【全国百强校】山东省实验中学2018届高三第一次模拟考试数学(理)试题
山东省实验中学2018届高三第一次模拟考试数学(理)试题

山东省实验中学2015级第一次模拟考试数学试题(理科)2018.04说明:本试卷满分150分,分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为第l 页至第3页,第Ⅱ卷为第4页至第6页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上。
书写在试题上的答案无效.考试时间120分钟.第I 卷(共60分)一、选择题(本大题共12小题.每小题5分.共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.)1.设集合(){}{}22log 2,320=A A x y x B x x x C B ==-=-+<,则 A .()1-∞, B .(]1-∞,C .()2,+∞D .[)2,+∞ 2.在复平面内,复数2312i z i-++对应的点的坐标为()2,2-,则z 在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.设()(),11,2,x R a x b a b a b ∈=-⊥+=,向量且,则A BC .D .10 4.已知双曲线()221my x m R -=∈与抛物线28x y =有相同的焦点,则该双曲线的渐近线方程为A .13y x =±B .3y x =±C .y =D .3y x =± 5.宋元时期数学名著《算数启蒙》中有关于“松竹并生”的问题: 松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n=A .2B .3C .4D .56.已知()()(()0.10.841log ,log 3,log ,3f x a f b f c f x π====,则 A. b a c << B. a b c << C. c b a << D. c a b <<7.某几何体的三视图如图所示,则它的最长棱长是A.2C.D.3 8.将函数()2cos cos 44g x x x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的图象上各点的横坐标伸长原来的2倍(纵坐标不变)后得到()h x 的图象,设()()214f x x h x =+,则()f x '的图象大致为9.如果6314ax x x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为16,则展开式中3x 项的系数为 A. 392 B. 392- C. 212- D. 21210.已知三棱锥P ABC -的各顶点都在同一球面上,且PA ⊥平面ABC ,若该棱锥的体积为2,1,603AB AC BAC ==∠=,则此球的表面积等于 A. 5π B. 20πC. 8πD. 16π 11.已知A,B 是过抛物线()220y px p =>焦点F 的直线与抛物线的交点,O 是坐标原点,且满足3,OAB AB FB S AB ∆==,则的值为 A. 92 B.29 C.4 D.2 12.已知偶函数()f x 满足()()()(]44,000,4f x f x f x +=-=∈且,当时,()()ln 2x f x x =,关于的不等式()()[]20200200f x af x +>-在,上有且只有200个整数解,则实数a 的取值范围 A. 1ln 6,ln 23⎛⎤- ⎥⎝⎦ B. 1ln 2,ln 63⎛⎫-- ⎪⎝⎭ C. 1ln 2,ln 63⎛⎤-- ⎥⎝⎦ D. 1ln 6,ln 23⎛⎫- ⎪⎝⎭第II 卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分.) 13.已知实数,x y 满足约束条件5320,210x y x y x y +≤⎧⎪-≥⎨⎪-+≤⎩则3z x y =+的最小值为__________.14.在平面区域(){},02,04x y x y ≤≤≤≤内投入一点P ,则点P 的坐标(),x y 满足2y x ≤的概率为____________.15.在23ABC ABC π∆∠=中,,过B 点作BD ⊥AB 交AC 于点D ,如果1AB CD ==,则AD=____________. 16.已知函数()()sin 0,0,2f x x a πωπϕωϕ⎛⎫=+>>≤ ⎪⎝⎭,直线()y a f x =与的图象的相邻两个交点的横坐标分别是2,4,现有如下命题:①该函数在[]24,上的值域是a ⎡⎤⎣⎦②在[]24,上,函数在3x =处取得最大值 ③该函数的最小正周期可以是83④函数()f x 的图象可能过原点以上正确的命题的序号是____________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:60分.17.(本小题满分12分)已知数列{}n a 满足:()111,32n n na a a n N a *+==∈-.(I )令11n nb a =-,求证:数列{}n b 为等比数列并求数列{}n a 的通项公式; (II )令,n n nc na S =为数列{}n c 的前n 项和,求证:2n S <.18. (本小题满分12分)在刚刚过去的济南市第一次模拟考试中,某班同学表现优异,成绩突出,现将全班50名同学的成绩按班内名次统计成如下的2×2列联表:(I )完成列联表,若定义前20名的学生为优等生,能否在犯错误的概率不超过0.1的前提下,认为该班“成绩是否优等与性别有关”?请说明理由.附:()()()()()()22n ad bc k n a b c d a b c d a c b d -==+++++++.(II )优等生中的男生成绩在学校前100名的只有2人,现从这8人中抽取3人,记其中成绩在学校前100名的人数为ξ,求ξ的分布列及数学期望。
山东省济南市2018届高考第一次模拟考试数学(理)试题含答案

5
S 2018 .
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生 都必须作答.每 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c ,且 b cos A a cos B 2c . (1)证明: tan B 3tan A ; (2)若 b c a
A.
13 5 B. 2 3
C.
4 3
D.
2 6 3
x
12.设 x1 , x2 分别是函数 f ( x ) x a 是( )
和 g ( x ) x log a x 1 的零点(其中 a 1 ) ,则 x1 4 x2 的取值范围
A. [4, ) B. (4, )
C. [5, )
B.34,55
C.21,13
D.55,34 )
10.设函数 f ( x ) log 1 (1 x 2 )
2
1 ,则使得 f ( x ) f (2 x 1) 成立的 x 的取值范围是( 1 2 x
1
A. ( ,1] B. [1, ) C. ,1 D. , 1, 3 3
程为( )
x2 y 2 1 A. 36 32
x2 y2 x2 y2 x2 y2 1 C. 1 D. 1 B. 9 8 9 5 16 12 3 1 a4 的等差中项为 ,则 a1 的值为( 2 2
)
5.已知正项等比数列 {an } 满足 a3 1 , a5 与 A.4 B.2 C.
3.已知某 7 个数的平均数为 4,方差为 2,现加入一个新数据 4,此时这 8 个数的平均数为 x ,方差为 s ,
山东省实验中学高三模拟试题(数学理)

山东省实验中学东校高三模拟理科数学 2018.11本试卷分选择题和非选择题两部分,共5页,满分150分,考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号等填写在答题卡上,并用2B铅笔在答题卡上的相应位置填涂考生号。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.回答第Ⅱ卷时,用黑色钢笔或签字笔将答案写在答卷上。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合,则()A.B.C.D.2.记复数的共轭复数为,已知复数满足,则()A.B.C.D.3.下列函数中,既是偶函数又有零点的是()A.B.C.D.4.设,,则是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数的部分图象可能是()A.B.C.D.6.在等差数列中,,则()A.8 B.12 C.16 D.207.已知,,,则()A.B.C.D.8.已知函数在一个周期内的图像如图所示,其中分别是这段图像的最高点和最低点,是图像与轴的交点,且,则的值为()A.B.C.D.9.如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为()A.B.C.D.10.设是各项为正数的等比数列,是其公比,是其前项的积,且,,则下列结论错误..的是()A.B.C.D.与均为的最大值11.等边三角形边长为2,点是所在平面内一点,且满足,若,则的最小值是()A.B.C.D.12.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A.B.C.D.第Ⅱ卷二、填空题(每小题5分,满分20分)13.已知向量,若,则__________.14.已知,,则.15.由曲线,与直线,所围成图形的面积为________.16.在中,为的中点,,点与点在直线的异侧,且,则四边形的面积的最大值为_______.三、解答题:解答应写出文字说明、证明过程或演算步骤。
山东省济宁市2018届高三第一次模拟考试数学理试题 含

2018年济宁市高三模拟考试数学(理工类)试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}11M x x =-≤≤,{}2log 1N x x =<,则M N = A.{10}x x -≤< B .{01}x x <≤ C .{12}x x ≤< D .{12}x x -≤<2.若复数20182(1i)i z =-(i 为虚数单位),则z 的共轭复数z = A .1i + B .i C .12i - D.12i 3.设变量x ,y 满足约束条件02390210x x y x y ≥⎧⎪+-≥⎨⎪--≤⎩,则目标函数2z x y =+的取值范围是A .[6,)+∞B .[5,)+∞C .[0,6]D .[0,5]4.已知命题p :存在实数α,β,sin()sin sin αβαβ+=+;命题q :2log 2log 2a a +≥(2a >且1a ≠).则下列命题为真命题的是A .p q ∨B .p q ∧C.()p q ⌝∧ D .()p q ⌝∨5.执行下列程序框图,若输入的n 等于7,则输出的结果是A .2B .13 C.12- D .3- 6.将函数()2sin()13f x x π=--的图象向右平移3π个单位,再把所有的点的横坐标缩短到原来的12倍(纵坐标不变),得到函数()y g x =的图象,则g()y x =的图象的一个对称中心为A .(,0)3πB .(,0)12π C.(,1)3π- D .(,1)12π- 7.如图所示,圆柱形玻璃杯中的水液面呈椭圆形状,则该椭圆的离心率为A .12 C.2D 8.已知函数()f x 是(,)-∞+∞上的奇函数,且()f x 的图象关于1x =对称,当[0,1]x ∈时,()21x f x =-,则(2017)(2018)f f +的值为A .2-B .1- C.0 D .19.已知O 是ABC ∆的外心,4AB =,2AC =,则()AO AB AC ⋅+=A .10B .9 C.8 D .610.圆周率是圆的周长与直径的比值,一般用希腊字母π表示.我们可以通过设计下面的实验来估计π的值:从区间[0,1]随机抽取200个实数对(,)x y ,其中两数能与1构成钝角三角形三边的数对(,)x y 共有56个.则用随机模拟的方法估计π的近似值为 A .227 B .257 C.7225 D .782511.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为A .8πB .16πC.32πD .64π12.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos cos 3a Bb Ac -=,则tan()A B -的最大值为A .5B .5 C.3D 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.双曲线2212x y -=的渐近线方程为 . 14.观察下列各式:3211=332113+=33321236++=⋅⋅⋅⋅⋅⋅照此规律,第n 个等式可为 .15.在24(23)x x --的展开式中,含有2x 项的系数为 .(用数字作答)16.如图所示,已知Rt ABC ∆中,AB BC ⊥,D 是线段AB 上的一点,满足2AD CD ==,则ABC ∆面积的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足123111223n b b b b n n+++⋅⋅⋅+=*()n N ∈ (1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2n S .18. (本小题满分12分)如图,在以A ,B ,C ,D ,E 为顶点的多面体中,90ACB ︒∠=,面ACDE 为直角梯形,//DE AC ,90ACD ︒∠=,23AC DE ==,2BC =,1DC =,二面角B AC E --的大小为60︒.(1)求证:BD ⊥平面ACDE ;(2)求平面ABE 与平面BCD 所成二面角(锐角)的大小;19. (本小题满分12分)为缓解某地区的用电问题,计划在该地区水库建一座至多安装4台发电机的水电站.为此搜集并整理了过去50年的水文数据,得如下表:将年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)在以上四段的频率作为相应段的概率,并假设各年得年入流量相互独立.(1)求在未来3年中,至多1年的年入流量不低于120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 的限制,并有如下关系:已知某台发电机运行,则该台发电机年利润为5000万元;某台发电机未运行,则该台发电机年亏损1500万元,若水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.20. (本小题满分12分)已知抛物线E :22x py =的(2)p >焦点为F ,点M 是直线y x =与抛物线E 在第一象限内的交点,且5MF =.(1)求抛物线E 的方程;(2)不过原点的直线l 与抛物线E 相交于两点A ,B ,与y 轴相交于点Q ,过点A ,B 分别作抛物线E 的切线,与x 轴分别相交于两点C ,D .判断直线QC 与直线BD 是否平行?直线QC 与直线QD 是否垂直?并说明理由.21. (本小题满分12分) 已知函数()ln 2a f x x x x=++()a R ∈. (1)求函数()f x 的单调区间;(2)若函数2g()()(2)2a x xf x x x =-+-在其定义域内有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312x x e ⋅>(e 为自然对数的底数).(二)选考题:共10分。
山东省济南市届高三一模试题(数学理)

-1 -/ 11山东省济南市2018届高三年级第一次模拟考试数学试卷(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
共150分,测试时间120分钟。
第I卷(选择题,共60 分)注意事项:1 •答第I卷前,考生务必将自己的姓名、准考证号,考试科目用上。
2 •每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上。
、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集一1集合」==_■()A. _1B.C. _1D. 02•一次选拔运动员,测得7名选手的身高(单位cm)分布茎叶图如图,0 10 3 x 8 9记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数记为X,那么x 的值为() A. 5B. 6 C.7 D. 82B铅笔涂写在答题卡3•函数的图像为>1JL *r |U4.曲线C.A. B. D .-1!处的切线方程为5 .已知各项不为0的等差数列A. 2B. 4C. 86.已知复数A. B.为实数,则实数7.将函数A.C.&若椭圆A. B.-f °D,数列叵是等比数列,且D. 16m的值为D.的图象向左平移U个单位,所得图像的解读式是B.D.的离心率为I,则双曲线C.的渐近线方程为D. 可9.在如图所示的程序框图中,如果输入的A. 3B. 4 —,那么输出的i=C. 5D. 6rj^n/2 |«=3M+I]____r -------- --- ! ---------1=1+1-<>/输禹1t站束”第9题图10•已知三棱锥的三视图如图所示,则它的外接球表面积为A. 16 二B. 8 JC. 4D. 2二11•设函数—定义在实数集上,A. B.C.12.已知椭圆的焦点为F1、D.F2,在长轴的直线交椭圆于P,A. B.,则有()A1A2上任取一点M,过M作垂直于A1A2点的概率为C. ID.第H 卷(非选择题,共90 分)15.在△ ABC 中,角 A 、B 、C 对应的边分别为 a 、b 、c ,若丨c= ____ 。
山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析

山东省实验中学2020届高三第一次模拟考试数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在直角坐标平面内,已知A(-2,0),3(2,0)以及动点。
是AABC的三个顶点,且sin Asin B-2cosC=0,则动点C的轨迹曲线「的离心率是()\/2a/3A.2B.2 c.扬 D.右2.若函数f(x)=l+\x\+x\贝0/(lg2)+/flg|k/(lg5)+/flg^=()A.2b.4 C.6 D.83.在AA3C中,CA_CA AB.则sinA:sin3:sinC=()543A.9:7:8b.c.6:8:7D何.3:由4.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种A.120B.260C.340D.4205.已知直线y=kx-1与抛物线J=8y相切,则双曲线x2-k2y2=l的离心率为()73A.打B.右C.D.26.已知数列{%}的前〃项和S"满足S"+a"=2n(nwN*),则%=()1_127321385A.3b.64 c.32d.64x+y>l,7.设x,y满足约束条件\x-y>-l,若目标函数z=ax+3y仅在点(1,0)处取得最小值,则。
的取值范围2x-y<2,为()A.(—6,3)B.(-6,-3)C.(。
,3)D.(-6,0]8.已知集合M=(x|y=log2(-4x-x2)},2V=(x|(-)x>4},则肱N=()A.d-2]b.[-2,0) c.(-4,2]D(-co,-4)9.如图,已知等腰梯形A3CD中,AB=2DC=4,AD=BC=^5,E是OC的中点,P是线段BC±的动点,则的最小值是()_9_4A.5B.0C.5D.110.已知^A={x\a-l<x<a+2},B=(x|3<x<5},则能使A^B成立的实数。
2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。
【高三数学试题精选】山东省实验中学2018级第一次模拟考试理综试题

山东省实验中学2018级第一次模拟考试理综试题
5 c 东省实验中学1基因又被称为细胞“死亡基因”。
据此分析,下列叙述不正确的是()
A.靶细胞在效应T细胞的作用下死亡可能是nuc-1基因被激活的结果
8.在人胚胎发育过程中细胞中的nuc-1基因也会表达
c.该基因编码的蛋白质的运输需要内质网、高尔基体的协同作用
D.如果细胞发生癌变,nuc-1基因的表达可能会受阻
3.某岛屿引入外物种野兔,研究人员调查了30年间野兔种群数量的变化,并据此绘制了λ值变化曲线(右图)。
以下叙述正确的是()
A.1—5年野兔种群出生率等于死亡率
B.第5年起野兔种群数量开始下降
c.第15—3】一定质量理想气体的p-V图象如图所示,其中a b 为等容过程,b c为等压过程,c a为等温过程,已知气体在状态a
时的温度T =300,在状态b时的体积V =224L求
(1)气体在状态b时的温度T ;
(2)气体在状态c时的体积V ;
(3)试比较气体由状态b到状态c过程从外界吸收的热量Q与
对外做功的大小关系,并简要说明理由。
35.(8分)【物理—物理3-4】
(1)在某介质中形成的一列简谐波,t=0时刻的波形如图(1)所示。
若波向右传播,t=0时刻刚好传到A点,且再经过06s,P点开始振动。
由此可以判断该列波的周期T= s从t =0时起到P点第一次达到波峰时止,点所经过的路程s = c。
(2)图(2)所示是一透明的圆柱体的横截面,其半径R=20c,折射率为,AB是一条直径,今有一束平行光沿AB方向射向圆柱体,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18. (本小题满分 12 分) 在刚刚过去的济南市第一次模拟考试中,某班同学表现优异,成绩突出,现将全班 按班内名次统计成如下的 2× 2 列联表:
50 名同学的成绩
4.已知双曲线 my2 x2 1 m R 与抛物线 x2 8y 有相同的焦点,则该双曲线的渐近线方程为
A. y 1 x 3
B. y 3x
C. y
3x
3
D. y
x
3
5.宋元时期数学名著《算数启蒙》中有关于“松竹并生”的问题:
松长五
尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的
一个程序框图,若输入的 a,b 分别为 5,2,则输出的 n=
ln 6,ln 2
3
3
3
第 II 卷(非选择题,共 90 分)
二、填空题(本题共 4 小题,每小题 5 分,共 20 分.)
13.已知实数 x, y 满足约束条件
xy5 3x 2 y 0, 则 z 3x y 的最小值为 __________. x 2y 1 0
14.在平面区域 x, y 0 x 2,0 y 4 内投入一点 P,则点 P 的坐标 x, y 满足 y x2 的概率为
,直线 y a与f x 的图象的相邻两 2
②在 2,4 上,函数在 x 3 处取得最大值 ③该函数的最小正周期可以是 8
3 ④函数 f x 的图象可能过原点
以上正确的命题的序号是 ____________. 三、解答题(共 70 分 .解答应写出文字说明、证明过程或演算步骤
.第 17-21 题为必考题,每个试 题
cos x
的图象上各点的横坐标伸长原来的
4
4
2 倍(纵坐标不变)
后得到 h x 的图象,设 f x
12 x
h x ,则 f
4
9.如果 ax 3 4x
6
x 1 的展开式中各项系数的和为 x
x 的图象大致为
16,则展开式中
x3 项的系数为
39
A.
2
10. 已知三棱锥
39
B.
2
21
C.
2
21
D.
2
P ABC 的各顶点都在同一球面上,且
A.2
B.3
C. 4
ቤተ መጻሕፍቲ ባይዱ
D.5
6.已知 f x
1 log 0.8 ,a
f log 3 ,b
f log 4 3 ,c
f 30.1 ,则
x
A. b a c B. a b c C. c b a
D. c a b
7.某几何体的三视图如图所示,则它的最长棱长是
A.2
B. 5
C. 2 2
D.3
8.将函数 g x 2cos x
B. ,1
C. 2,
D . 2,
2.在复平面内,复数 2 3i z 对应的点的坐标为 1 2i
A .第一象限
B .第二象限
C.第三象限
2, 2 ,则 z 在复平面内对应的点位于
D .第四象限
3.设 x R,向量 a x,1 b 1, 2 ,且 a b,则 a b
A. 5
B. 10
C. 2 5
D. 10
PA
平面 ABC ,若该棱锥的体积为
23 , AB
2, AC
1, BAC
60 ,则此球的表面积等于
3
A. 5
B. 20
C. 8
D. 16
11.已知 A,B 是过抛物线 y2 2 px p 0 焦点 F 的直线与抛物线的交点, O 是坐标原点,且满足
AB 3FB , S OAB
2 AB ,则 AB 的值为 3
上。书写在试题上的答案无效.考试时间
120 分钟.
第 I 卷( 共 60 分)
一、选择题 (本大题共 12 小题.每小题 5 分.共 60 分.在每小题给出的四个选项中。只有一项是符 合题目要求的. )
1.设集合 A x y log 2 2 x , B x x2 3x 2 0 ,则 CAB =
A . ,1
9
2
A.
B.
C.4
D.2
2
9
12.已知偶函数 f x 满足 f 4 x f 4 x ,且f 0 0,当 x 0,4 时, f x
ln 2x
,关
x
于 x 的不等式 f 2 x af x 0在 200,200 上有且只有 200 个整数解,则实数 a 的取值范围
1
A.
ln 6,ln 2
3
1
1
1
B. ln 2, ln 6 C. ln 2, ln 6 D.
山东省实验中学 2015 级第一次模拟考试
数学试题 ( 理科 )
2018.04 说明:本试卷满分 150 分,分为第 I 卷 (选择题 )和第Ⅱ卷 (非选择题 )两部分,第 I 卷为第 l 页至
第 3 页,第Ⅱ卷为第 4 页至第 6 页.试题答案请用 2B 铅笔或 0.5mm 签字笔填涂到答题卡规定位置
____________.
15. 在 ABC中, ABC
AD=____________.
2 ,过 B 点作 BD
3
AB 交 AC 于点 D ,如果 AB CD 1 ,则
16.已知函数 f x 2a sin x
a 0, 0,
个交点的横坐标分别是 2, 4,现有如下命题:
①该函数在 2,4 上的值域是 a, 2a
考生都必须作答 .第 22、 23 题为选考题,考生根据要求作答 .) (一)必考题: 60 分 .
1 17.(本小题满分 12 分)已知数列 an 满足: a1 , an 1
an n N .
3
2 an
( I)令 bn
1 1,求证:数列
an
bn 为等比数列并求数列
an 的通项公式;
( II )令 cn nan, Sn 为数列 cn 的前 n 项和,求证: Sn 2 .