2019届高考数学二轮复习第一篇专题一第3讲不等式与线性规划课件文

合集下载

2019届二轮复习 不等式、线性规划 课件(24张)(全国通用)

2019届二轮复习  不等式、线性规划  课件(24张)(全国通用)
解析 答案
高频考点 命题热点一 命题热点二 命题热点三 命题热点四
核心归纳
-6-
求线性目标函数的最值 【思考】 求线性目标函数最值的一般方法是什么?
������-������ ≥ 0, 例2(2018浙江,12)若x,y满足约束条件 2������ + ������ ≤ 6, 则z=x+3y的 ������ + ������ ≥ 2,
高频考点
核心归纳
1.2 不等式、线性规 划
高频考点 命题热点一 命题热点二 命题热点三 命题热点四
核心归纳
-2-
简单不等式的解法 【思考】 如何解一元二次不等式、分式不等式?解指数不等式、 对数不等式的基本思想是什么? 例1(1)不等式x2+2x-3≥0的解集为( C ) A.{x|x≤-1或x≥3} B.{x|-1≤x≤3} C.{x|x≤-3或x≥1} D.{x|-3≤x≤1}
. .
高频考点 命题热点一 命题热点二 命题热点三 命题热点四
核心归纳
-3-
解析 (1)由x2+2x-3≥0,得(x+3)(x-1)≥0,解得x≤-3或x≥1,故选C.
1-������ > 0, 1 (2)由已知可得 ������ > 0, 解得 0<x< ,故选 C. 2 1-������ > ������, (3)要使函数有意义,必须 3-2x-x2≥0,即 x2+2x-3≤0, 所以-3≤x≤1.所以函数 y= 3-2������-������ 2 的定义域是[-3,1].
(2)若 log 1 (1-x)<log 1 x,则( C )
1 3 1 C.0<x< 2
2 2

高考数学文(二轮复习)课件《不等式与线性规划》

高考数学文(二轮复习)课件《不等式与线性规划》

2.解不等式的四种策略 (1) 解一元二次不等式的策略:先化为一般形式 ax2 + bx + c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二 次不等式的解集. (2)解简单的分式不等式的策略:将不等式一边化为 0,再将 不等式等价转化为整式不等式(组)求解. (3)解含指、对数不等式的策略:利用指、对数函数的单调性 将其转化为整式不等式求解. (4)解含参数不等式的策略:根据题意确定参数分类的标准, 依次讨论求解.
2.(2014· 全国新课标Ⅱ)设集合 M={0,1,2},N={x|x2-3x+ 2≤0},则 M∩N=( A.{1} C.{0,1} ) B.{2} D.{1,2}
答案:D
解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又 M={0,1,2}, 所以 M∩N={1,2}.故选 D.
基础记忆
试做真题
基础要记牢,真题须做熟
基础知识不“背死” ,就不能“用活” ! 1.牢记四类不等式的解法 (1)一元二次不等式的解法. 先化为一般形式 ax2+bx+c>0(a≠0),再求相应一元二次方 程 ax2+bx+c=0(a≠0)的根, 最后根据相应二次函数图象与 x 轴 的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法.
a+b 2 (4)ab≤ 2 (a,b∈R).
(5)
a2+b2 a+b ≥ ≥ ab(a>0,b>0). 2 2
3.快速判断二元一次不等式表示的平面区域
不等式 B>0 Ax+By+ C>0 Ax+By+ C<0
区域 B<0
直线 Ax+By 直线 Ax+By+ +C=0 上方 C=0 下方
不等式与线性规划

高考数学二轮复习不等式

高考数学二轮复习不等式

(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,

2019-2020年高考数学二轮复习 专题1 高考客观题常考知识 第3讲 不等式与线性规划 理

2019-2020年高考数学二轮复习 专题1 高考客观题常考知识 第3讲 不等式与线性规划 理

2019-2020年高考数学二轮复习专题1 高考客观题常考知识第3讲不等式与线性规划理不等式的解法1.设f(x)=则不等式f(x)<2的解集为( B )(A)(,+∞) (B)(-∞,1)∪[2,)(C)(1,2]∪(,+∞) (D)(1,)解析:原不等式等价于或即或解得2≤x<或x<1.故选B.2.(xx山东卷)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为( C )(A)(-∞,-1) (B)(-1,0)(C)(0,1) (D)(1,+∞)解析:f(-x)==,由f(-x)=-f(x)得=-,即1-a·2x=-2x+a,化简得a·(1+2x)=1+2x,所以a=1.f(x)=.由f(x)>3,得0<x<1,故选C.3.(xx陕西西安市模拟)关于x的不等式x2-2ax-3a2<0(a<0)的解集为(x1,x2),且x2-x1=12,则实数a的值等于.解析:因为关于x的不等式x2-2ax-3a2<0(a<0)的解集为(x1,x2),所以x1+x2=2a,x1·x2=-3a2,又x2-x1=12,(x2-x1)2=(x2+x1)2-4x1·x2,所以144=4a2+12a2=16a2,解得a=±3,因为a<0,所以a=-3.答案:-3简单的线性规划问题4.(xx北京卷)若x,y满足,则z=x+2y的最大值为( D )(A)0 (B)1 (C) (D)2解析:由x,y的约束条件可画出可行域(如图所示),其中A(,),B(0,1),易知直线x+2y-z=0经过点B(0,1)时,z取最大值2,故选D.5.(xx浙江温州市第二次适应测试)若实数x,y满足不等式组且z=y-2x的最小值等于-2,则实数m的值等于( A )(A)-1 (B)1 (C)-2 (D)2解析:由z=y-2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A时,直线y=2x+z的截距最小,此时z取得最小值为-2, 即y-2x=-2,由解得即A(1,0),点A也在直线x+y+m=0上,则m=-1.故选A.6.(xx贵州遵义市第二次联考)若则目标函数z=的取值范围是( A )(A)[2,5] (B)[1,5] (C)[,2] (D)[2,6]解析:z==1+2,可理解为求斜率的最值问题,画出可行域如图阴影部分,可知k=在(1,2)点处最大,最大为2;在(2,1)点处最小,最小为,所以z的取值范围为[2,5].故选A.7.(xx河南开封市模拟)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是.解析:作出区域D的图象,联系指数函数y=a x的图象,能够看出,当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点.则a的取值范围是1<a≤3.答案:(1,3]基本不等式的应用8.(xx甘肃省河西五地市高三第一次联考)函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A 在直线mx+ny-1=0(mn>0)上,则+的最小值为( B )(A)3 (B)4 (C)5 (D)6解析:函数y=a1-x(a>0,a≠1)的图象恒过定点A(1,1),又点A在直线mx+ny-1=0(mn>0)上,所以m+n=1,所以+=(m+n)(+)=2++≥2+2=4,当且仅当m=n=时取等号.故选B.9.(xx河南郑州市第一次质量预测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为( C )(A)32 (B)32 (C)64 (D)64解析:设该三棱锥的高为h,由三视图知,两式相减并整理得x2+y2=128.又因为xy≤==64(仅当x=y时取等号).10.(xx广东深圳市第一次调研考试)已知向量a=(-1,1),b=(1,)(x>0,y>0),若a⊥b,则x+4y的最小值为.解析:由a⊥b得-1+=0,+=1,(x+4y)·(+)=5++≥2+5=9.(当且仅当=时取等号)答案:9一、选择题1.(xx四川资阳市三模)已知loa<lob,则下列不等式一定成立的是( A )(A)()a<()b (B)>(C)ln(a-b)>0 (D)3a-b<1解析:因为y=lox是定义域上的减函数,且loa<lob,所以a>b>0.又因为y=()x是定义域R上的减函数,所以()a<()b;又因为y=x b在(0,+∞)上是增函数,所以()b<()b;所以()a<()b,选项A正确.2.(xx湖南卷)若变量x,y满足约束条件则z=3x-y的最小值为( A )(A)-7 (B)-1 (C)1 (D)2解析:画出可行域如图所示.当直线y=3x-z过点C(-2,1)时,z取最小值,故z min=3×(-2)-1=-7.故选A.3.(xx广西柳州市、北海市、钦州市1月份模拟)设变量x,y满足约束条件则z=2x×的最小值为( B )(A) (B) (C) (D)解析:可得z=2x-2y,设m=x-2y,不等式组表示的平面区域如图阴影部分,平移直线l:y=x,由图象可知直线l经过点A时,其截距最大,m最小,z最小,解方程组得A(2,2),则z最小=.4.(xx江西南昌市第一次模拟)已知实数x,y满足若目标函数z=2x+y的最大值与最小值的差为2,则实数m的值为( C )(A)4 (B)3 (C)2 (D)-解析:作出可行域如图,根据目标函数的几何意义可转化为直线y=-2x+z的截距,可知在N点z取最小值,在M点z取最大值.因为N(m-1,m),M(4-m,m),所以z M-z N=2(4-m)+m-2(m-1)-m=10-4m=2,所以m=2.5.(xx甘肃省河西五地市高三第一次联考)已知集合{(x,y)|}表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为( D )(A) (B) (C) (D)解析:作出不等式组对应的平面区域如图,则对应的区域为△AOB.由解得即B(4,-4).由解得即A(,).直线2x+y-4=0与x轴的交点坐标为(2,0),则△OAB的面积S=×2×+×2×4=.点P的坐标满足不等式x2+y2≤2区域面积S=×π×()2=,由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=.故选D.6.(xx陕西卷)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( D )甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8解析:设该企业每天生产甲产品x吨,乙产品y吨,每天获得的利润为z万元,则有z=3x+4y,由题意得x,y满足不等式组表示的可行域是以O(0,0),A(4,0),B(2,3),C(0,4)为顶点的四边形及其内部.根据线性规划的有关知识,知当直线3x+4y-z=0过点B(2,3)时,z取最大值18,故该企业每天可获得最大利润为18万元.故选D.7.设f(x)=ln x,0<a<b,若p=f(),q=f(),r=[f(a)+f(b)],则下列关系式中正确的是( C )(A)q=r<p (B)q=r>p(C)p=r<q (D)p=r>q解析:由题意得p=ln ,q=ln ,r=(ln a+ln b)=ln =p,因为0<a<b,所以>,所以ln >ln ,所以p=r<q.故选C.8.(xx四川南充市第一次高考适应性考试)若目标函数z=ax+by(a>0,b>0)满足约束条件且最大值为40,则+的最小值为( B )(A) (B) (C)1 (D)4解析:不等式表示的平面区域为如图阴影部分,当直线z=ax+by(a>0,b>0)过直线x-y+2=0与直线2x-y-6=0的交点(8,10)时,目标函数z=ax+by(a>0,b>0)取得最大值40,即8a+10b=40,即4a+5b=20,而+=(+)=+(+)≥+1=.故选B.9.(xx山东卷)已知x,y满足约束条件当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时, a2+b2的最小值为( B )(A)5 (B)4 (C) (D)2解析:不等式组表示的平面区域如图中阴影部分所示,根据目标函数的几何意义可知,目标函数在点A(2,1)处取得最小值,故2a+b=2.法一将2a+b=2两边分别平方得4a2+b2+4ab=20,而4ab=2×a×2b≤a2+4b2,当且仅当a=2b, 即a=,b=时取等号.所以20≤4a2+b2+a2+4b2=5(a2+b2),所以a2+b2≥4,即a2+b2的最小值为4.故选B.法二将2a+b=2看作平面直角坐标系aOb中的直线,则a2+b2的几何意义是直线上的点与坐标原点距离的平方,故其最小值为坐标原点到直线2a+b=2距离的平方,即()2=4.故选B.10.(xx重庆卷)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为( B )(A)-3 (B)1 (C) (D)3解析:作出不等式组表示的平面区域如图中阴影部分所示,由图可知,要使不等式组表示的平面区域为三角形,则m>-1.由解得即A(1-m,1+m).由解得即B(-m,+m).因为S△ABC=S△ADC-S△BDC=(2+2m)[(1+m)-(+m)]=(m+1)2=,所以m=1或m=-3(舍去),故选B.11.(xx四川宜宾市二诊)已知集合A={x∈R|x4+mx-2=0},满足a∈A的所有点M(a,)均在直线y=x的同侧,则实数m的取值范围是( A )(A)(-∞,-)∪(,+∞)(B)(-,-1)∪(1,)(C)(-5,-)∪(,6)(D)(-∞,-6)∪(6,+∞)解析:因为集合A={x∈R|x4+mx-2=0},所以方程的根显然x≠0,原方程等价于x3+m=,原方程的实根是曲线y=x3+m与曲线y=的交点的横坐标,而曲线y=x3+m是由曲线y=x3向上或向下平移|m|个单位而得到的,若交点(x i,)(i=1,2)均在直线y=x的同侧,因直线y=x与y=交点为(-,-),(,);所以结合图象可得或解得m>或m<-.故选A.12.已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时,的取值范围是( A )(A)[,] (B)[0,] (C)[,] (D)[0,]解析:因为f(-x)=-x+sin(-x)=-f(x),且f′(x)=1+cos x≥0,所以函数f(x)为奇函数,且在R上是增函数.所以由f(y2-2y+3)+f(x2-4x+1)≤0,得f(y2-2y+3)≤f(-x2+4x-1),所以y2-2y+3≤-x2+4x-1,即(x-2)2+(y-1)2≤1,其表示圆(x-2)2+(y-1)2=1及其内部.表示满足的点P与定点A(-1,0)连线的斜率.结合图形分析可知,直线AC的斜率=最小,切线AB的斜率tan∠BAX=tan 2∠PAX===最大.故选A.二、填空题13.(xx江苏卷)不等式<4的解集为.解析:不等式<4可转化为<22,由指数函数y=2x为增函数知x2-x<2,解得-1<x<2,故所求解集为(-1,2).答案:(-1,2)14.(xx新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是.解析:由题意,得函数f(x)的草图如图所示.因为f(x-1)>0,所以|x-1|<2,所以-2<x-1<2,所以-1<x<3.答案:(-1,3)15.(xx合肥八中段考)若正数a,b满足a+2b=3,且使不等式+-m>0恒成立,则实数m的取值范围是.解析:不等式+-m>0恒成立,即3(+)>3m恒成立.又正数a,b满足a+2b=3,(a+2b)(+)=+++2≥,当且仅当a=b=1时取“=”,所以实数m的取值范围是(-∞,).答案:(-∞,)16.(xx浙江卷)已知函数f(x)=则f(f(-3))= ,f(x)的最小值是.解析:因为-3<1,所以f(-3)=lg[(-3)2+1]=lg 10=1,所以f(f(-3))=f(1)=1+-3=0.当x≥1时,f(x)=x+-3≥2-3(当且仅当x=时,取“=”),当x<1时,x2+1≥1,所以f(x)=lg(x2+1)≥0,又因为2-3<0,所以f(x)min=2-3.答案:0 2-3。

高考数学二轮复习 专题1.3 不等式及线性规划问题课件

高考数学二轮复习 专题1.3 不等式及线性规划问题课件

则 z=x+2y
的最大值为
A.0
B.1
3 C.2
D.2
( ).
(2)(2014·浙江卷)当实数 x,y 满足xx+-2y-y-14≤≤00,, x≥1
时,1≤ax
+y≤4 恒成立,则实数 a 的取值范围是________.
解析 (1)可行域如图所示.目标函数化为 y=-12x+12z,当直线 y =-12x+12z,过点 A(0,1)时,z 取得最大值 2.
,则

f(10x)>0 的解集为
( ).
A.{x|x<-1,或 x>-lg 2}
B.{x|-1<x<-lg 2}
C.{x|x>-lg 2}
D.{x|x<-lg 2}
解析 (1)设 f(x)=x2+ax+1,其对称轴为 x=-a2. 若-a2≥12,即 a≤-1 时,则 f(x)在0,12上是减函数,若满足题意 应有 f12≥0,即-52≤a≤-1. 若-a2≤0,即 a≥0 时,则 f(x)在0,12上是增函数, 又 f(0)=1>0 成立,故 a≥0. 若 0<-a2<12,即-1<a<0,则应有 f-a2=a42-a22+1=1-a42≥0 成 立,故-1<a<0.综上,有 a≥-52.
• 1.不等式的解法

(1)求解一元二次不等式的基本思路:先化为一般形式
ax2+bx+c>0(或<0)(a>0),再求相应一元二次方程ax2+
bx+c=0(a>0)的根,最后根据相应二次函数图象与x轴的
位置关系,确定一元二次不等式的解集.

(2)解含参数不等式的难点在于对参数的恰当分类,关键

2019届高考数学二轮复习不等式、线性规划课件(51张)(全国通用)

2019届高考数学二轮复习不等式、线性规划课件(51张)(全国通用)
[答案] D
x+2y≤1, 4.设 x,y 满足约束条件2x+y≥-1,
x-y≤0,
则 z=(x+1)2+y2
的取值范围是________.
[解析]
由xx- +y2=y=0, 1,
解得x=13, y=13,
即 C13,13.
(x+1)2+y2 的几何意义是区域内的点(x,y)与定点(-1,0)间
(3)方法:使用基本不等式时,一般通过“拆、拼、凑”的技 巧把求最值的函数或代数式化为 ax+bx(ab>0)的形式,常用的方法 是变量分离法和配凑法.
考点三 线性规划问题 1.线性目标函数 z=ax+by 最值的确定方法 把线性目标函数 z=ax+by 化为 y=-abx+bz,可知bz是直线 ax+by=z 在 y 轴上的截距,要根据 b 的符号确定目标函数在什么 情况下取得最大值、什么情况下取得最小值. 2.常见的目标函数类型 (1)截距型:形如 z=ax+by,可以转化为 y=-abx+bz,利用 直线在 y 轴上的截距大小确定目标函数的最值;
[解析]

x>1


x

1 x-1

x

1

1 x-1

1≥2 x-1×x-1 1+1=3,当且仅当 x-1=x-1 1,即 x=2 时
等号成立,所以最小值为 3,∴a≤3,即实数 a 的取值范围是(- ∞,3].故选 A.
[答案] A
[快速审题] (1)看到有关不等式的命题或结论的判定,想到 不等式的性质.
[答案] 15,197
[快速审题] (1)看到最优解求参数,想到由最值列方程(组) 求解.
(2)看到最优解的个数不唯一,想到直线平行;看到形如 z= (x-a)2+(y-b)2 和形如 z=yx- -ba,想到其几何意义.

2019届高考数学二轮复习不等式与线性规划课件(39张)(全国通用)

2019届高考数学二轮复习不等式与线性规划课件(39张)(全国通用)
yx的几何意义为点(x,y)与坐标原 点连线的斜率.
画出可行域,如图中阴影部分所 示.
由xx=+1y,-4=0,得 C(1,3), 由题易知可行域上的 C 点与坐标原点连线的斜率最大, 且最大值为 3.
【命题立意】本题考查简单的线性规划,考查学生的 转化与化归能力、运算求解能力,考查的数学核心素养是 逻辑推理、数学运算.
B.1,52

C.lg

2,12
D.-lg
2,1-2lg
2
【解析】选 A. 如图,作出不等式组
y≤3x-2, x-2y+1≤0, 确 定 的 2x+y≤8 可行域:
因为 lg(y+1)-lg x= lgy+x 1,设 t=y+x 1,
显然,t 的几何意义是可行域内的点 P(x,y)与定点 E(0,
于 x 的不等式 f(x)≥x2+a在 R 上恒成立,则 a 的取值范围 是( )
A.-4176,2
B.-4176,3196
C.[-2 3,2]
D.-2

3,3196
【解析】 选 A.
由已知可得 f(x)>0.不等式 f(x)≥a+x2可转化为-
【命题立意】 本题考查简单的线性规划,考查学生的 转化与化归能力、运算求解能力,考查的数学核心素养是 逻辑推理、数学运算.
考 题 2[2015·全 国 卷 Ⅰ] 设 x 、 y 满 足 约 束 条 件 xxx+- -y1y-≥ ≤400≤, ,0,则yx的最大值为__________. 【解析】3
率,l1 为斜率 k1=kAB=-12. l2 与 x-y=0 平行,∴w∈ -12,1.
x+y-2≤0, (3)设 x,y 满足约束条件x-2y-2≤0,若 z=y-ax

2019年高考数学文科第二伦专题:不等式与线性规划(命题猜想)

2019年高考数学文科第二伦专题:不等式与线性规划(命题猜想)

【考向解读】不等式的性质、求解、证明及应用是每年高考必考的内容,对不等式的考查一般以选择题、填空题为主.(1)主要考查不等式的求解、利用基本不等式求最值及线性规划求最值;(2)不等式相关的知识可以渗透到高考的各个知识领域,往往作为解题工具与数列、函数、向量相结合,在知识的交汇处命题,难度中档;在解答题中,特别是在解析几何中求最值、范围或在解决导数问题时经常利用不等式进行求解,但难度偏高.【命题热点突破一】不等式的解法1.一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.2.简单分式不等式的解法(1)f xg x>0(<0)⇔f(x)g(x)>0(<0);(2)f xg x≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.例1、(2018年北京卷)设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【变式探究】【2017江苏,10】某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储之和最小,则x的值是▲.【答案】30【解析】总费用,当且仅当900xx=,即30x=时等号成立.【变式探究】若,则( )(A)c ca b<(B)c cab ba<(C)(D)【答案】C【解析】用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,,选项B 错误,,选项C 正确,,选项D 错误,故选C .【变式探究】设变量x ,y 满足约束条件则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B【感悟提升】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.【变式探究】(1)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________. (2)函数y =x -1x +3+x -1的最大值为________. 【答案】(1)2 (2)15【解析】(1)由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +y 2-x 22yx=x 2+2y 22xy ≥2x 2·2y 22xy =2,当且仅当 x =2y 时取等号.(2)令t =x -1≥0,则x =t 2+1, 所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t +1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).【点评】求条件最值问题一般有两种思路:一是利用函数单调性求最值;二是利用基本不等式.在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值.等号能够取得.【命题热点突破三】简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3、(2018年全国I 卷)设变量满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45 【答案】C【变式探究】【2017山东,文3】已知x ,y 满足约束条件,则z =x +2y 的最大值是A.-3B.-1C.1D.3 【答案】D【解析】画出约束条件表示的可行域,如图中阴影部分所示,平移直线20x y +=,可知当其经过直线与2y =的交点()1,2-时, 2z x y =+取得最大值,为,故选D.3. (2018年浙江卷)若满足约束条件则的最小值是___________,最大值是___________.【答案】 (1). -2 (2). 84. (2018年天津卷)已知a ,b ∈R ,且a –3b +6=0,则2a +的最小值为__________. 【答案】 【解析】由可知,且:,因为对于任意x ,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.5. (2018年北京卷)若 ,y 满足,则2y− 的最小值是_________.【答案】3【解析】不等式可转化为,即满足条件的在平面直角坐标系中的可行域如下图令, 由图象可知,当过点时,取最小值,此时,的最小值为.6. (2018年江苏卷)在中,角所对的边分别为,,的平分线交于点D ,且,则的最小值为________.【答案】97. (2018年全国III 卷)若变量满足约束条件则的最大值是________.【答案】3【解析】作出可行域1.【2017课标1,文7】设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D2.【2017课标II ,文7】设,x y 满足约束条件,则2z x y =+的最小值是A.15-B.9-C.1 D 9 【答案】A【解析】x 、y 满足约束条件的可行域如图:5.【2017山东,文3】已知x ,y 满足约束条件,则z =x +2y 的最大值是A.-3B.-1C.1D.3 【答案】D6.【2017浙江,4】若x ,y 满足约束条件,则y x z 2+=的取值范围是A .[0,6]B .[0,4]C .[6,)∞+D .[4,)∞+【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .7.【2017江苏,10】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 ▲ .【答案】30 【解析】总费用,当且仅当900x x=,即30x =时等号成立. 1. 【2016高考新课标1卷】若,则( )y(A )c c a b < (B )c c ab ba < (C ) (D )【答案】C2.【2016高考天津文数】设变量x ,y 满足约束条件则目标函数25z x y =+的最小值为( )(A )4-(B )6(C )10(D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中,直线z 25x y =+过点B 时取最小值6,选B.3.【2016高考山东文数】若变量x ,y 满足,则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12【答案】C【解析】不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC=,故选C.6.【2016年高考四川文数】设p :实数x ,y 满足,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A7.【2016高考新课标3文数】若,x y 满足约束条件 则z x y =+的最大值为_____________.【答案】32【解析】作出不等式组表示的平面区域,如图中阴影部分所示.由图知,当直线z x y =+经过点A 时,z取得最大值.由得112x y =⎧⎪⎨=⎪⎩ ,即1(1,)2A ,则.8.【2016高考新课标1卷】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000作出二元一次不等式组②表示的平面区域(如图),即可行域.将变形,得,平行直线73y x =-,当直线经过点M时,z 取得最大值.【答案】A8.(2015·广东卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A.315B.6C.235D.4【解析】不等式组所表示的可行域如下图所示,【答案】C9.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________. 【解析】f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,∴f (x )的最小值为22-3.【答案】0 22-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考情分析
1.命题角度
(1)不等式:结合集合考查不等式的解法,在解答题中考查不等式的解法、基
本不等式的应用等,主要以工具性为主进行考查. (2)线性规划:考查二元一次不等式组表示的平面区域和简单的线性规划问题. 2.题型与难易度 (1)选择题、填空题考查不等式的解法和简单线性规划问题,在解答题中考查 不等式的应用. (2)难度中等.
值为
元.
解析:设生产 A 产品 x 件,B 产品 y 件,产品 A,B 的利润之和为 z.
1.5 x 0.5 y 150, x 0.3 y 90, 则 5 x 3 y 600, * x 0 且 x N , * y 0且y N ,
答案:(1)B
(2) (2018 · 浙江温州市一模 ) 已知 2 a +4 b =2 (a,b∈ R ), 则 a+2b 的最大值

;
解析:(2)因为2a+4b=2a+22b=2≥2,所以2a+2b≤1=20,a+2b≤0,当且仅当
a=2b =0时等号成立,
所以a+2b的最大值为0.
答案:(2)0
方法技巧
基本不等式的主要用途是求多元函数的最值,在使用基本不等式时注意如
下几点:(1)明确不等式的使用条件,特别是其中等号能否成立;(2)合理变 换求解目标 , 如常数代换法 、整体换元法等 , 创造使用基本不等式的 条件.
热点训练 2:(1)(2018·安徽亳州高三上期末)设 x,y 为正实数,且满足 下列说法正确的是( (A)x+y 的最大值为
方法技巧 (1)使用不等式的性质时要特别注意性质成立的条件,如不等式两端同时乘以 一个数时要看该数取值情况;(2)解一元二次不等式时首先把二次项系数化为 正值,再根据该不等式对应的一元二次方程的实根的情况确定其解集 ,如含有
字母参数需要分类讨论.
2 x 2 x, x 0, 2 热点训练 1:(1)(2018·广东深圳月考)已知函数 f(x)= 若 f(2-a )>f(a),则实数 a 2 2 x x , x 0.
的取值范围是(
) (B)(-1,1) (C)(-2,1) (D)(-1,2)
(A)(-∞,-2)∪(1,+∞)
2 x 2 x, x 0, 解析:(1)因为 f(x)= 2 2 x x , x 0,
易知 f(x)为增函数, 所以 f(2-a )>f(a)等价于 2-a >a, 即 a +a-2<0,解得-2<a<1, 所以实数 a 的取值范围是(-2,1),故选 C.
(3)(2018·天津卷)已知 a,b∈R,且 a-3b+6=0,则 2a+
解析:(3)因为 a-3b+6=0,所以 a-3b=-6, 所以 2a+
1 a -3b a 3b 2 2 =2 +2 ≥ 2 8b 1 . 4
1 的最小值为 8b
.
=2 2 a 3b =2 26 =2×2-3=
当且仅当 2a=2-3b,即 a=-3b 时,取“=”, 即2+
1 1 取得最小值 ,结合 a-3b+6=0,知此时 a=-3,b=1. 8b 4 1 答案:(3) 4
a
热点三 线性规划
考向 1 线性规划问题
x y 2 0, 【例 3】 (1)(2018·浙江省温州市一模)若实数 x,y 满足约束条件 3x y 6 0, x y 0,
答案:(2)A
x y 2 0, (3)(2018·江西省红色七校联考)设 x,y 满足约束条件 x y 1 0, 若 z=mx+y 的最小值为-3, x 3,
则 m 的值为
.
解析:(3)不等式组表示的可行域,如图所示.
x 3, 联立 解得 A(3,-1),化目标函数 z=mx+y 为 y=-mx+z, x y 2
值是
.
解 析 : 画 出 可 行 域 如 图 所 示 阴 影 部 分 , 由 z=x+
1 y 得 3
y=-3x+3z, 作 出 直 线 y=-3x, 并 平 移 该 直 线 , 当 直 线
1 y=-3x+3z 过点 A(2,3)时,目标函数 z=x+ y 取得最大值, 3 1 即 zmax=2+ 43;acos x=1- ·(2cos2x-1)+acos x 3 3
4 5 2 cos x+acos x+ , 3 3
f(x)在 R 上单调递增,则 f′(x)≥0 在 R 上恒成立. 令 cos x=t,t∈[-1,1],则2
4 2 5 t +at+ ≥0 在[-1,1]上恒成立, 3 3
热点二 基本不等式 【例2】 (1)(2018· 广西柳州市一模)已知圆C1:(x+2a)2+y2=4和圆C2:x2+(y-b)2=1
只有一条公切线,若a,b∈R且ab≠0,则
(A)2
(B)4
(C)8
1 1 + 的最小值为( 2 2 a b
)
(D)9
解析:(1)由圆的方程可得 C1(-2a,0),r1=2,C2(0,b),r2=1, 由两圆只有一条公切线可知两圆内切,所以|C1C2|=r1-r2,
热点突破
热点一 不等式的性质与解法
剖典例·促迁移
c c > ,② a b
【例 1】 (1)(2018·陕西西工大附中八模)如果 a>b>1,c<0,在不等式① ln(a+c)>ln(b+c),③(a-c) <(b-c) ,④be >ae 中,所有正确命题的序号是( (A)①②③ (B)①③④ (C)②③④ (D)①②④
根据目标函数的几何意义分析,其最值点应为区域内的端点处. 将三点的坐标分别代入 z=2x+y 得 3,9,4, 因此 z 的最小值为 3,最大值为 9, 故 z=2x+y 的取值范围是[3,9],故选 C.
答案:(1)C
x 0, (2)(2018·四川雅安三诊)已知实数 x,y 满足条件 y 1, 若目标函数 z=mx-y(m≠0) 2 x 2 y 1 0.
则 z=2x+y 的取值范围是( (A)[3,4] (B)[3,12]
) (C)[3,9] (D)[4,9]
x y 2 0, 解析:(1)画出 3x y 6 0, 表示的可行域, x y 0,
x y 2 0, 由 得 A(1,1), x y 0, 3x y 6 0, 由 得 B(3,3), x y 0, 3x y 6 0, 由 得 C(2,0), x y 2 0,
取得最大值时的最优解有无穷多个,则实数 m 的值为( (A)1 (B)
1 2
)
(C)-
1 2
(D)-1
x 0, 解析:(2)由约束条件 y 1, 作出可行域如图, 2 x 2 y 1 0,
化目标函数 z=mx-y 为 y=mx-z, 因为目标函数 z=mx-y(m≠0)取得最大值时的最优解有无穷多个,所以 m=kAB=1.故选 A.
即 4t -3at-5≤0 在[-1,1]上恒成立,
g 1 4 3a 5 0, 令 g(t)=4t2-3at-5,则 g 1 4 3a 5 0,
1 1 解得- ≤a≤ ,故选 C. 3 3
x 2 y 2 0, 2.(2018·全国Ⅰ卷,文 14)若 x,y 满足约束条件 x y 1 0, 则 z=3x+2y 的 y 0,
答案:(1)D
a 2 b2 (2)(2018·天津市滨海新区八校联考)已知 a>b>0,且 ab=1,那么 取最 a b
小值时,b=
.
解析:(2)因为 ab=1,a>b>0,
2 a2 b2 (a b) 2 2ab 所以 = =(a-b)+ , a b a b a b
≥2
a b
目标函数的最小值就是函数 y=-mx+z 在 y 轴上截距的最小值,为-3, 由图可知,m<0,使目标函数取得最小值的最优解为 A(3,-1),
画出可行域如图阴影部分.
5x 3 y 600, 由 x 0.3 y 90,
x 60, 解得 y 100.
所以 zmax=2 100×60+900×100=216 000, 所以生产产品 A、产品 B 的利润之和的最大值为 216 000 元.
答案:216 000
2 2 2
答案:(1)C
(2)(2018· 河南豫南豫北名校高三上精英联赛)不等式x2-3|x|+2>0的解集 是 . 解析:(2)原不等式可转化为|x|2-3|x|+2>0, 解得|x|<1或|x|>2, 所以x∈(-∞,-2)∪(-1,1)∪(2,+∞).
答案:(2)(-∞,-2)∪(-1,1)∪(2,+∞)
2 =2 2 , a b
2 a 2 b2 当且仅当 a-b= ,即 a-b= 2 时,等号成立,即 取最小值, a b a b
a b 2, 由 ab 1

1 -b= 2 . b
所以 b=
答案:(2)
6 2 6 2 或 b= (舍去). 2 2
6 2 2
答案:3
4.(2016· 全国Ⅰ卷,文16)某高科技企业生产产品A和产品B需要甲、乙两种新
型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件 产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为 2 100 元, 生产一件产品 B 的利润为 900元. 该企业现有甲材料 150 kg, 乙材料 90 kg, 则在不超过600 个工时的条件下 ,生产产品A,产品B的利润之和的最大
相关文档
最新文档