-=V p p p d该压差经过气道、气室变换传动为压差力矩,推动浆叶,带动探头转动,直到压差为零;同时,探头转动时,与探头同轴的电刷便在电位计的绕组上产生角位移,从而电位计产生与攻角成比例的电信号,其原理图如图1-2所示。
整个过程均是自动调整的。
为保证在各种使用条件(速度、高度、温度…)下传感器仍能正常工作,传感器内配有恒温器,探头内有加热器。
第9章--飞机飞行参数传感器及检测教学内容

航空检测技术
★飞行参数仪表 ★发动机仪表 ★辅助仪表
9.5
航空检测技术
飞行器状态参数分类
飞行参数—飞行高度、速度、加速度、姿态角和 姿态角速度等;
动力系统参数—发动机转速、温度、燃油量、进 气压力、燃油压力等;
导航参数—位置、航向、高度、速度、距离等; 其他系统参数—生命保障系统参数、飞行员生理
9.18
航空检测技术
单风标式
9.19
航空检测技术
双风标式(歼七)
9.20
航空检测技术
特性
实用措施:
1,为使之稳定,一般均加阻尼器 2,为防止结冰,叶片内部应有加温装置 3,有时为增加气动力矩,采用两个叶片 特点
优点:构造简单,体积小,无原理误差
缺点:1)安装位置的影响较大,在高速飞机上要 找到气流平稳的部位也是非常困难;
驶 杆
感电 器信
动作筒
号
电信号传送
大气数据传感器
9.3
操纵 面位 置指
令
动作筒位置反馈
航空检测技术
飞行器通过传感器测量各种直接参数, 由机载计算机计算得到间接参数,经系统处 理转变为可显示的参数,由显示系统以指针、 数字或图形方式显示出来,或将这些参数传 输给自动控制系统,产生控制指令,直接操 纵飞行器改变飞行状态。
9.12
航空检测技术
温度传感器:电阻式、热电偶式 转速传感器:磁转速表、脉冲数
字式转速表 加速度传感器 迎角传感器
9.13
航空检测技术
9.2 迎角传感及检测
一、迎角与迎角传感器
➢ 迎角(也称攻角)是飞机机翼弦线(或飞机纵 轴,二者间仅差一个固定安装角)与迎面气流 间的夹角。
➢ 测量飞机迎角的装置,又称攻角传感器。迎角 信号可直接指示,供驾驶员观察。在大气数据 计算机中,迎角传感器的输出经补偿计算后变 为真实迎角,用于静压源误差修正,并可把此 信号输给仪表显示和失速警告系统。在飞行控 制系统中常引入迎角信号来限制最大法向过载。
飞机轮速传感器优化设计及其测速方法

165针对飞机轮速传感器低速输出信号幅值不满足要求和抗干扰能力较弱等问题,结合测速系统的测速方法进行研究,对轮速传感器进行电路和结构的优化设计,并采用M/T测速方法进行测速。
实验结果表明,优化后的轮速传感器的输出幅值得到了有效提高,抗干扰能力明显增强,结合合适的测速方法,能够准确采集飞机机轮的速度信号。
0 引言随着航空工业的不断发展,目前大多数飞机都安装了机轮防滑刹车系统。
防滑刹车系统是飞机起降系统的核心部分,主要功能是对飞机的起降、刹车、滑行、转弯等进行控制。
轮速传感器作为防滑刹车系统的一个重要部件,用于检测飞机机轮的速度并产生与轮速成正比的频率信号,提供给刹车盒或飞行控制计算机,从而根据情况决定是否进行刹车。
如果采集的轮速信号出现畸变,幅值不达标等情况,或者测速误差太大,都可能会造成飞机在滑跑过程中出现防滑失效,如抱死或爆胎、刹车失效等安全事故。
因此,轮速传感器的性能以及合适的测速方法,直接影响防滑刹车系统的性能,进而影响飞机的着陆安全以及飞机的各项战术技术指标[1-4]。
目前,在装有防滑刹车系统的飞机上一般装有磁阻式轮速传感器,但是轮速传感器的抗干扰能力比较差,并且在低速状态下会出现幅值较低的现象,在干扰比较大时甚至发生波形畸变的问题。
速度传感器的输出信号提供飞机机轮测速系统,其测速方法是否有效也影响着机轮速度信号是否能够准确采集。
本文针对轮速传感器输出信号的问题以及测速系统的测速方法进行研究,对轮速传感器进行优化设计,并提出合适的测速方法,提高轮速传感器的抗干扰能力,确保能够准确采集飞机轮速信号。
1 轮速传感器的结构及工作原理1.1 轮速传感器的结构轮速传感器主要由定子、转子、线圈、磁钢组件、轴承等零组件构成,结构如图1所示。
1.2 轮速传感器的工作原理轮速传感器依据法拉第磁感应原理工作,其原理图如图2所示。
齿数相同的定子和转子形成闭合磁路,当轮速图1 轮速传感器结构图Fig.1 Structure of wheel speed sensor 图2 轮速传感器工作原理图Fig.2 Working principle of speed sensor收稿日期:2021-08-26作者简介:蔡元宵(1987—),女,陕西定边人,硕士研究生,助教,研究方向:电气工程及其自动化。
飞机传感器——精选推荐

传感器是能感受规定的被测量并按一定规律转换成可用输出信号的器件和装置, 它是测量技术的前端, 也是信息技术的源头, 传感器在航空领域有着广泛的应用。
除了红外、激光、图像、雷达探测等机载光电、射频传感器系统外, 那些基于压力、温度、加速度、角度、位移、油量、生物敏、化学敏等原理的机载传感器, 主要用于测量飞机的飞行姿态、状态、导航定位参数、动力装置及燃滑油系统工作参数, 测量武器火控系统以及飞控、液压、电源、起落架、环控、救生、安全与防护等机载设备系统的工作参数, 供驾驶员直接了解飞机的有关状态, 对各种机载装置和系统进行控制。
机载传感器安装在飞机的各个部位, 应用在飞机的各个不同的系统中。
一方面, 同一性质的传感器可能要应用在不同的机载系统和部位; 另一方面, 同一系统、同一部位又可能设置多个相同的传感器, 以保证系统工作的可靠性与安全性。
机载传感器是飞机各功能系统的前端信息源。
机载传感器按功能分类可以分为:飞行状态、飞行姿态信息及其操纵系统工作参数传感器; 导航、定位参数传感器; 动力装置及燃油滑油参数传感器; 用于液压系统、电气系统、环控系统、起落架系统、救生系统、安全与防护系统......等工作参数传感器。
机载传感器按被测量性质分类可以分为:物理量传感器: 包括压力、力、力矩、位移、速度、加速度、角位移、角速度、转速、温度、液位、密度、流量、电量、光量、物态、方位、距离、地理位置传感器等。
化学量传感器: 包括成份传感器、烟雾探测器、火焰探测器等。
机载传感器技术是属于由技术推动发展的技术领域之一, 它超前于飞机的发展以向飞机提供先进的货架产品。
这种超前发展必须依靠健全的科研体系、雄厚的技术力量和坚实的科研条件作为后盾的。
如国外近期正在发展的机载嵌入分布式大气数据传感器、智能蒙皮(自适应分布式柔性传感器结构)、各种光纤式传感器、各种硅微型传感器……等都是在各有关国家鼎力支持下, 依靠各国的雄厚科研实力,突破以新原理、新结构、新材料、新工艺等基础性研究后得以不断更新发展的。
第9章飞机飞行参数传感器及检测

航空检测技术
比率输出式电子倾角传感器是一种类似于 电位器原理,内置信号调节的传感器。 采用三线制:电源正、电源地及信号。 输出信号也是以电源地为参考的,因此, 所用电源必须经过稳压调整,在0°即量 程中点时,其输出为电源电压的1/2,这 样低功耗,供电电流0.5mA的传感器非 常适合于电池供电场合。全部设计内置 EMI/ESD抑制电 路。
航空检测技术
4239攻角传感器,标准输出:攻角AOA,α (Angle Of Attack)或侧滑角AOS,β (angle of sideslip ),用于小型、中型飞机,加热。
9.30
航空检测技术
YK100600空速管、攻角 传感器/侧滑角传感器系 统(不加热,直前端), 其输出量有总压、静压、 AOA、AOS。用于非常 高速的飞行器,非结冰 条件。 YK100700空速管、攻角 传感器/侧滑角传感器系 统(加热,高速度)
飞机上许多压力参数需要检测,如针对 辅助动力装置(APU),需要测量引气气压、 进气口压力、主油路压力、P3 空气压力、P1 空气总压、排气压力及燃油过滤器压差等。
9.10
航空检测技术
针对推进器/发动机需要测量的压力参数有: 滑油差压;发动机滑油绝压;发动机滑
油表压;发动机功率扭矩表压;燃油过滤器 压力;燃油泵压力;滑油过滤器差压;滑油 温度及压力;P1 空气绝对总压;P2 压气机 进气压力;P2.5 级间进气绝压;P3 引气气压; P3 压气机排气压力;传动装置滑油压力;滑 油冗余压差;燃油过滤器冗余压差;起动机 空气阀冗余压力等。
9.13
航空检测技术
温度传感器:电阻式、热电偶式 转速传感器:磁转速表、脉冲数
字式转速表 加速度传感器 迎角传感器
航空传感器课程设计

航空传感器课程设计一、课程目标知识目标:1. 了解航空传感器的基本概念、分类及工作原理;2. 掌握航空传感器在飞行器上的应用及作用;3. 理解航空传感器数据的处理与分析方法。
技能目标:1. 能够正确使用航空传感器进行数据采集;2. 学会运用数据处理软件对航空传感器数据进行处理与分析;3. 培养学生动手操作、观察问题、解决问题的能力。
情感态度价值观目标:1. 培养学生对航空传感器技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通协调能力;3. 培养学生严谨的科学态度,树立正确的价值观。
课程性质:本课程属于航空技术领域,结合实际应用,注重理论与实践相结合。
学生特点:学生具备一定的物理基础和航空知识,对新技术具有好奇心,喜欢动手实践。
教学要求:结合学生特点,通过实例分析、动手操作等方式,使学生掌握航空传感器的基本知识,提高实际应用能力。
在教学过程中,注重培养学生的观察、分析和解决问题的能力,以及团队合作精神。
课程目标分解为具体学习成果,以便于教学设计和评估。
二、教学内容1. 航空传感器概述- 传感器的定义、分类及发展趋势- 航空传感器在飞行器上的应用2. 航空传感器工作原理- 电阻式、电容式、电感式传感器原理- 光电传感器、超声波传感器、红外传感器原理3. 航空传感器数据采集与处理- 传感器数据采集方法与设备- 数据处理与分析软件介绍- 数据滤波、特征提取、模式识别等算法4. 航空传感器应用案例- 飞行器姿态控制、导航、环境监测等领域的应用- 案例分析与讨论5. 实践操作- 航空传感器选型与安装- 数据采集与处理实验- 课程设计:设计一个简单的飞行器传感器系统教学内容按照教学大纲安排,结合教材相关章节,确保科学性和系统性。
在教学过程中,注重理论与实践相结合,通过案例分析和实践操作,使学生深入理解航空传感器的原理和应用。
教学内容分为五个部分,逐步深入,使学生能够逐步掌握航空传感器相关知识。
2014年航空检测技术总复习

法。P287 4、了解各种速度定义及测速方法、仪表。
P265
第十一章 航空发动机动态测量及监控
1、理解发动机燃油量、转速、推力等测 量原理,所用传感器。PPT 19
2、掌握表征发动机状态的参数,及测量 所用传感器类型。PPT18
主要发动机参数:EPR, N1,EGT 次 要 参 数 : N2, N3, FF, Oil PRESS, Oil TEMP, Oil QTY
相邻桥臂应变片受应变相反, 相对桥臂受应变相同
电容式
1、掌握电容式传感器的工作原理及分类。
2、理解三类电容传感器工作原理、区别, 会分析测量用电路。P40 3、结合飞机上的应用。 见PPT P30
电感式
1、了解互感式传感器的结构和工作原理 (差动变压器铁心位置不同的输出变化)。 P47 2、掌握零点残余电压的定义、形成原因及 补偿方式、电路。P49
第九章 飞机飞行参数传感器及检测
1、掌握迎角定义、测量用的传感器类型, 理解信号的作用。P261
2、掌握全静压系统的组成,所用的传感 器及作用。P266 267 269
3、理解总温探测的特点,测温时所用传 感器的类型。P274 P275
第十章 飞行高度与升降速度的测量
1、了解各种高度定义。P280 2、掌握气压测高原理及影响因素,仪表。
第七章 超声传感及检测
1、了解超声波的分类及特点。P208 2、理解超声探头的组成及各部分作
用。P211 3、掌握超声波测速、测距、测流量
的方法及计算。P229 图7-16 图7-17 图7-18
ห้องสมุดไป่ตู้
第八章 微型及智能传感器和检测
• MEMS的定义 P243 • 微型压力传感器及加速度传感器的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.22
航空检测技术
2、 差 压 管 式 迎 角 传 感 器
9.23
航空检测技术
差压管式迎角传感器由差压管和压力传感 器组成。差压管与皮托管相似,上页图示为 可以测量阻滞压力、迎角、侧滑角的截锥形 和球形五孔差压管。在与差压管轴线对称的 上下和左右及轴线上各开有一个孔。当差压 管轴线与气流方向一致时,各孔引入的压力 均相等;当有迎角和侧滑角时,某些压力将 不相等,由此可得出迎角和侧滑角。
9.5
航空检测技术
★飞行参数仪表 ★发动机仪表 ★辅助仪表
9.6
航空检测技术
飞行器状态参数分类
飞行参数—飞行高度、速度、加速度、姿态角和 姿态角速度等;
动力系统参数—发动机转速、温度、燃油量、进 气压力、燃油压力等;
导航参数—位置、航向、高度、速度、距离等; 其他系统参数—生命保障系统参数、飞行员生理
9.11
航空检测技术
针对环境控制系统(ECS),需要测量 以下压力参数:
空调压缩机排气压力;空调进气口表压 及绝压;气道差压;空气过滤器差压;机舱 空气表压及绝压;防冰系统热空气压力开关; 防冰系统表压;氧气储量测量;氧气调节器 压力;机组成员舱氧气压力;冷气系统表压 及绝压;饮用水表压;饮用水水位;蒸发循 环制冷系统压力等。
飞机上许多压力参数需要检测,如针对 辅助动力装置(APU),需要测量引气气压、 进气口压力、主油路压力、P3 空气压力、P1 空气总压、排气压力及燃油过滤器压差等。
9.10
航空检测技术
针对推进器/发动机需要测量的压力参数有: 滑油差压;发动机滑油绝压;发动机滑
油表压;发动机功率扭矩表压;燃油过滤器 压力;燃油泵压力;滑油过滤器差压;滑油 温度及压力;P1 空气绝对总压;P2 压气机 进气压力;P2.5 级间进气绝压;P3 引气气压; P3 压气机排气压力;传动装置滑油压力;滑 油冗余压差;燃油过滤器冗余压差;起动机 空气阀冗余压力等。
航空检测技术
第9章
飞机飞行参数传感器及检测
9.1
航空检测技术
9.1 概述
机载设备是飞行器中各种测量传感器、仪 表和显示系统、导航系统、飞行控制系统 、雷 达系统、通讯系统、电源电气等系统和设备的 统称。
9.2
航空检测技术 自动驾驶
飞行仪表 眼、脑、手 驾驶杆
舵面
感应元件
飞机气动力 人工操纵回路
变换放大元件 执行元件
舵面
飞机气动力
9.3
自动驾驶仪操纵回路
航空检测技术
电传操纵(Fly-by-Wire)
飞机运动 飞机气动力 运
空气动力 力和力矩
动
驾
传
操纵面
驶 杆
感电 器信
动作筒
号
电信号传送
大气数据传感器
9.4
操纵 面位 置指
令
动作筒位置反馈
航空检测技术
飞行器通过传感器测量各种直接参数, 由机载计算机计算得到间接参数,经系统处 理转变为可显示的参数,由显示系统以指针、 数字或图形方式显示出来,或将这些参数传 输给自动控制系统,产生控制指令,直接操 纵飞行器改变飞行状态。
9.19
航空检测技术
单风标式
9.20
航空检测技术
双风标式(歼七)
9.21
航空检测技术
特性
实用措施:
1,为使之稳定,一般均加阻尼器 2,为防止结冰,叶片内部应有加温装置 3,有时为增加气动力矩,采用两个叶片 特点
优点:构造简单,体积小,无原理误差
缺点:1)安装位置的影响较大,在高速飞机上要 找到气流平稳的部位也是非常困难;
9.13
航空检测技术
温度传感器:电阻式、热电偶式 转速传感器:磁转速表、脉冲数
字式转速表 加速度传感器 迎角传感器
9.14
航空检测技术
9.2 迎角传感及检测
一、迎角与迎角传感器
➢ 迎角(也称攻角)是飞机机翼弦线(或飞机纵 轴,二者间仅差一个固定安装角)与迎面气流 间的夹角。
➢ 测量飞机迎角的装置,又称攻角传感器。迎角 信号可直接指示,供驾驶员观察。在大气数据 计算机中,迎角传感器的输出经补偿计算后变 为真实迎角,用于静压源误差修正,并可把此 信号输给仪表显示和失速警告系统。在飞行控 制系统中常引入迎角信号来限制最大法向过载。
9.18
航空检测技术
分单风标与双风标两种,后者是迎角和侧 滑角的组合传感器。
单风标式迎角传感器多装于飞机侧面,而 双风标式传感器常与空速管组合在一起,安 装在机头前的撑杆上,由于远离机头,处于 较平稳的气流中,感受飞机迎角比较准确。
风标式迎角传感器的结构比较简单,工 作可靠,但对翼型剖面的加工和表面光洁度 的要求很高。
参数、电源系统参数、设备完好程度、结构损坏 程度等。
9.7
航空检测技术
主要测量传感器
压力传感器 ➢ 压阻式、谐振式 ➢工作模式:表压、密封表压
航空检测技术
压力传感器的工作模式有表压、密封表 压、绝压、差压等;压力量程从1psi ( 0.07kg/cm2 ) 到 30000psi;电磁干扰保护, 双重防护隔离;多种压力端口和电连接器规 格。
9.15 迎角信号还用于油门控制系统。
航空检测技术
9.16
航空检测技术
二、迎角传感器 1 、旋转风标式迎角传感器
精度:0.1 0.2 带阻尼器
翼形传感器即旋转风标式传感器,它由一个经过 静力平衡的风标(叶片),传动机构、信号变换器 (自整角机或电位计)及固定连结部分等组成。
9.17
航空检测技术
9.24
航空检测技术
9.25
航空检测技术
3、零差压式迎角传感器
由探头,气室, 浆叶和角度变 换器等组成。
9.26
航空检测技术
安装在机身或机头侧面,探头旋转轴垂直 于飞机对称面,并使进气A、B的对称面与翼 弦方向平行。
零压式迎角传感器有较好的阻尼,输出 的电信号比较平稳,精度也很高(可达0.1°)。 传感器中只有锥形探头(约10厘米长)露在 飞机蒙皮之外,对飞机造成的附加阻力极小。 但传感器结构比较复杂,装配精度要求较高。
9.12
航空检测技术
测量压力最常用的方法有: 变形测量是将膜片、膜盒、波纹管、包端
管等弹性元件作为压力敏感元件,在受到流体 介质的压力后,这些元件产生变形,将变形的 位移放大后转变成指针的指示,也可通过电位 计转变为电压信号,以数字方式显示出来。
特性参数测量是将单晶硅膜片、振动膜片、 振动筒等作为敏感元件,在其受到压力后,自 身的电阻或固有振动频率发生变化,测量这些 变化就可间接得到压力数值。