磨损的计算方法演示课件
合集下载
第3章金属磨损ppt课件

pv准则
pv准则形式简单,常用在非流体润滑的滑动轴承等零件的 设计中,作为选择抗胶合材料的依据。 但是其数据离散范围较大,有时达到50%,因此准确性较 差。
pv [ pv]
式中,p为Hertz最大应力;v为相对滑动速度。 根据工况条件[pv]在3.2×103~1.5×105 MPa·m/s之间变化。
载荷与速度的乘积与摩擦副间传递的功率成正比,因此可 以认为,材料一定的摩擦副传递的功率是有限的。工程中 常常要限制摩擦副的pv值。
2. 表面温度
pv值与摩擦副传递的功率成正比,也就是与摩擦损耗的功 率成正比,摩擦过程中这些能量产生的热使表面温度升高。
产生的热量在接触表面间不是均匀分布的,大部分的热量 产生在表面接触点附近,形成了半球形的等温面。
而由于摩擦副体积远大于接触峰点,一旦脱离接触,峰点 温度便迅速下降,一般局部高温持续时间只有几毫秒。
润滑油膜、吸附膜或其他表面膜将发生破裂,使接触峰点 产生粘着,随后在滑动中粘着结点破坏。
这种粘着、破坏、再粘着的交替过程就构成粘着磨损。
3.3.1 粘着磨损的种类
1. 轻微粘着磨损 当粘着结点的强度低于摩擦副金属的强度时,剪切发生在
对于纯金属和各种未经热处理的钢材,耐磨性与材料硬度成 正比关系。
2. 相对硬度
磨料硬度H0与试件材料硬度H之间的相对值。 为了防止磨粒磨损,材料硬度应高于磨料硬度。
3. 载荷
外载荷对各种材料的磨粒磨损有显著影响。线磨损率与表面 压力成正比。
当压力达到转折值pc时,线磨损率随压力的增加变得平缓, 这是由于磨粒磨损形式转变的结果。各种材料的转折压力值 是不同的。
结合面上。此时虽然摩擦系数增大,但是磨损却很小,材料 迁移也不显著。
《材料的磨损原理》课件

轴承磨损案例
总结词
轴承是机械设备中的关键部件,其磨损机制和影响因素较为复杂。
详细描述
轴承在运转过程中,内外圈和滚动体之间会发生接触摩擦,导致磨损。主要的磨 损机制包括粘着磨损、疲劳磨损和微动磨损等。材料的硬度、成分、表面处理和 润滑条件等都影响轴承的耐磨性。
刀具磨损案例
总结词
刀具的磨损对其使用寿命和加工精度有重要影响,涉及多种因素和机制。
磨损的定义和分类
定义
材料磨损是指材料在相对运动过程中 ,由于机械、化学或热的作用而导致 的表面损伤或质量损失。
分类
根据磨损机制的不同,将磨损分为粘 着磨损、磨粒磨损、疲劳磨损、冲蚀 磨损和腐蚀磨损等类型,并简要介绍 各种类型的特点和影响因素。
02
CATALOGUE
材料磨损原理
粘着磨损
粘着磨损是指两个接触表面在相对运动时,由于粘着效应而产生摩擦力 使表面材料转移或粘附到对方表面或伴随摩擦产生剪切应力使材料表层 发生塑性变形、撕裂和脱落的现象。
疲劳磨损
疲劳磨损是指摩擦表面在交变应力或循环应力的作用下,由于疲劳裂纹的 萌生和扩展,最终导致材料脱落的现象。
疲劳磨损与材料的疲劳强度、应力集中、循环次数和表面粗糙度等因素有 关。
疲劳磨损常见于滚动轴承、齿轮和曲轴等机械零件。
腐蚀磨损
腐蚀磨损是指摩擦表面与腐蚀介质相互作用,引起表面材料腐蚀和脱落的现象。
提高耐磨性。
耐腐蚀材料
02
针对腐蚀性环境,选择耐腐蚀的材料,如钛合金、某些塑料等
。
复合材料
03
利用复合材料的优势,将不同材料的优点结合,提高整体耐磨
性。
表面处理
表面涂层
在材料表面涂覆耐磨涂层 ,如镀铬、喷涂陶瓷涂层 等。
磨损的计算方法

磨损计算方法的背景
但是,由于影响磨损的因素非常多,所以磨 损的计算也是相当复杂的。各国的摩擦学专家曾 提出过很多计算方法用来计算各种类型的磨损和 一些计算方法还未能达到实用阶段,因此,仍需 努力深入研究,加以完善。本节将简要地介绍磨 损的IBM计算法、两个配合“联接”体的磨损计 算法和两种主要磨损类型的计算法,以便深入理 解磨损的本质。
经过一些假设之后,上式可简化为
式中:C为系统常数,可由实验得到。将 等代 入式(5—12),并加以积分即可求得A值,再测出磨 痕长度就能计算出磨损体积。
二、两个配合“联接”体的磨损计算法
这种计算方法是根据摩擦副零件所允许的磨损
量来决定使用期限的。为此,需要解决以下三个方 面的问题:
(1)确定磨损过程中两接触表面之间的压力分布
假设磨粒为形状相同的圆锥体,半角为θ,锥底直径为 r(即犁出的沟槽宽度),载荷为W,压入深度h,滑动距离 为L,屈服极限σs。在垂直方向的投影面积为πr2,滑动时 只有半个锥面(前进方向的锥面)承受载荷,共有n个微凸 体,则所受的法向载荷为:
将犁去的体积作为磨损量,其水平方向的投影面积为一 个三角形,单位滑动距离的磨损量(磨损率)为Q0=nhr, 因 为r=htan θ,因此:
(1)
如果考虑到微凸体相互作用产生磨粒的概率数K和滑动 距离L,并且代人材料的硬度H=3σs,则接触表面的磨损 量表达式为:
(2)
式中Ks为磨粒磨损系数,是几何因素2/tan θ和概率常数 K的乘积,Ks与磨粒硬度、形状和起切削作用的磨粒数量
等因素有关。应当指出,上述分析忽略了许多实际因素, 例如磨粒的分布情况、材料弹性变形和滑动前方材料堆 积产生的接触面积变化等等,因此式(2)近似地适用于 二体磨粒磨损。在三体磨损中,一部分磨粒的运动是沿
模具摩擦磨损课件

2 摩擦与磨损
❖ 摩擦三种状态(干摩擦、边界摩擦及润 滑摩擦)与磨损。
❖ 关于摩擦,在有关方面课中已作过详细 分析,本课程不再赘述。这里仅就各种 摩擦状态下的磨损情况(有磨屑的产生) 简要予以说明。
1、干摩擦与磨损
干摩擦是指没有任何污染(表层吸 附物:油膜、氧或水分薄膜及其它非固 体的第三种物质薄膜)的固体之间的摩 擦。
控制磨损方法有:
保护层原则,包括使用润滑剂,表面膜, 油漆,电镀,磷化化学处理,火焰处理等。
转化原则,通过选择金属副、硬度、表 面光洁度、接触压力等使磨损由破坏性转化到 可容性。
更换原则,采用经济的可更换磨损元件, 以便在“磨坏”时予以更换。
以上这些方法不但适用于粘磨,而且也适 用于磨粒磨损。
二、磨粒磨损
会议上的调查报告指出:国家分给机械部
钢材有一半作为配件,而配件又大部分用于 维修。如1974年汽车产值16.6亿元,耗用 钢材27万吨,配件产值为14亿元,耗用钢 材23万吨,这其中绝大部分用于维修易磨 损件,可见磨损问题在我国也相当严重。
关于磨损研究是投资少、收益大。美 国机械工程协会报告讲:1976年美花在交 通运输、发电、透平机械和工业生产四个主 要领域中关于发展摩擦磨损方面研究费用为 2400万美元,而总节约量估计为美国每年 能源消耗的11%,相当于160亿美元。
如果在任一瞬间都有几个结点存在,则真实触
面 Ar 为:
d 2
Ar n ( 4 )
(2)
将(1)和(2)联立可得:
n
4 Ar
d 2
4W
3 ypd 2
(3)
再假定,在滑过等于结点直径d的距离后, 原结点撕裂,并同时形成新结点,因此在每单 位滑动距离中重新生成结点的次数必须为1/d, 而每单位滑动距离中重新生成结点的总数为:
煤的磨损特性及磨损指数 ppt课件

ppt课件
12
(2)叶片倾角和遮盖度等结构参数,以及总的
结构布置对各级叶片磨损有较大影响,如倾角增 加,各级叶片磨损量逐渐减小,在倾角30℃左右, 磨损量出现最低值;遮盖度增大,各级叶片磨损 量呈现近似线性减小的趋势,后两级减小迅速, 在遮盖度ψ=s/H=0.4时达到最小值。
ppt课件
13
(3)从磨损位置来看,前两级叶片受颗粒磨损较 均匀,而后两级叶片不同部位差别很大,严重磨损 部位集中在叶片中前部。遮盖度对严重磨损部位有 较大影响。
ppt课件
8
2 气固两相流的流动与磨损
2.1 管道内气固两相流的流动与磨损 靠近燃烧器处一次风管内的气固(空气与煤粉)两相流动中,
除了流速之外,煤粉浓度沿径向的分布规律,对管道的磨损也 有较大影响。 (1)铅垂直管内气固两相流动,颗粒浓度在截面上对称分布。 (2)水平圆管道,由于颗粒受到重力作用,在管道底部颗粒浓 度最大。
ppt课件
5
(3)煤中的灰成分
SiO2和Al2O3是灰分特性中影响磨损的特别重要 的因素。 SiO2和Al2O3的比值越大,磨损越严重。 因此,常常将SiO2和Al2O3的比值作为一种判别准 则。
ppt课件
6
(4)颗粒的直径
当颗粒很小时,冲刷磨损很小。随着颗粒直径的增大, 其质量随之增加,撞击动量也随着增大,磨损量也随之增 加。当颗粒直径达到某一临界值后,磨损量几乎不变,或 者变化十分缓慢。一般认为,在相同的颗粒浓度下,颗粒 直径越大,单位体积内颗粒数量就越少,虽然大颗粒冲击 壁面磨损能力较大,但冲击到壁面的总颗粒数降低,所以 材料的磨损量仍变化不大。
煤的磨损特性与磨损指数
张经武整理
2014.6.
ppt课件
摩擦学第五章磨损ppt课件

5、其他。包括侵蚀磨损或冲蚀磨损 (Erosive wear) 和微动磨损 (Fretting wear)等。
实际的磨损现象大都是多种类型磨损同时存在;或磨损状态随工 况条件的变化而转化。
摩擦学第五章磨损
9
第二节 粘着磨损
一、定义及其过程
1、定义:
(1) 在摩擦副中,相对运动的摩擦表面之间,由于粘着现象产生材料转移
此外,磨损率与滑动速度无关。
摩擦学第五章磨损
22
金属的粘着磨损的磨损系数
润滑状况 相同 无润滑 15X10-4
金属/金属
相容
部分相容和 部分不相容
不相容
金属/ 非金属
5X10-4
1X10-4 0.15X10-4 1.7X10-6
润滑不良 30X10-5 10X10-5
润滑良好 润滑极好
30X10-6 10X10-7
假定磨屑半径 ,产生磨屑的概率 ,则滑动 距离磨损体积:
摩擦学第五章磨损
21
分析
粘着磨损的体积磨损率与法向载荷N (或正压力p)成正比,而与软金属材 料的屈服强度(或布氏硬度HB值)成反比。
当正压力
时,会使磨损加剧,产生胶合或咬死。
因此,在设计时应保证正压力不超过材料的布氏硬度的三分之一。
体积磨损率随着粘着磨损的磨损系数的增大而增大,而后者主要取决于摩 擦表面的润滑状况和两滑动金属相互牢固地粘着的趋向。
相溶性好的材料 材料塑性越高,粘着磨损越严重
脆性材料的抗粘着能力比塑性材料高 脆性材料:正应力引起,最大正应力在表面,损伤浅, 磨屑也易脱落,不堆积在表面。 塑性材料:剪应力引起,最大剪应力离表面某一深度, 损伤深。
摩擦学第五章磨损
25
三、防止和减轻粘着磨损的措施
实际的磨损现象大都是多种类型磨损同时存在;或磨损状态随工 况条件的变化而转化。
摩擦学第五章磨损
9
第二节 粘着磨损
一、定义及其过程
1、定义:
(1) 在摩擦副中,相对运动的摩擦表面之间,由于粘着现象产生材料转移
此外,磨损率与滑动速度无关。
摩擦学第五章磨损
22
金属的粘着磨损的磨损系数
润滑状况 相同 无润滑 15X10-4
金属/金属
相容
部分相容和 部分不相容
不相容
金属/ 非金属
5X10-4
1X10-4 0.15X10-4 1.7X10-6
润滑不良 30X10-5 10X10-5
润滑良好 润滑极好
30X10-6 10X10-7
假定磨屑半径 ,产生磨屑的概率 ,则滑动 距离磨损体积:
摩擦学第五章磨损
21
分析
粘着磨损的体积磨损率与法向载荷N (或正压力p)成正比,而与软金属材 料的屈服强度(或布氏硬度HB值)成反比。
当正压力
时,会使磨损加剧,产生胶合或咬死。
因此,在设计时应保证正压力不超过材料的布氏硬度的三分之一。
体积磨损率随着粘着磨损的磨损系数的增大而增大,而后者主要取决于摩 擦表面的润滑状况和两滑动金属相互牢固地粘着的趋向。
相溶性好的材料 材料塑性越高,粘着磨损越严重
脆性材料的抗粘着能力比塑性材料高 脆性材料:正应力引起,最大正应力在表面,损伤浅, 磨屑也易脱落,不堆积在表面。 塑性材料:剪应力引起,最大剪应力离表面某一深度, 损伤深。
摩擦学第五章磨损
25
三、防止和减轻粘着磨损的措施
磨损的计算方法

IBM计算法
IBM计算法
对应于2000个行程时的rR的数值,见表5-2。保证零 磨 劳曲损线时的的关行系程式次,数即N与tmax之间的关系可采用材料疲
由此式可以计算任意行程数容许的
IBM计算法
当N>21600时,上式是可行的,用式(5一10)预测 零磨损需按以下步骤进行: 1、将摩擦副零件要求的工作期限换算成行程次数N; 2、用查表法或其它方法确定材料的 3、通过实验或查表法确定 4、计算出
—、磨损的剥层理论
磨损的剥层理论是美国麻省理工学院的教授苏 (N.P.suh)于1973年建立的。这一新理论是以金 属的位错理论为基础的,它分析了亚表层金属的塑 性变形与断裂行为。
该理论叙述了导致薄而长的片状磨屑形成的过 程,其要点如下:
1.当接触的两表面滑动时,法向力和切向力 是经接触点的粘着与犁沟作用传递的。较软表面 上的微凸体容易产生塑性变形或被磨去,结果形 成了比较光滑的表面。此时的接触情况变成了硬 的凸峰与较软平面的接触,于是前者在后者上面 犁沟并使平面上每一接触点都经受着循环载荷。
锥面上某点的相对滑动速度为
相对
两个配合“联接”体的磨损计算法
于是,摩擦副两个零件的磨损速度分别为
两个配合“联接”体的磨损计算法
两个配合“联接”体的磨损计算法
由式(5-14)和式(5-20)可得
三、两种主要磨损类型的磨损计算方法
(1)简单粘着磨损计算(Archard模型)
上图为粘着磨损模型,假设摩擦副的一方为较硬
*H2O四种相组成的。另外,对磨屑的分析观察发 现,它具有两个区域,一是亮区,在该区发现有
球状碳化物聚集,其显微硬度很高,亮区又称为
白层组织;另一是暗区,此区呈涡流状组织,这
摩擦与磨损全课件第4章 磨损1

11/51
2019/2/24
2019/2/24
图4 -2 磨合前、后表面粗糙度的变化情况 1—磨合前;2—磨合后
12/51
2、稳定磨损阶段
磨合的结果,摩擦系统获得了相对稳定的特性。 特点是磨损率很小,摩擦学过程保持不变。 因前期磨合阶段表层经受很高的比压、热效应和 薄层塑性变形及冷作硬化,从而建立起弹性接触 条件。 表层的塑性变形使空气中的氧气向金属内部溶解 和扩散,在金属表面形成FeO,Fe2O3和 Fe3O4固 体覆盖膜。 极压添加剂等物质也会与表面起化学反应形成固 体覆盖膜。 如果膜的形成速度等于或稍大于破坏速度,则主 要产生磨损率极小的氧化磨损(腐蚀磨损) 。
14/51
2019/2/24
如果磨合阶段的磨合规范、程序和润滑剂选择不当,不仅 会延长磨合期,甚至使正常磨损遭到破坏。 如,由于磨合开始的载荷过大,加之选用了差的润滑剂, 粗糙的表面由于金属与金属直接接触造成严重的塑性变形 而导致剧烈粘着磨损,如曲线②所示。 有时,在稳定磨损阶段,由于温度上升或接触面积、载荷 和滑动速度变化,使得流体膜润滑状态转变,正常磨损曲 线①转向曲线③。 当摩擦表面溶解的氧或极压添加剂等与表面起反应形成固 体覆盖膜的速度大大小于破坏速度时,也会出现上述曲线 的情况。
式中: L为滑动距离; V为滑动距离L时的总磨损体积; W为载荷; H为较软材料的布氏硬度值; K为磨损系数。
2019/2/24
24/51
4.影响粘着磨损的主要因素
①
②
③
(1)材料性质 脆性材料的抗粘着磨损能力比塑性材料高。塑性 材料的粘着破坏常发生在表层深处,磨屑的颗粒 大;而脆性材料的粘着破坏常发生在表层浅处, 磨屑的颗粒细小。材料的屈服点或硬度愈高,其 抗粘着磨损能力也愈强。 不同材料或互溶性小的材料组成的摩擦副抗粘着 磨损能力高,如铁与镍、铝相溶,则不能配对成 摩擦副;铅、锡、银、铟与铁不相溶,所以常用 这几种金属的合金作轴瓦。 金属与非金属(如石墨、塑料等)组成的摩擦副 比金属摩擦副的抗粘着磨损性能好。
2019/2/24
2019/2/24
图4 -2 磨合前、后表面粗糙度的变化情况 1—磨合前;2—磨合后
12/51
2、稳定磨损阶段
磨合的结果,摩擦系统获得了相对稳定的特性。 特点是磨损率很小,摩擦学过程保持不变。 因前期磨合阶段表层经受很高的比压、热效应和 薄层塑性变形及冷作硬化,从而建立起弹性接触 条件。 表层的塑性变形使空气中的氧气向金属内部溶解 和扩散,在金属表面形成FeO,Fe2O3和 Fe3O4固 体覆盖膜。 极压添加剂等物质也会与表面起化学反应形成固 体覆盖膜。 如果膜的形成速度等于或稍大于破坏速度,则主 要产生磨损率极小的氧化磨损(腐蚀磨损) 。
14/51
2019/2/24
如果磨合阶段的磨合规范、程序和润滑剂选择不当,不仅 会延长磨合期,甚至使正常磨损遭到破坏。 如,由于磨合开始的载荷过大,加之选用了差的润滑剂, 粗糙的表面由于金属与金属直接接触造成严重的塑性变形 而导致剧烈粘着磨损,如曲线②所示。 有时,在稳定磨损阶段,由于温度上升或接触面积、载荷 和滑动速度变化,使得流体膜润滑状态转变,正常磨损曲 线①转向曲线③。 当摩擦表面溶解的氧或极压添加剂等与表面起反应形成固 体覆盖膜的速度大大小于破坏速度时,也会出现上述曲线 的情况。
式中: L为滑动距离; V为滑动距离L时的总磨损体积; W为载荷; H为较软材料的布氏硬度值; K为磨损系数。
2019/2/24
24/51
4.影响粘着磨损的主要因素
①
②
③
(1)材料性质 脆性材料的抗粘着磨损能力比塑性材料高。塑性 材料的粘着破坏常发生在表层深处,磨屑的颗粒 大;而脆性材料的粘着破坏常发生在表层浅处, 磨屑的颗粒细小。材料的屈服点或硬度愈高,其 抗粘着磨损能力也愈强。 不同材料或互溶性小的材料组成的摩擦副抗粘着 磨损能力高,如铁与镍、铝相溶,则不能配对成 摩擦副;铅、锡、银、铟与铁不相溶,所以常用 这几种金属的合金作轴瓦。 金属与非金属(如石墨、塑料等)组成的摩擦副 比金属摩擦副的抗粘着磨损性能好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
为了解释磨损现象的共同本质,人们提出厂各 种各样的新理论。例如,磨损的剥层理论、磨损的 疲劳理论、磨损的能量理论、磨损的分子理论和磨 损的热波动强度理论等等。本文只对前三种理论进 行简要介绍。 —、磨损的剥层理论
磨损的剥层理论是美国麻省理工学院的教授苏 (N.P.suh)于1973年建立的。这一新理论是以金 属的位错理论为基础的,它分析了亚表层金属的塑 性变形与断裂行为。
3
经测试现,磨屑的显微硬度比两摩擦表面高 许多。同时还用电子衍射法研究了 20℃时在空气 中形成的磨屑,实验是在销一环试验机上进行的, 法向载荷 Fn=62N、滑动速度 Vc=0.44m/s、滑动 距离L=1000m。经分析得知, 45钢的磨屑是由 ɑ 一Fe、ɑ一Fe2O3 、γ—Fe2O3和γ—Fe2O3. *H2O四种相组成的。另外,对磨屑的分析观察发 现,它具有两个区域,一是亮区,在该区发现有 球状碳化物聚集,其显微硬度很高,亮区又称为 白层组织;另一是暗区,此区呈涡流状组织,这 说明其塑性变形相当严重,在这个区域内、球状 碳化物很少,其显微硬度较亮区低。
另外,硬微凸体在平面上施加的曳引力使表 面产生周期性的塑性变形和位错运动,并且使变 形和位错不断积累。
6
2 .当亚表层继续变形时,在位错堆积的应力 作用下,裂纹和空穴便在亚表层形成核心,形成 裂纹的深度与材料的性能和受载情况有关。图 5— 13是钢领跑道上亚表层所产生的裂纹。
3.当继续施加载荷时,金属产生进一步的塑 性剪切变形,而使裂纹之间以及裂纹与空穴之间 相互连接与汇合,于是裂纹在接近表面的平行方 向扩展,当扩展到临界长度时.裂纹与表面之间 的材料被剪断,因而形成了薄而长的磨损碎片。
在低速滑动下实验的结果与上述理论基本一 致,它能从微观角度解释诸如粘着磨损、疲劳磨 损和微动腐蚀磨损的许多现象,但不能解释在高 速下的磨损现象。
8
二、磨损的疲劳理论 表面疲劳是由循环变应力作用引起的一种破
坏形式。当应力幅小于材料的弹性极限时,即在 弹性接触条下,达到其疲劳破坏的循环次数一般 要超过 106;如果应力大于材料的弹性极限,即在 塑性接触条件下,其应力循环次数只需几次或十 几次即可发生破坏,因此,这种破坏常称为低循 环疲劳破坏。
11
摩擦副运动时要产生摩擦力,而摩擦力是由各种外部 条件(如法向载荷、滑动速度以及热过程等)参与到相互接触 的元素(如表面微凸体、亚表层和介质等)中去,并不断相互 作用而引起的。
输入到摩擦副的能量一定大于它输出的能量,其差值 即是摩擦所消耗的能量。对金属材料而言,摩擦力所作功 的主要部分消耗在塑性变形上,并以热的形式散失。而摩 擦功的一小部分(约占总摩擦功的9~16%)则以潜在内能的 形式积蓄在材料中,它表现为结晶的位错。为了使磨屑与 基体材料分离,必须在材料的一定体积内积累足够的内能。 当能量达到临界值时,该体积内的材料即发生塑性流动或 形成裂纹,此时内能减少,经过多次这样的临界循环作用 之后,当积储的能量超过材料结合键的能量时,于是表面 产生破坏,磨屑脱落,形成磨损。
10
该理论不仅适用于疲劳磨损,而且也可以用来 分析磨料磨损和粘着磨损。另外,这种理论不仅可 以应用于金属材料,而且还可以应用于某些非金属 材料(如石墨、橡胶等 )。
三、磨损的能量理论 磨损的能量理论首先是由弗利舍 (G.Fleisher)
提出来的。他认为能量的转化是产生磨损的主要原 因,磨损现象与材料的断裂能量之间有一定的关系。
14
磨损计算方法的背景
但是,由于影响磨损的因素非常多,所以磨 损的计算也是相当复杂的。各国的摩擦学专家曾 提出过很多计算方法用来计算各种类型的磨损和 一些计算方法还未能达到实用阶段,因此,仍需 努力深入研究,加以完善。本节将简要地介绍磨 损的IBM计算法、两个配合“联接”体的磨损计 算法和两种主要磨损类型的计算法,以便深入理 解磨损的本质。
5
该理论叙述了导致薄而长的片状磨屑形成的过 程,其要点如下:
1 .当接触的两表面滑动时,法向力和切向力 是经接触点的粘着与犁沟作用传递的。较软表面 上的微凸体容易产生塑性变形或被磨去,结果形 成了比较光滑的表面。此时的接触情况变成了硬 的凸峰与较软平面的接触,于是前者在后者上面 犁沟并使平面上每一接触点都经受着循环载荷。
磨损的计算方法
参考教材:<<摩擦磨损与抗磨技术>> 张剑锋 周志方
someone 2012.3.13
1
目录 当代磨损理论简述
磨损计算方法 减少磨损与防止磨损的方法
The end
2
第一节 当代磨损理论简述
近些年来,许多工业化国家非常重视对磨损 产物的研究,特别是从微观的角度进行了深入细 致的研究。这是因为,要真正了解磨损的过程, 并进一步研究磨损的机理,就必须弄清楚磨屑是 怎样形成的;其尺寸、形状和机械性能等与磨损 过程和磨损状态究竟有什么关系。为此,人们首 先通过扫描电子显微镜等现代化研究手段对磨屑 进行了观察,发现磨屑的形状有片状、卷曲状、 贝壳状和球状四类。此外,还研究了磨屑的显微 硬度、相组成和组织。
9
苏联的克拉盖尔斯基是提出磨损疲劳理论最 早的学者。他的理论为:
1.由于实际表面存在着粗极度,当二表面相 互作用时,其接触是不连续的,各接触点之和组 成了其实际接触面积;
2.两表面在法向力作用下,实际接触点上便 会产生局部应力和局部变形;
3.当两表面产生相对滑动时,由于摩擦力的 作用,接触区表面材料的性能将发生变化;与此 同时,表层材料的固定体积会受到交变应力的多 次重复作用,因而使之受到积累损伤,结果导致 微观体积内产生疲劳裂纹,最后裂纹扩展,汇合 形成磨屑而脱落。
12
磨屑形成过程所消耗的能量称为断裂能量。事 实上它只占全部吸收能量的百分之几。
用此理论可以分析磨料磨损和腐蚀磨损。
13
第二节 磨损计算方法
磨损计算方法的背景
近十年来,在大量和成批生产的条件下, 机器和设备的能量不断增长,适合于极端 条件的新工艺过程不断涌现。因此,会设 计经久耐用的机器具有特别重要的意义。 在分析了机器和机构的损坏原因后可知, 损坏中有75%是由摩擦副的磨损引起的。 因此,提高机器的耐磨性是延长其寿命的 主要潜力。不建立工程用的磨损计算方法, 就不可能延长相互摩擦的机器零件的寿命。
为了解释磨损现象的共同本质,人们提出厂各 种各样的新理论。例如,磨损的剥层理论、磨损的 疲劳理论、磨损的能量理论、磨损的分子理论和磨 损的热波动强度理论等等。本文只对前三种理论进 行简要介绍。 —、磨损的剥层理论
磨损的剥层理论是美国麻省理工学院的教授苏 (N.P.suh)于1973年建立的。这一新理论是以金 属的位错理论为基础的,它分析了亚表层金属的塑 性变形与断裂行为。
3
经测试现,磨屑的显微硬度比两摩擦表面高 许多。同时还用电子衍射法研究了 20℃时在空气 中形成的磨屑,实验是在销一环试验机上进行的, 法向载荷 Fn=62N、滑动速度 Vc=0.44m/s、滑动 距离L=1000m。经分析得知, 45钢的磨屑是由 ɑ 一Fe、ɑ一Fe2O3 、γ—Fe2O3和γ—Fe2O3. *H2O四种相组成的。另外,对磨屑的分析观察发 现,它具有两个区域,一是亮区,在该区发现有 球状碳化物聚集,其显微硬度很高,亮区又称为 白层组织;另一是暗区,此区呈涡流状组织,这 说明其塑性变形相当严重,在这个区域内、球状 碳化物很少,其显微硬度较亮区低。
另外,硬微凸体在平面上施加的曳引力使表 面产生周期性的塑性变形和位错运动,并且使变 形和位错不断积累。
6
2 .当亚表层继续变形时,在位错堆积的应力 作用下,裂纹和空穴便在亚表层形成核心,形成 裂纹的深度与材料的性能和受载情况有关。图 5— 13是钢领跑道上亚表层所产生的裂纹。
3.当继续施加载荷时,金属产生进一步的塑 性剪切变形,而使裂纹之间以及裂纹与空穴之间 相互连接与汇合,于是裂纹在接近表面的平行方 向扩展,当扩展到临界长度时.裂纹与表面之间 的材料被剪断,因而形成了薄而长的磨损碎片。
在低速滑动下实验的结果与上述理论基本一 致,它能从微观角度解释诸如粘着磨损、疲劳磨 损和微动腐蚀磨损的许多现象,但不能解释在高 速下的磨损现象。
8
二、磨损的疲劳理论 表面疲劳是由循环变应力作用引起的一种破
坏形式。当应力幅小于材料的弹性极限时,即在 弹性接触条下,达到其疲劳破坏的循环次数一般 要超过 106;如果应力大于材料的弹性极限,即在 塑性接触条件下,其应力循环次数只需几次或十 几次即可发生破坏,因此,这种破坏常称为低循 环疲劳破坏。
11
摩擦副运动时要产生摩擦力,而摩擦力是由各种外部 条件(如法向载荷、滑动速度以及热过程等)参与到相互接触 的元素(如表面微凸体、亚表层和介质等)中去,并不断相互 作用而引起的。
输入到摩擦副的能量一定大于它输出的能量,其差值 即是摩擦所消耗的能量。对金属材料而言,摩擦力所作功 的主要部分消耗在塑性变形上,并以热的形式散失。而摩 擦功的一小部分(约占总摩擦功的9~16%)则以潜在内能的 形式积蓄在材料中,它表现为结晶的位错。为了使磨屑与 基体材料分离,必须在材料的一定体积内积累足够的内能。 当能量达到临界值时,该体积内的材料即发生塑性流动或 形成裂纹,此时内能减少,经过多次这样的临界循环作用 之后,当积储的能量超过材料结合键的能量时,于是表面 产生破坏,磨屑脱落,形成磨损。
10
该理论不仅适用于疲劳磨损,而且也可以用来 分析磨料磨损和粘着磨损。另外,这种理论不仅可 以应用于金属材料,而且还可以应用于某些非金属 材料(如石墨、橡胶等 )。
三、磨损的能量理论 磨损的能量理论首先是由弗利舍 (G.Fleisher)
提出来的。他认为能量的转化是产生磨损的主要原 因,磨损现象与材料的断裂能量之间有一定的关系。
14
磨损计算方法的背景
但是,由于影响磨损的因素非常多,所以磨 损的计算也是相当复杂的。各国的摩擦学专家曾 提出过很多计算方法用来计算各种类型的磨损和 一些计算方法还未能达到实用阶段,因此,仍需 努力深入研究,加以完善。本节将简要地介绍磨 损的IBM计算法、两个配合“联接”体的磨损计 算法和两种主要磨损类型的计算法,以便深入理 解磨损的本质。
5
该理论叙述了导致薄而长的片状磨屑形成的过 程,其要点如下:
1 .当接触的两表面滑动时,法向力和切向力 是经接触点的粘着与犁沟作用传递的。较软表面 上的微凸体容易产生塑性变形或被磨去,结果形 成了比较光滑的表面。此时的接触情况变成了硬 的凸峰与较软平面的接触,于是前者在后者上面 犁沟并使平面上每一接触点都经受着循环载荷。
磨损的计算方法
参考教材:<<摩擦磨损与抗磨技术>> 张剑锋 周志方
someone 2012.3.13
1
目录 当代磨损理论简述
磨损计算方法 减少磨损与防止磨损的方法
The end
2
第一节 当代磨损理论简述
近些年来,许多工业化国家非常重视对磨损 产物的研究,特别是从微观的角度进行了深入细 致的研究。这是因为,要真正了解磨损的过程, 并进一步研究磨损的机理,就必须弄清楚磨屑是 怎样形成的;其尺寸、形状和机械性能等与磨损 过程和磨损状态究竟有什么关系。为此,人们首 先通过扫描电子显微镜等现代化研究手段对磨屑 进行了观察,发现磨屑的形状有片状、卷曲状、 贝壳状和球状四类。此外,还研究了磨屑的显微 硬度、相组成和组织。
9
苏联的克拉盖尔斯基是提出磨损疲劳理论最 早的学者。他的理论为:
1.由于实际表面存在着粗极度,当二表面相 互作用时,其接触是不连续的,各接触点之和组 成了其实际接触面积;
2.两表面在法向力作用下,实际接触点上便 会产生局部应力和局部变形;
3.当两表面产生相对滑动时,由于摩擦力的 作用,接触区表面材料的性能将发生变化;与此 同时,表层材料的固定体积会受到交变应力的多 次重复作用,因而使之受到积累损伤,结果导致 微观体积内产生疲劳裂纹,最后裂纹扩展,汇合 形成磨屑而脱落。
12
磨屑形成过程所消耗的能量称为断裂能量。事 实上它只占全部吸收能量的百分之几。
用此理论可以分析磨料磨损和腐蚀磨损。
13
第二节 磨损计算方法
磨损计算方法的背景
近十年来,在大量和成批生产的条件下, 机器和设备的能量不断增长,适合于极端 条件的新工艺过程不断涌现。因此,会设 计经久耐用的机器具有特别重要的意义。 在分析了机器和机构的损坏原因后可知, 损坏中有75%是由摩擦副的磨损引起的。 因此,提高机器的耐磨性是延长其寿命的 主要潜力。不建立工程用的磨损计算方法, 就不可能延长相互摩擦的机器零件的寿命。