高考导数专题复习(2020年整理).doc
2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。
2020年高考数学一轮复习专题2.12导数的切线方程练习(含解析)

第十二讲 导数的切线方程1. 导数的几何意义:切线的斜率2. 求斜率的方法 (1)公式:/12012tan ()y y k f x x x α-===-0απ为直线的倾斜角,范围[0,),x 是切点的横坐标(2)当直线l 1、l 2的斜率都存在时:1212l l k k ⇔=P ,12120l l k k ⊥⇔•= 3. 切线方程的求法 (1)求出直线的斜率 (2)求出直线上的一点或切点(3)利用点斜式00()y y k x x -=-写出直线方程。
考向一斜率(或倾斜角)与切点互求【例1】(1)曲线y =13x 3在x =1处切线的倾斜角为。
(2)设函数()ln f x x x =,若0()2f x '=,则0x =______________. 【答案】(1)π4.(2)e【解析】(1)∵y ′=x 2,∴y ′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4.(3)由题意得()ln 1f x x '=+,又00()ln 12f x x '=+=,解得0e x =.【举一反三】1.已知在曲线2y x =上过点00(),P x y 的切线为l . (1)若切线l 平行于直线45y x =-,求点P 的坐标; (2)若切线l 垂直于直线2650x y -+=,求点P 的坐标; (3)若切线l 的倾斜角为135︒,求点P 的坐标. 【答案】(1)(2,4);(2)39(,)24-;(3)11(,)24-.【解析】(1)两条直线平行斜率相等,2x 0=4,x 0=2,代入曲线y 0=4,切点P (2,4) (2)直线直线垂直,斜率相乘等于-1.g 0000139392x =-1,x =-,将x 代入曲线y =,故P (-,)32424(3)因为切线l 的倾斜角为135︒,所以其斜率为1-.即021x =-,得012x =-,014y =,故11(,)24P -.考向二在某点处求切线方程【例2】设函数f (x )=x ln x ,则点(1,0)处的切线方程是________.【解析】因为f ′(x )=ln x +1,所以f ′(1)=1,所以切线方程为x -y -1=0. 【答案】x -y -1=0【举一反三】1.函数f (x )=e xcos x 在点(0,f (0))处的切线方程为。
2020年高考数学(理)总复习:利用导数解决函数零点问题(解析版)

2020年高考数学(理)总复习:利用导数解决函数零点问题题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
2020新课标Ⅱ年高考数学总复习专题03导数分项练习含解析理2

专题03 导数一.基础题组1. 【2014新课标,理8】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 3 【答案】D【解析】因为'11y a x =-+,所以切线的斜率为12a -=,解得3a =,故选D 。
2.【2017课标II ,理11】若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为 A .1-B .32e --C .35e -D .1【答案】A【考点】 函数的极值、函数的单调性【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值. 3. 【2005全国2,理22】(本小题满分12分) 已知0a ≥,函数2()(2)e x f x x ax =-.(Ⅰ) 当为何值时,()f x 取得最小值?证明你的结论; (Ⅱ) 设()f x 在[1,1]-上是单调函数,求的取值范围.【解析】:(I )对函数()f x 求导数得xe a ax x x xf )222()(2--+=' 令,0)(='x f 得2x +2(1-)-2]x e =0从而2x +2(1-)-2=0 解得 11,112221++-=+--=a a x a a x 当变化时,()f x 、'()f x 的变化如下表),(1x -∞1x),(21x x2x),(2+∞x)(x f '+ 0 - 0 + )(x f递增极大值递减极小值递增∴在=1处取得极大值,在=2处取得极小值。
当≥0时,1x <-1,2x )(,0x f ≥在()21,x x 上为减函数,在),(2+∞x 上为增函数 而当0<x 时)(x f =0)2(>-xe a x x ,当x=0时,0)(=xf 所以当112++-=a a x 时,)(x f 取得最小值二.能力题组1. 【2013课标全国Ⅱ,理10】已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A . x 0∈R ,f (x 0)=0B .函数y =f (x )的图像是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0 【答案】:C【解析】:∵x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.2. 【2012全国,理10】已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( ) A .-2或2 B .-9或3 C .-1或1 D .-3或1 【答案】 A【解析】y ′=3x 2-3=3(x +1) (x -1). 当y ′>0时,x <-1或x >1;当y′<0时,-1<x<1.∴函数的递增区间为(-∞,-1)和(1,+∞),递减区间为(-1,1).∴x=-1时,取得极大值;x=1时,取得极小值.要使函数图象与x轴恰有两个公共点,只需:f(-1)=0或f(1)=0,即(-1)3-3×(-1)+c=0或13-3×1+c=0,∴c=-2或c=2.3. 【2013课标全国Ⅱ,理21】(本小题满分12分)已知函数f(x)=e x-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数f′ (x)=1e2xx-+在(-2,+∞)单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0得0e x=01 2x+,ln(x0+2)=-x0,故f(x)≥f(x0)=01 2x++x0=212xx(+)+>0.综上,当m≤2时,f(x)>0.4. 【2011新课标,理21】已知函数ln()1a x bf xx x=++,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1)求a ,b 的值;(2)如果当x >0,且x ≠1时,ln ()1x kf x x x>+-,求k 的取值范围.(ⅰ)设k ≤0.由222(1)(1)()k x x h x x +--'=知,当x ≠1时,h ′(x )<0.而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得21()01h x x ⋅>-;当x ∈(1,+∞)时,h (x )<0,可得21()01h x x >-.从而当x >0,且x ≠1时,ln ()()01x kf x x x-+>-, 即ln ()1x kf x x x>+-. (ⅱ)设0<k <1.由于当x ∈(1,11k-)时,(k -1)(x 2+1)+2x >0,故h ′(x )>0.而h (1)=0,故当x ∈(1,11k -)时,h (x )>0,可得21()01h x x <-,与题设矛盾. (ⅲ)设k ≥1.此时h ′(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得21()01h x x<-.与题设矛盾.综合得,k 的取值范围为(-∞,0]. 5. 【2005全国3,理22】(本小题满分12分)已知函数].1,0[,274)(2∈--=x xx x f(Ⅰ)求)(x f 的单调区间和值域;(Ⅱ)设1≥a ,函数],1,0[],1,0[].1,0[,23)(0123∈∈∈--=x x x a x a x x g 总存在若对于任意 使得)()(10x f x g =成立,求a 的取值范围.当变化时,)(),(x f x f '的变化情况如下表:0 (0,21) 21 (21,1) 1 )(x f '- 0 + )(x f 27--4-3所以,当)2,0(∈x 时,)(x f 是减函数;当)1,2(∈x 时,)(x f 是增函数. 当]1,0[∈x 时,)(x f 的值域为-4,-3]. (II )对函数)(x g 求导,得).(3)(22a x x g -=' 因为1≥a ,当)1,0(∈x 时,.0)1(3)(2≤-<'a x g因此当)1,0(∈x 时,)(x g 为减函数,从而当]1,0[∈x 时有)].0(),1([)(g g x g ∈ 又,2)0(,321)1(2a g a a g -=--=即]1,0[∈x 时有].2,321[)(2a a a x g ---∈ 任给]1,0[1∈x ,]3,4[)(1--∈x f ,存在]1,0[0∈x 使得)()(10x f x g =,则].3,4[]2,321[2--⊃---a a 即⎩⎨⎧-≥--≤--.32,43212a a a解①式得 351-≤≥a a 或;解②式得.23≤a 又1≥a ,故a 的取值范围为.231≤≤a6.【2016高考新课标2理数】若直线y=kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b = .【答案】1ln2-① ②【考点】导数的几何意义【名师点睛】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同.三.拔高题组1. 【2014新课标,理12】设函数()3x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞D.()(),11,-∞-⋃∞ 【答案】C【解析】由题意知:()f x 的极值为3,所以()203f x =⎡⎤⎣⎦,因为'00()30x f x mmππ==,所以,2x k k z mπππ=+∈,所以01,2x k k z m =+∈即011||||22x k m =+≥,所以0||||2mx ≥,即 2200[()]x f x +≥24m +3,而已知()22200x f x m +<⎡⎤⎣⎦,所以224m m >+3,故2334m >,解得2m >或2m <-,故选C.2. 【2010全国2,理10】若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于( )A .64B .32C .16D .8 【答案】:A3. 【2014全国2,理20】 已知函数()f x =2x x e e x ---. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)【解析】(Ⅰ)因为'1()20x xf x e e =+-≥,当且仅当0x =时等号成立,所以函数()f x 在R 上是增函数;(Ⅱ)因为()g x =(2)4()f x bf x -=224()(84)xx x x ee b e e b x -----+-,所以'()g x =222[2()(42)]xx x x ee b e e b --+-++-=2(2)(22)x x x x e e e e b --+-+-+.(1)当2b ≤时, '()0g x ≥,等号仅当0x =时成立,所以()g x 在R 上单调递增,而(0)0g =,所以对任意0x >,()0g x >;(2)当2b >时,若满足222x x e e b -<+<-,即20ln(12)x b b b <<--时,'()0g x <,而(0)0g =,因此当20ln(12)x b b b <≤--时,()0g x <, 综上,的最大值为2.(Ⅲ)由(Ⅱ)知,32)222(21)ln 22g b b =-+-, 当2b =时,32)426ln 202g =->,823ln 20.692812>>; 当3214b =+时,2ln(122b b b --=,32)22(322)ln 22g =--0<,182ln 20.693428+<<,所以ln 2的近似值为0.693. 4. 【2012全国,理20】设函数f (x )=ax +cos x ,x ∈0,π]. (1)讨论f (x )的单调性;(2)设f (x )≤1+sin x ,求a 的取值范围. 【解析】:(1)f ′(x )=a -sin x .(2)由f (x )≤1+sin x ,得f (π)≤1,a π-1≤1, 所以2πa ≤. 令g (x )=sin x -2πx (0≤x ≤π2), 则g ′(x )=cos x -2π. 当x ∈(0,arccos2π)时,g ′(x )>0, 当x ∈(arccos2π,π2)时,g ′(x )<0. 又g (0)=g (π2)=0, 所以g (x )≥0,即2πx ≤sin x (0≤x ≤π2). 当a ≤2π时,有f (x )≤2πx +cos x . ①当0≤x ≤π2时,2πx ≤sin x ,cos x ≤1, 所以f (x )≤1+sin x ; ②当π2≤x ≤π时,f (x )≤2πx +cos x =1+2π(x -π2)-sin(x -π2)≤1+sin x .综上,a 的取值范围是(-∞,2π]. 5. 【2010全国2,理22】设函数f (x )=1-e -x. (1)证明当x >-1时,f (x )≥1xx +; (2)设当x ≥0时,f (x )≤1xax +,求a 的取值范围.(2)由题设x ≥0,此时f (x )≥0. 当a <0时,若x >-1a ,则1x ax +<0,f (x )≤1x ax +不成立; 当a ≥0时,令h (x )=axf (x )+f (x )-x ,则f (x )≤1xax +当且仅当h (x )≤0, h ′(x )=af (x )+axf ′(x )+f ′(x )-1=af (x )-axf (x )+ax -f (x ). (ⅰ)当0≤a ≤12时,由(1)知x ≤(x +1)f (x ), h ′(x )≤af (x )-axf (x )+a (x +1)f (x )-f (x )=(2a -1)·f (x )≤0, h (x )在0,+∞)上是减函数,h (x )≤h (0)=0,即f (x )≤1xax +. (ⅱ)当a >12时,由(ⅰ)知x ≥f (x ), h ′(x )=af (x )-axf (x )+ax -f (x )≥af (x )-axf (x )+af (x )-f (x )=(2a -1-ax )f (x ), 当0<x <21a a -时,h ′(x )>0,所以h (x )>h (0)=0,即f (x )>1xax +,综上,a 的取值范围是0,12]. 6. 【2006全国2,理20】设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.7. 【2015高考新课标2,理12】设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的的取值范围是( ) A .(,1)(0,1)-∞-U B .(1,0)(1,)-+∞U C .(,1)(1,0)-∞--U D .(0,1)(1,)+∞U 【答案】A【考点定位】导数的应用、函数的图象与性质. 8. 【2015高考新课标2,理21】(本题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.【答案】(Ⅰ)详见解析;(Ⅱ)[1,1]-.【解析】(Ⅰ)'()(1)2mx f x m e x =-+.若0m ≥,则当(,0)x ∈-∞时,10mx e -≤,'()0f x <;当(0,)x ∈+∞时,10mx e -≥,'()0f x >.若0m <,则当(,0)x ∈-∞时,10mx e ->,'()0f x <;当(0,)x ∈+∞时,10mx e -<,'()0f x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()1f x f x e -≤-的充要条件是:(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩即1,1,m m e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①,设函数()1t g t e t e =--+,则'()1t g t e =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-.综上,m 的取值范围是[1,1]-.【考点定位】导数的综合应用.9. 【2016高考新课标2理数】(I )讨论函数()2e 2x x f x x -=+的单调性,并证明当>0时,(2)e 20x x x -++>;(II )证明:当[0,1)a ∈ 时,函数2e =(0)x ax a g x x x -->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.【答案】(Ⅰ)详见解析;(Ⅱ)21e (,].24(II )33(2)e (2)2()(()),x x a x x g x f x a x x-+++'==+ 由(I )知,()f x a +单调递增,对任意[0,1),(0)10,(2)0,a f a a f a a ∈+=-<+=≥ 因此,存在唯一0(0,2],x ∈使得0()0,f x a +=即0()0g x '=,【考点】函数的单调性、极值与最值【名师点睛】求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)由f ′(x )>0(f ′(x )<0)解出相应的x 的范围.当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应的区间上是减函数,还可以列表,写出函数的单调区间.注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.10. 【2017课标II ,理21】(12分)已知函数2()ln f ax a x x x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e()2f x --<<.【答案】(1)1a =;(2)证明见解析.(2)由(1)知 ()2ln f x x x x x =--,()22ln f 'x x x =--. 设()22ln h x x x =--,则1()2'x h x=-. 当1(0,)2x ∈ 时,()0h'x < ;当1(,)2x ∈+∞ 时,()0h'x >, 所以()h x 在1(0,)2上单调递减,在1(,)2+∞上单调递增. 又()2e 0h ->,1()02h <,()10h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当()00,x x ∈时,()0h x >;当()0,1x x ∈时,()0h x <,当()1,x ∈+∞时,()0h x >. 因为()()f 'x h x =,所以0x x =是()f x 的唯一极大值点.由0()0f 'x =得()00ln 21x x =-,故()()0001f x x x =-.由()00,1x ∈得()014f x <. 因为0x x =是()f x 在(0,1)的最大值点,由()1e 0,1-∈,1(e )0f '-≠得120()(e )e f x f -->=.所以()220e 2f x --<<.【考点】利用导数研究函数的单调性、利用导数研究函数的极值【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.。
2020年高考数学 导数 解答题专项练习(含答案详解)

2020年高考数学导数解答题专项练习(含答案解析)1.已知函数f(x)=x2-mln x,h(x)=x2-x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.2.设函数已知函数f(x)=ae x-x+1.(1)求函数f(x)的单调区间;(2)若f(x)在(0,3) 上只有一个零点,求a的取值范围;3.已知函数f(x)=lnx+a(x-1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.4.已知函数f(x)=ae2x+(a﹣2) e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.5.已知函数f(x)=2lnx-2mx+x2(m>0).(1)讨论函数f(x)的单调性;(2)当时,若函数f(x)的导函数f/(x)的图象与x轴交于A,B两点,其横坐标分别为x1,x2(x1<x2),线段AB的中点的横坐标为x0,且x1,x2恰为函数h(x)=lnx-cx2-bx的零点.求证:.6.已知函数,g(x)=mx.(1)求函数f(x)的单调区间;(2)当a=0时,f(x)≤g(x)恒成立,求实数m的取值范围;(3)当a=1时,求证:当x>1时,.7.已知函数f(x)=x-alnx+a-1(a∈R).(I)讨论f(x)的单调性;(Ⅱ)若x∈[e a,+∞]时,f(x)≥0恒成立,求实数a的取值范围.8.已知函数R.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求实数a的取值范围.9.已知函数f(x)=ln x-kx,其中k∈R为常数.(1)讨论函数f(x)的单调性;(2)若f(x)有两个相异零点x1,x2(x1<x2),求证:ln x2>2-ln x1.10.已知函数f(x)=x-alnx,a∈R.(1)研究函数f(x)的单调性;(2)设函数f(x)有两个不同的零点x1,x2,且x1<x2.①求a的取值范围;②求证:x1x2>e2.11.设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0恒成立,求a的取值范围.12.已知函数f(x)=lnx-mx2,g(x)=0.5mx2+x,mϵR,令F(x)=f(x)+g(x).(1)求函数f(x)的单调区间;(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.13.已知函数f(x)=lnx-mx(m为常数).(1)讨论函数f(x)的单调区间;(2)当时, 设g(x)=2f(x)+x2的两个极值点x1,x2(x1<x2)恰为h(x)=lnx-cx2-bx的零点, 求的最小值.14.设函数f(x)=(x-1)e x-kx2.(1)当k=1时,求函数f(x)的单调区间;(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.15.已知函数f(x)=ln x+-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.16.已知函数.(1)求的单调区间;(2)设,若对任意,均存在,使得,求的取值范围.17.设函数f(x)=alnx﹣bx2.(1)当b=1时,讨论函数f(x)的单调性;(2)当a=1,b=0时,函数g(x)=f(x)﹣kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:.18.已知函数f(x)=axlnx﹣x+1(a≥0).(1)当a=1时,求f(x)的最小值;(3)证明:当m>n>1时,m n﹣1<n m﹣1.19.已知函数在处的切线与轴平行,()(1)试讨论f(x)在上的单调性;(2)①设,求g(x)的最小值;②证明:.20.已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)(1)当a=4时,求函数y=f(x)的单调区间;(2)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;(3)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.2020年高考数学 导数 解答题专项练习(含答案解析)答案解析1.解:(1)由f(x)≥h(x),得m ≤x ln x 在(1,+∞)上恒成立.令g(x)=x ln x ,则g ′(x)=ln x -1ln x 2,当x ∈(1,e)时,g ′(x)<0;当x ∈(e ,+∞)时,g ′(x)>0,所以g(x)在(1,e)上递减,在(e ,+∞)上递增.故当x=e 时,g(x)的最小值为g(e)=e.所以m ≤e.即m 的取值范围是(-∞,e].(2)由已知可得k(x)=x-2ln x-a.函数k(x)在(1,3)上恰有两个不同零点,相当于函数φ(x)=x-2ln x 与直线y=a 有两个不同的交点.φ′(x)=1-2x =x -2x ,当x ∈(1,2)时,φ′(x)<0,φ(x)递减,当x ∈(2,3)时,φ′(x)>0,φ(x)递增.又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3,要使直线y=a 与函数φ(x)=x-2ln x 有两个交点,则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).2.解:3.解:4.解:5.解:6.解:7.解:8.解:9.解:10.解:11.解:(1)a=0时,f(x)=e x-1-x,f′(x)=e x-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加(2)f′(x)=e x-1-2ax.由(1)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,从而当1-2a≥0,即a≤0.5时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)得e-x>1-x(x≠0),从而当a>时,f′(x)<e x-1+2a(e-x-1)=e-x(e x-1)(e x-2a),故当x∈(0,ln2a)时, f′(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0,综上可得a的取值范围为(-∞,0.5].12.解:13.解:14.15.16.17.18.19.解:20.解:。
专题01 集合的含义及运算-名师揭秘2020年高考数学(文)一轮总复习之集合函数导数 Word版含解析

专题01 集合的含义及运算一、本专题要特别小心:1.元素与集合,集合与集合关系混淆陷阱;2.造成集合中元素重复陷阱;3.隐含条件陷阱;4.代表元变化陷阱;5.分类讨论陷阱;6.子集中忽视空集陷阱;7.新定义问题;8.任意、存在问题中的最值陷阱.二、【学习目标】1.了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言(列举法或描述法)来描述不同的具体问题,理解集合中元素的互异性;2.理解集合之间包含和相等的含义,能识别给定集合的子集,了解在具体情境中全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集;4.能使用韦恩(V enn)图表达集合间的关系与运算.三、【知识要点】1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫集合,简称集.(2)集合中的元素的三个特征:确定性、互异性、无序性.(3)集合的表示方法有:描述法、列举法、区间法、图示法.(4)集合中元素与集合的关系分为属于与不属于两种,分别用“∈”或“∉”来表示.(5)常用的数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.2.集合之间的关系(1)一般地,对于两个集合A,B.如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B;若A⊆B,且A≠B,,我们就说A是B的真子集.(2)不含任何元素的集合叫做空集,记作φ,它是任何一个集合的子集,是任何一个非空集合的真子集。
3.集合的基本运算(1)并集:A∪B={x|x∈A或x∈B};(2)交集:A∩B={x|x∈A且x∈B};(3)补集:∁U A=.4.集合的运算性质(1)A∩B=A⇔A⊆B,A∩A=A,A∩∅=∅;(2)A∪B=A⇔A⊇B,A∪A=A,A∪∅=A;(3)A⊆B,B⊆C,则A⊆C;(4)∁U(A∩B)=∁U A∪∁U B,∁U(A∪B)=∁U A∩∁U B,A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A;(5)A⊆B,B⊆A,则A=B.四.题型方法规律总结(一)集合的含义与表示例1.已知集合,则中元素的个数为A.9 B.8 C.5 D.4【答案】A【解析】,当时,;当时,;当时,;所以共有9个,选A.练习1.给出下列四个关系式:(1);(2);(3);(4),其中正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】(1)R为实数集,为实数,所以正确;(2)Z、Q分别为两个集合,集合间不能用属于符号,所以错误;(3)空集中没有任何元素,所以错误;(4)空集为任何集合的子集,所以正确.故选B.练习2.若A={1,2},B={(x,y)|x∈A,y∈A},则集合B中元素的个数为()A.1 B.2 C.3 D.4【答案】D【解析】由题意得集合,所以集合B中共有4个元素.故选D.(二)集合中代表元易错点揭秘例2.已知集合A满足条件:若a∈A,则∈A,那么集合A中所有元素的乘积为() A.-1 B.1 C.0 D.±1【答案】B【解析】由题意,当时,,令代入,则,则,则,即,所以,故选B.练习1.若集合A={x|mx2+2x+m=0,m∈R}中有且只有一个元素,则m的取值集合是A.{1}B.{}C.{0,1}D.{,0,1}【答案】D【解析】时,,满足题意;时,,.综上的取值集合是.练习2.用列举法表示集合=________.【答案】{-11,-6,-3,-2,0,1,4,9}.【解析】,为的因数则则答案为练习3.集合{|y y ∈N =用列举法可表示为__________.【答案】{}1,2,4,8 【解析】∵,1x x ∈≠N ,∴当0x =时, 8y =-,不符合题意, 当2x =时, 8y =,符合题意, 当3x =时, 4y =,符合题意, 当4x =时, 83y =,不符合题意, 当5x =时, 2y =,符合题意,当6x =时, 85y =,不符合题意, 当7x =时, 86y =,不符合题意,当8x =时, 87y =,不符合题意,当9x =时, 1y =,符合题意,则y =,不符合题意.∴用列举法可表示为{}1,2,4,8. (三)集合的基本关系 例3.已知集合,,若,则实数的取值集合为( )A .B .C .D .【答案】D【解析】∵集合M={x|x 2=1}={﹣1,1},N={x|ax=1},N ⊆M ,∴当a=0时,N=∅,成立; 当a≠0时,N={}, ∵N ⊆M ,∴或=1.解得a=﹣1或a=1,综上,实数a 的取值集合为{1,﹣1,0}.故选:D.练习1.已知集合,,则的真子集的个数为()A.3 B.4 C.7 D.8【答案】C【解析】由题意得,,∴,∴的真子集的个数为个.故选C.练习2.若函数在区间内没有最值,则的取值范围是()A.B.C.D.【答案】B【解析】函数的单调区间为,由,得.∵函数在区间内没有最值,∴函数在区间内单调,∴,∴,解得.由,得.当时,得;当时,得,又,故.综上得的取值范围是.故选B.练习3.已知集合,,若,则实数的取值范围是( ) A.B.C.D.【答案】A【解析】由已知得,由,则,又,所以.故选A.(四)子集中常见错误例4. 已知集合,,若,则实数的取值范围是( )A.B.C.D.【答案】C【解析】当集合时,,解得,此时满足;当,即时,应有:,据此可得:,则,综上可得:实数的取值范围是.本题选择C选项.练习1.Z(M)表示集合M的子集个数,设集合A=,B=,则= A.3 B.4 C.5 D.7【答案】B【解析】;B=∴;集合的子集有:∴Z(A∩B)=4.故选:B练习2.设集合,不等式的解集为B.(Ⅰ)当时,求集合A,B;(Ⅱ)当,求实数的取值范围.【答案】(Ⅰ),;(Ⅱ)或.【解析】(Ⅰ)当时,,.(Ⅱ)①若,即时,可得, 满足,故符合题意.②当时,由,可得,且等号不能同时成立, 解得. 综上可得或.∴实数的取值范围是.练习3.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A ∪B=A ,求实数a 的取值范围. 【答案】(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2) .【解析】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4), B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5). (2)A ∪B =A ⇔B ⊆A , ①B =∅时,则有2a ≥3-a ,∴a ≥1, ②B ≠∅时,则有,∴,综上所述,所求a 的取值范围为.(五)集合的基本运算 例5.已知,,则()R AB ð中的元素个数为( )A .1B .2C .6D .8【答案】B【解析】解:{1x x =<,或3}x ≥,,,的元素个数为2个.故选:B .练习1.已知集合,,若A B A ⋂=,则实数a 的取值范围是( )A .(],3-∞-B .(),3-∞-C .(],0-∞D .[)3,+∞ 【答案】A【解析】由已知得[]3,3A =-,由A B A ⋂=,则A B ⊆,又[),B a =+∞,所以3a ≤-.故选A.练习2.集合,,若,则的取值范围是( )A .B .C .D .【答案】B 【解析】根据题意,可得,,要使,则,故选B.练习3.设全集是实数集,,则图中阴影部分所表示的集合是________.【答案】【解析】∵,∴, ∴.(六)集合的应用例6.学校先举办了一次田径运动会,某班共有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班总共的参赛人数为( ) A .20 B .17C .14D .23【答案】B【解析】因为参加田径运动会的有8名同学,参加球类运动会的有12名同学,两次运动会都参加的有3人,所以两次运动会中,这个班总共的参赛人数为.故选B练习1.已知集合.给定一个函数,定义集合若对任意的成立,则称该函数具有性质“”(I)具有性质“”的一个一次函数的解析式可以是_____;(Ⅱ)给出下列函数:①;②;③,其中具有性质“”的函数的序号是____.(写出所有正确答案的序号)【答案】(答案不唯一)①②【解析】(I)对于解析式:,因为,,…符合。
2020年 高考数学(文科)常考基础题、易错题 提分必刷题之 导数的概念及运算

第1讲导数的概念及运算一、填空题1.设y=x2e x,则y′=________.解析y′=2x e x+x2e x=(2x+x2)e x.答案(2x+x2)e x2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)=________.解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案-13.曲线y=sin x+e x在点(0,1)处的切线方程是________.解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x -y+1=0.答案2x-y+1=04.(2017·苏州调研)已知曲线y=ln x的切线过原点,则此切线的斜率为________.解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案1 e5.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 26.(2017·南师附中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析由图形可知:f(3)=1,f′(3)=-13,∵g′(x)=f(x)+xf′(x),∴g′(3)=f(3)+3f′(3)=1-1=0. 答案07.(2017·苏北四市模拟)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a=________.解析∵y′=-1-cos xsin2x,∴由条件知1a=-1,∴a=-1.答案-18.(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析由y=x+ln x,得y′=1+1x,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8二、解答题9.已知点M是曲线y=13x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数:①y =sin x ;②y =ln x ;③y =e x ;④y =x 3.其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k∈Z)时,结论成立;对于②:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于③:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于④:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案①12.(2017·合肥模拟改编)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为________.解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 213.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题复习——导数目录一、有关切线的相关问题二、导数单调性、极值、最值的直接应用三、交点与根的分布1、判断零点个数2、已知零点个数求解参数范围四、不等式证明1、作差证明不等式2、变形构造函数证明不等式3、替换构造不等式证明不等式五、不等式恒成立求参数范围1、恒成立之最值的直接应用2、恒成立之分离常数3、恒成立之讨论参数范围六、函数与导数性质的综合运用导数运用中常见结论一、有关切线的相关问题例题、【2015高考新课标1,理21】已知函数f (x )=31,()ln 4x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; 【答案】(Ⅰ)34a =跟踪练习:1、【2011高考新课标1,理21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;解:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
2、(2013课标全国Ⅰ,理21)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2. (1)求a ,b ,c ,d 的值;解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.3、 (2014课标全国Ⅰ,理21)设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ;【解析】:(Ⅰ) 函数()f x 的定义域为()0,+∞,112()ln xx x x a b b f x ae x e e e x x x--'=+-+由题意可得(1)2,(1)f f e '==,故1,2a b == ……………6分二、导数单调性、极值、最值的直接应用 (一)单调性1、根据导数极值点的相对大小进行讨论 例题:【2015高考江苏,19】已知函数),()(23R b a b ax x x f ∈++=.(1)试讨论)(x f 的单调性;【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增; 当0a >时, ()f x 在2,3a ⎛⎫-∞-⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭U 时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<, 所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.练习:1、已知函数1()ln 1af x x ax x-=-+-()a ∈R .⑴当12a ≤时,讨论()f x 的单调性; 答案:⑴1()ln 1(0)a f x x ax x x -=-+->,222l 11()(0)a ax x a f x a x x x x --++-'=-+=> 令2()1(0)h x ax x a x =-+->①当0a =时,()1(0)h x x x =-+>,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.②当0a ≠时,由()0f x '=,即210ax x a -+-=,解得1211,1x x a==-. 当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 单调递减; 当102a <<时,1110a ->>,(0,1)x ∈时()0,()0h x f x '><,函数()f x 单调递减;1(1,1)x a ∈-时,()0,()0h x f x '<>,函数()f x 单调递增;1(1,)x a∈-+∞时,()0,()0h x f x '><,函数()f x 单调递减.当0a <时110a-<,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增;当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减; 当102a <<时,函数()f x 在(0,1)递减,1(1,1)a -递增,1(1,)a-+∞递减.2、已知a 为实数,函数()(1)e x f x ax =+,函数1()1g x ax=-,令函数()()()F x f x g x =⋅. 当0a <时,求函数()F x 的单调区间.解:函数1()e 1x ax F x ax +=-,定义域为1x x a ⎧⎫≠⎨⎬⎩⎭. 当0a <时,222222221()21()e e (1)(1)xx a a x a x a a F x ax ax +---++'==--. 令()0F x '=,得2221a x a +=. ……………………………………9分①当210a +<,即12a <-时,()0F x '<.∴当12a <-时,函数()F x 的单调减区间为1(,)a -∞,1(,)a +∞.………………11分②当102a -<<时,解2221a x a+=得12x x ==.∵1a <∴令()0F x '<,得1(,)x a ∈-∞,11(,)x x a∈,2(,)x x ∈+∞;令()0F x '>,得12(,)x x x ∈. ……………………………13分∴当102a -<<时,函数()F x 的单调减区间为1(,)a -∞,1(a,()+∞;函数()F x单调增区间为. …………15分 ③当210a +=,即12a =-时,由(2)知,函数()F x 的单调减区间为(,2)-∞-及(2,)-+∞2、根据判别式进行讨论例题:【2015高考四川,理21】已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >.(1)设()g x 是()f x 的导函数,评论()g x 的单调性; 【答案】(1)当104a <<时,()g x在区间)+∞上单调递增,在区间上单调递减;当14a ≥时,()g x 在区间(0,)+∞上单调递增.【解析】(1)由已知,函数()f x 的定义域为(0,)+∞,()()222ln 2(1)ag x f x x a x x '==---+,所以222112()2()2224()2x a a g x x x x -+-'=-+=.当104a <<时,()g x 在区间)+∞上单调递增,在区间上单调递减; 当14a ≥时,()g x 在区间(0,)+∞上单调递增. 练习: 已知函数()ln af x x x x=--,a ∈R . (1)求函数()f x 的单调区间; 解:函数()f x 的定义域为(0,)+∞.2221()1a x x af x x x x -++'=-+=.令()0f x '=,得20x x a -++=,记14a ∆=+.(ⅰ)当14a -≤时,()0f x '≤,所以()f x 单调减区间为(0,)+∞; …………5分(ⅱ)当14a >-时,由()0f x '=得12x x ==①若104a -<<,则120x x >>,由()0f x '<,得20x x <<,1x x >;由()0f x '>,得21x x x <<.所以,()f x 的单调减区间为,)+∞,单调增区间为; …………………………………………………………7分②若0a =,由(1)知()f x 单调增区间为(0,1),单调减区间为(1,)+∞;③若0a >,则120x x >>,由()0f x '<,得1x x >;由()0f x '>,得10x x <<.()f x 的单调减区间为)+∞,单调增区间为. ……9分综上所述:当14a -≤时,()f x 的单调减区间为(0,)+∞;当104a -<<时,()f x 的单调减区间为,)+∞,单调增区间为;当0a ≥时,()f x 单调减区间为114(,)a+++∞,单调增区间为114(0,)a++. ………………………………………………………10分2. 已知函数1()()2ln ()f x a x x a x=--∈R .求函数()f x 的单调区间;解:函数的定义域为()0,+∞,222122()(1)ax x af x a x x x -+'=+-=. ……………1分(1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立,则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减. ……………4分 (2)当0a >时,244a ∆=-,(ⅰ)若01a <<,由()0f x '>,即()0h x >,得211a x a -<或211a x a->; ………………5分由()0f x '<,即()0h x <221111a a x --+-<<.………………………6分 所以函数()f x 的单调递增区间为211a --和211()a +-+∞,单调递减区间为221111(a a a a--. ……………………………………7分 (ⅱ)若1a ≥,()0h x ≥在(0,)+∞上恒成立,则()0f x '≥在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递增. ……………………………………………………………3、含绝对值的函数单调性讨论例题:已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围 解:(1)若a =1, 则()1ln f x x x x =--.当[1,]x e ∈时, 2()ln f x x x x =--,2'121()210x x f x x x x--=--=>, 所以()f x 在[1,]e 上单调增, 2max ()()1f x f e e e ∴==--. ……………2分(2)由于()ln f x x x a x =--,(0,)x ∈+∞.(ⅰ)当0a ≤时,则2()ln f x x ax x =--,2'121()2x ax f x x a x x--=--=,令'()0f x =,得00x =>(负根舍去),且当0(0,)x x ∈时,'()0f x <;当0(,)x x ∈+∞时,'()0f x >,所以()f x 在上单调减,在)+∞上单调增.……4分(ⅱ)当0a >时,①当x a ≥时, 2'121()2x ax f x x a x x--=--=,令'()0f x =,得14a x =(4a x a =<舍),若4a a ≤,即1a ≥, 则'()0f x ≥,所以()f x 在(,)a +∞上单调增;若4a a >,即01a <<, 则当1(0,)x x ∈时,'()0f x <;当1(,)x x ∈+∞时,'()0f x >,所以()f x 在区间上是单调减,在)+∞上单调增. ……………………………………………6分②当0x a <<时, 2'121()2x ax f x x a x x-+-=-+-=,令'()0f x =,得2210x ax -+-=,记28a ∆=-,若280a ∆=-≤,即0a <≤, 则'()0f x ≤,故()f x 在(0,)a 上单调减;若280a ∆=->,即a >则由'()0f x =得3x =,4x =且340x x a <<<,当3(0,)x x ∈时,'()0f x <;当34(,)x x x ∈时,'()0f x >;当4(,)x x ∈+∞ 时,'()0f x >,所以()f x 在区间上是单调减,在上单调增;在)+∞上单调减. …………………………………………8分综上所述,当1a <时,()f x 单调递减区间是(0,4a ,()f x 单调递增区间是(,)4a +∞;当1a ≤≤, ()f x 单调递减区间是(0,)a ,()f x 单调的递增区间是(,)a +∞;当a >, ()f x 单调递减区间是(0, 4a )和()4a a ,()f x 单调的递增区间是和(,)a +∞. ………………10分 (3)函数()f x 的定义域为(0,)x ∈+∞. 由()0f x >,得ln xx a x->. * (ⅰ)当(0,1)x ∈时,0x a -≥,ln 0xx<,不等式*恒成立,所以R a ∈; (ⅱ)当1x =时,10a -≥,ln 0xx=,所以1a ≠; ………………12分 (ⅲ)当1x >时,不等式*恒成立等价于ln x a x x <-恒成立或ln xa x x>+恒成立.令ln ()xh x x x =-,则221ln ()x x h x x -+'=.因为1x >,所以()0h x '>,从而()1h x >. 因为ln xa x x<-恒成立等价于min (())a h x <,所以1a ≤. 令ln ()xg x x x=+,则221ln ()x x g x x +-'=.再令2()1ln e x x x =+-,则1()20e x x x '=->在(1,)x ∈+∞上恒成立,()e x 在(1,)x ∈+∞上无最大值.综上所述,满足条件的a 的取值范围是(,1)-∞. …………………………16分 2.设a 为实数,函数2()||f x x x a =-(2)求函数()f x 的单调区间4、分奇数还是偶数进行讨论例题:【2015高考天津,理20已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥.(I)讨论()f x 的单调性;【答案】(I) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)见解析; (III)见解析.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. 5、已知单调区间求参数范围例题:(14年全国大纲卷文)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ).(i )若a ≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.(ii )由于a ≠0,故当a<1时,()0f x '=有两个根:121111a ax x -+----==,若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞U . 二、极值(一)判断有无极值以及极值点个数问题例题:【2015高考山东,理21】设函数()()()2ln 1f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由;(2)当0a > 时, ()()28198a a a a a ∆=--=-①当809a <≤时,0∆≤ ,()0g x ≥ 所以,()0f x '≥,函数()f x 在()1,-+∞上单调递增无极值;②当89a >时,0∆> 设方程2210ax ax a ++-=的两根为1212,(),x x x x < 因为1212x x +=- 所以,1211,44x x <->- 由()110g -=>可得:111,4x -<<-所以,当()11,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()12,x x x ∈时,()()0,0g x f x '<< ,函数()f x 单调递减; 当()2,x x ∈+∞时,()()0,0g x f x '>> ,函数()f x 单调递增; 因此函数()f x 有两个极值点. (3)当0a < 时,0∆> 由()110g -=>可得:11,x <-当()21,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()2,x x ∈+∞时,()()0,0g x f x '<< ,函数()f x 单调递减; 因此函数()f x 有一个极值点. 综上:当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点; 当89a >时,函数()f x 在()1,-+∞上有两个极值点; 例题:【2015高考安徽,理21】设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值;【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值. ③当22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =. 02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(二)已知极值点个数求参数范围例题:【14年山东卷(理)】 设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =L是自然对数的底数)(I )当0k ≤时,求函数()f x 的单调区间;(II )若函数()f x 在()0,2内存在两个极值点,求k 的取值范围。