初中数学基础知识测试题

合集下载

(专题精选)初中数学函数基础知识真题汇编附解析

(专题精选)初中数学函数基础知识真题汇编附解析

(专题精选)初中数学函数基础知识真题汇编附解析一、选择题1.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.2.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到在线段AB上运动,到达点A达点A后,停止运动;动点Q以1cm/s的速度从B A后,停止运动.若动点P,Q同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为S(单位:cm),则能表示s与t的函数关系的是( )A.B.C.D.【答案】D【解析】【分析】根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【详解】:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.3.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C 、D 的正误.【详解】解:∵s 随t 的增大而减小,∴选项A 、B 错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快,∴s 随t 的增大减小得比开始的快,∴选项C 错误;选项D 正确;故选:D .【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键5.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.7.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B .【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.9.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D【答案】C【解析】 试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .10.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.11.若y x =有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应13.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )A .B .C .D .【答案】B【解析】【分析】注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,S vt vt vt=⨯-⨯=-≤.2214(1)②小正方形穿入大正方形但未穿出大正方形,S=⨯-⨯=,22113③小正方形穿出大正方形,=⨯-⨯-=+≤,S vt vt vt22(11)3(1)∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.17.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.18.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.19.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.。

(易错题精选)初中数学函数基础知识基础测试题含答案解析

(易错题精选)初中数学函数基础知识基础测试题含答案解析

(易错题精选)初中数学函数基础知识基础测试题含答案解析一、选择题1.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,=⨯-⨯=-≤.S vt vt vt2214(1)②小正方形穿入大正方形但未穿出大正方形,22113S=⨯-⨯=,③小正方形穿出大正方形,=⨯-⨯-=+≤,22(11)3(1)S vt vt vt∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.2.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD 的面积为( )A .24B .40C .56D .60【答案】A【解析】【分析】 由点P 的运动路径可得△PAB 面积的变化,根据图2得出AB 、BC 的长,进而求出矩形ABCD 的面积即可得答案.【详解】∵点P 在AB 边运动时,△PAB 的面积为0,在BC 边运动时,△PAB 的面积逐渐增大, ∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD 的面积为AB·BC=24, 故选:A .【点睛】本题考查分段函数的图象,根据△PAB 面积的变化,正确从图象中得出所需信息是解题关键.3.如图,在Rt ABC ∆中,点D 为AC 边中点,动点P 从点D 出发,沿着D A B →→的路径以每秒1个单位长度的速度运动到B 点,在此过程中线段CP 的长度y 随着运动时间x 的函数关系如图2所示,则BC 的长为( )A .1323B .3C 455D 145 【答案】C【解析】【分析】根据图象和图形的对应关系即可求出CD 的长,从而求出AD 和AC ,然后根据图象和图形的对应关系和垂线段最短即可求出CP ⊥AB 时AP 的长,然后证出△APC ∽△ACB ,列出比例式即可求出AB ,最后用勾股定理即可求出BC .【详解】解:∵动点P 从点D 出发,线段CP 的长度为y ,运动时间为x 的,根据图象可知,当x =0时,y=2∴CD=2∵点D 为AC 边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=()211s +时,y 最小,即CP 最小 根据垂线段最短∴此时CP ⊥AB ,如下图所示,此时点P 运动的路程DA +AP=()()1211211⨯+=+所以此时AP=(21111AD -=∵∠A=∠A ,∠APC=∠ACB=90°∴△APC ∽△ACB ∴AP AC AC AB = 即1144AB= 解得:1611在Rt △ABC 中,225511AB AC -= 故选C .【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.4.函数1x -中,自变量x 的取值范围是( ) A .x≠1B .x >0C .x≥1D .x >1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x >1.故选D.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.6.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A .B .C .D .【答案】C【解析】【分析】根据题意可对每个选项逐一分析判断图象得正误.【详解】解:A 、从图象上看小亮的路程走平路不变是不正确的,故不是.B 、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C 、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D 、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是. 故选C .7.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.8.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km故上坡时间12t15==10(min),下坡时间21t12==2(min)∴总用时为:10+2=12(min)故选:B【点睛】本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应9.如图,矩形ABCD中,6cmAB=,3cmBC=,动点P从A点出发以1cm/秒向终点B运动,动点Q同时从A点出发以2cm/秒按A D C→→B→的方向在边AD,DC,CB上运动,设运动时间为x(秒),那么APQ∆的面积()2cmy随着时间x (秒)变化的函数图象大致为()A.B.C.D.【答案】A【解析】【分析】根据题意分三种情况讨论△APQ面积的变化,进而得出△APQ的面积y(cm2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP=x,Q点运动路程为2x,①当点Q在AD上运动时,y=12AP•AQ=12x•2x=x2,图象为开口向上的二次函数;②当点Q在DC上运动时,y=12AP•DA=12x×3=32x,是一次函数;③当点Q在BC上运动时,y=12AP•BQ=12x•(12−2x)=−x2+6x,为开口向下的二次函数,结合图象可知A选项函数关系图正确,故选:A.【点睛】本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ的面积变化.10.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.2x+D.y=12 x+【答案】C 【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+,20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.12.某市在创建文明城市工作中,围绕重点,精准发力,进一步净化了城市环境,美化了市容市貌,如图1,园林队正在迎春公园进行绿化,图2为绿化面积S (单位:2m )与工作时间t (单位:h )之间的关系图象,工作期间有1小时休息,由图可知,休息后每小时绿化面积为( )A .250mB .280mC .2100mD .240m【答案】A【解析】【分析】 由图象可知休息1小时后,园林队工作了2个小时,绿化了216060100m -=,即可求出答案.【详解】解:由图象可知,园林队休息后继续工作了:422h -=,绿化面积为216060100m -=,∴休息后每小时绿化面积为:2100250m ÷=故选:A .【点睛】本题考查的知识点是函数的图象,从图象中找出与所求内容相关的信息是解此题的关键.13.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s 与t 的大致图象应为( )A .AB .BC .CD .D【答案】D【解析】 根据题意,设小正方形运动的速度为v ,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt ,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D 符合,故选D .【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.14.当实数x 2x -41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.15.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .25【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.16.按如图所示的运算程序,能使输出k的值为1的是()A.x=1,y=2 B.x=2,y=1 C.x=2,y=0 D.x=1,y=3【答案】B【解析】【分析】把各项中x与y的值代入运算程序中计算即可.【详解】解:A、把x=1,y=2代入y=kx,得:k=2,不符合题意;B、把x=2,y=1代入y=kx-1,得:1=2k﹣1,即k=1,符合题意;C、把x=2,y=0代入y=kx-1,得:0=2k﹣1,即k=12,不符合题意;D、把x=1,y=3代入y=kx,得:k=3,不符合题意,故选:B.【点睛】此题考查了待定系数法求一次函数解析式,以及程序图的计算,熟练掌握待定系数法是解本题的关键.17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

最新初中数学函数基础知识基础测试题及答案(1)

最新初中数学函数基础知识基础测试题及答案(1)

最新初中数学函数基础知识基础测试题及答案(1)一、选择题1.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.2.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D 【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.以相同速度行驶相同路程,甲车消耗汽油最多B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误.以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确.故选D.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,边长为 2 的正方形ABCD,点P从点A出发以每秒 1 个单位长度的速度沿A D C --的路径向点 C 运动,同时点 Q 从点B 出发以每秒 2 个单位长度的速度沿BCD A --- 的路径向点 A 运动,当点 Q 到达终点时,点P 停止运动,设PQC ∆ 的面积为 S ,运动时间为t 秒,则能大致反映S 与t 的函数关系的图象是( )A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C .【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( ) m1 2 3 4 v 0.01 2.9 8.03 15.1A .v=2m ﹣2B .v=m 2﹣1C .v=3m ﹣3D .v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.6.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()A.B.C.D.【答案】B【解析】【分析】正确理解函数图象即可得出答案.【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.故选B.【点睛】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.7.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量【答案】B【解析】【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.8.在正方形ABCD中,点E为BC边的中点,点F在对角线AC上,连接FB、FE.当点F 在AC上运动时,设AF=x,△BEF的周长为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小(AM>MC)可判断正确的图形.【详解】如图,连接DE与AC交于点M,则当点F 运动到点M 处时,三角形△BEF 的周长y 最小,且AM >MC .过分析动点F 的运动轨迹可知,y 是x 的二次函数且有最低点,利用排除法可知图象大致为:故选B .【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D.【答案】A【解析】【分析】根据题意分三种情况讨论△APQ面积的变化,进而得出△APQ的面积y(cm2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP=x,Q点运动路程为2x,①当点Q在AD上运动时,y=12AP•AQ=12x•2x=x2,图象为开口向上的二次函数;②当点Q在DC上运动时,y=12AP•DA=12x×3=32x,是一次函数;③当点Q在BC上运动时,y=12AP•BQ=12x•(12−2x)=−x2+6x,为开口向下的二次函数,结合图象可知A选项函数关系图正确,故选:A.【点睛】本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ的面积变化.10.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B .【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.若12x y -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为( )A.A B.B C.C D.D【答案】D【解析】根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D符合,故选D.【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.13.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.14.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A.B.C.D.【答案】C【解析】【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=12hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=12h(AB+BC-vt)=-12hvt+12h(AB+BC),是关于t的一次函数关系式;故选C.【点睛】此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.15.如图1,点F从菱形ABCD的项点A出发,沿A-D-B以1cm/s的速度匀速运动到点B.图2是点F运动时,△FBC的面积y (m2)随时间x (s)变化的关系图象,则a的值为( )A .5B .2C .52D .25【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.16.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.下列图象中,表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.18.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).A .骆驼在t 时刻的体温与0时体温的绝对差(即差的绝对值)B .骆驼从0时到t 时刻之间的最高体温与当日最低体温的差C .骆驼在t 时刻的体温与当日平均体温的绝对差D .骆驼从0时到t 时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y 有可能表示的是骆驼从0时到t 时刻之间的最高体温与当日最低体温的差. 故选:B .【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.19.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .y=x+2B .y=x 2+2C .2x +D .y=12x + 【答案】C【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.20.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.。

人教版初中数学函数基础知识经典测试题附答案

人教版初中数学函数基础知识经典测试题附答案

人教版初中数学函数根底知识经典测试题附答案一、选择题1 .如图,正方形 ABCD 中,AB=4cm,点E 、F 同时从C 点出发,以1cm/s 的速度分别沿CB- BA 、CD- DA 运动,到点A 时停止运动.设运动时间为 t (s) , AAEF 的面积为S (cm 2),那么S (cm 2)与t (s)的函数关系可用图象表示为()S=-' (t-4) 2+8,此时抛物线的开口向下,顶点坐标为(8);当4vtwS 寸,直接根据三角形面积公式得到S=^ (8-t) 2A (t-8)2,开口向上,顶点坐标为(8, 0),于是根据这些特征可对四个选项进行判断. 解:当 0< t W 附,S=S 正方形 ABCD- S MDF- S MBE- S ACEF -吉(L4) 2+8;当 4v t w 时,S=;j? (8 - t) 2=;j (t - 8) 2. 乙 乙 应选D.考点:动点问题的函数图象.2.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿 A- B-Cf AA 方向 运动到点A 处停止.设点P运动的路程为x, APAB 的面积为y,如果y 与x 的函数图象如 图2所示,那么矩形 ABCD 的面积为〔〕4,此时抛物线=4?4—工?4? (4 —t)?4? (4-t)-・?t?t1 7t 2+4t12—t 2+4t,配成顶点式得【解析】试题分析:分类讨论:当0WtW 附,利用S=S 正方形ABCD- Sm DF :- S MBE- S^CEF 可得S=~A. 24B. 40C. 56D. 60【答案】A【解析】【分析】由点P的运动路径可得APAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.【详解】•・•点P在AB边运动时,APAB的面积为0,在BC边运动时,APAB的面积逐渐增大,・•・由图2 可知:AB=4, BC=10-4=6,...矩形ABCD的面积为ABBC=24,应选:A.【点睛】此题考查分段函数的图象,根据APAB面积的变化,正确从图象中得出所需信息是解题关键.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.应选D.4.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度y 〔微克/毫升〕与服药后的时间x 〔时〕之间的函数关系如图所示,那么当1&x&6, y的取值范围是〔〕【分析】 值,从而确定y 的范围. 【详解】解:设当0系k 3时,设y kx, 3k 8, 解得:k 8, 38 y :x ; 3当 3 x, 14 时,设 y ax b ,3a b 8 14a b 08a — 11一 112b ——118 112 —x — 11 11当x 1时,y 8,当x 3时,y 有最大值8,当x 6时,y 的值是一4,3 ' ' 11・•・当假Ox 6时,y 的取值范围是8蒯y 8.3【点睛】此题主要考查了求一次函数表达式和函数图象的读图水平.要能根据函数图象的性质和图 象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.5,以下说法:①函数y J x 6的自变量x 的取值范围是x 6;②对角线相等的四边形 是矩形;③正六边形的中央角为 60 ;④ 对角线互相平分且相等的四边形是菱形; 算|J9 2 |的结果为7:⑥相等的圆心角所对的弧相等; ⑦血 我7的运算结果是无理数.其中正确的个数有〔〕A. 1个B. 2个C. 3个D. 4个【答案】BA. 8 64 - W y W —3 1164 ° B - W y W 811D. 8< y<16根据图像分别求出怎k 3和3 x, 14时的函数表达式,再求出当x=1, x=3, x=6 时的 y解得:8 6 42【解析】【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可. 【详解】解:①函数y J X—6的自变量x的取值范围是x 6;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中央角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|内-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦,12 . 27 2.3 3.3 3是无理数;故正确.应选:B.【点睛】此题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.如图,在Rt^PMN 中,/ P=90°, PM=PN, MN=6cm ,矩形ABCD中AB=2cm, BC=10cm,点C和点M重合,点B、C 〔M〕、N在同一直线上,令RtAPMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与4PMN重叠局部的面积为V,那么y与x的大致图象是〔〕B c砌y【答案】A【解析】分析:在RtAPMN中解题,要充分运用好垂直关系和45度角,由于此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt4PMN重叠局部的形状可分为以下三种情况,(1) 0WxW;2 (2) 2<x<4 (3) 4VXW0根据重叠图形确定面积的求法,作出判断即可.详解:•. / P=90°, PM=PN,• ./ PMN=/ PNM=45 ,由题意得:CM=x,分三种情况:①当0W X却力,如图1 ,• •• / PMN=45 ,・•.△ MEC 是等腰直角三角形,此时矩形ABCD 与4PMN 重叠局部是^£“6 ..1 ______ 1 2. .y=S/^MC = —CM?CE=X ;22应选项B 和D 不正确; ②如图2,PB图2当D 在边PN 上时,过 P 作PF± MN 于F,交AD 于G,• •• / N=45 , CD=2, .•.CN=CD=2, .•.CM=6- 2=4,即此时x=4, 当2vxW4时,如图3,矩形ABCD 与 4MN 重叠局部是四边形 EMCD, 过E 作EFL MN 于F,.-.EF=MF=2, ED=CF=x- 2,,c 1…1 ,- y=S 梯形 EMCD =—CD? (DE+CM) =- 2(x2 x) =2x — 2; 2 2③当4vxW6时,如图4,矩形ABCD 与ARMN 重叠局部是五边形 EMCGF,过E 作Ehl± MN 于H, .•.EH=MH=2, DE=CH=x - 2,. MN=6, CM=x, .•.CG=CN=6- x,图F E.•.DF=DG=2- (6-x) =x- 4,1 12 1 - - 1 , .、2 • • y-S 梯形EMCD S ZTDG— CD (DE CM ) - - DG =—x 2 Xx- 2+x) - —(x 4)=-2 2 2 212—x +10x- 18,2应选项A正确;应选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.7.假设A(-3, y1)、B(0, y2)、C(2, y3)为二次函数y= (x+1) 2+1 的图象上的三点,那么y1、y2、y3的大小关系是()A. y1V y2〈y3B. y2V y1〈y3C. y3<yK y2D. yKy3< y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出那么y〔、y2、y3的值,然后进行大小比拟.【详解】解:: A (- 3, y1)、B (0, y2)、C (2, y3)为二次函数y= (x+1) 2+1 的图象上的三点,•-y1= (— 3+1) 2+1 = 5, y2= (0+1) 2+1 = 2, y3= (2+1) 2+1 = 10,•1- y2V y1< y3.应选:B.【点睛】此题考查了比拟函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.如图,矩形OABC, A (4, 0) , C (0, 4),动点P从点A出发,沿A- B-C-Q 的路线匀速运动,设动点P的运动路程为t, 4OAP的面积为S,那么以下能大致反映S与t之间关系的图象是〔)【答案】A【解析】【分析】分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.【详解】解:••• A 〔4, 0〕、C 〔0, 4〕,,-.OA = AB= BC= OC= 4,1 _ _ 1 一①当P由点A向点B运动,即0 t 4, S = -OAgAP =-创4 t = 2t ;2 1 一②当P由点A向点B运动,即4 t 8, S= -OAgAB= —创4 4= 8 ;3 2_ 1 1…③当P 由点A 向点B运动,即8 t 12, S= 2OAgCP =-创4 〔12- t〕= - 2t + 24 ;结合图象可知,符合题意的是 A.应选:A.【点睛】此题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.9.如图,矩形ABCD中,AB 6cm, BC 3cm,动点P从A点出发以1cm/秒向终点B运动,动点Q同时从A点出发以2cm/秒按A D C B的方向在边AD ,2DC , CB上运动,设运动时间为x 〔秒〕,那么APQ的面积y cm 随着时间x〔秒〕变化的函数图象大致为〔〕【答案】A【解析】【分析】根据题意分三种情况讨论祥PQ面积的变化,进而得出9PQ的面积y (cm2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP=x, Q点运动路程为2x,①当点Q在AD上运动时,1 1y= -AP?AQ= —x?2x= x2,图象为开口向上的二次函数;2 2②当点Q在DC上运动时,y= AP?DA= — x X 3= - x ,是一次函数;2 2 2③当点Q在BC上运动时,1 1y= -AP?BQ= x?(12-2x) =-x2+6x,为开口向下的二次函数,2 2结合图象可知A选项函数关系图正确,应选:A.【点睛】此题考查了动点问题的函数图象,解决此题的关键是分三种情况讨论三角形APQ的面积变化.10. 一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,y 〔千米〕与快车行驶时间t 〔小时〕之间的函数图象【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.应选C.11 .如图,矩形ABCD的周长是28cm,且AB比BC长2cm.假设点P从点A出发,以那么图中折线大致表示两车之间的距离1cm/s的速度沿A D C方向匀速运动, A B C方向匀速运动,当一个点到达点时间为t〔s〕, VAPQ的面积为S cm2,那么同时点Q从点A出发,以2cm/s的速度沿C时,另一个点也随之停止运动.假设设运动2S cm 与t〔s〕之间的函数图象大致是〔【答案】A【解析】【分析】先根据条件求出AR AD的长,当0WtW叱Q在边AB上,P在边AD上,如图1 ,计算S 与t的关系式,分析图像可排除选项B、C;当4<tw时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,分析图像即可排除选项D,从而得结论.【详解】解:由题意得2AB 2BC 28, AB BC 2,可解得AB 8, BC 6,即AD 6,①当0Wt司寸,Q在边AB上,P在边AD上,如图1 ,1 1 .〜,2S ZAPQ=— APgAQ 5tg2t t2,图像是开口向上的抛物线,应选项B、C不正确;② 当4vtw时,Q在边BC上,P在边AD上,如图2,1 1S ZAPQ=~APgAB -t 8 4t, 图像是一条线段,应选项D不正确;应选:A.【点睛】此题考查了动点问题的函数图象,根据动点解决此题的关键是利用分类讨论的思想求出P和Q的位置的不同确定三角形面积的不同, S与t的函数关系式.12 .甲、乙两同学骑自行车从A地沿同一条路到B地,乙比甲先出发,他们离出发地的距离S (km)和骑行时间t(h)之间的函数关系如下图,给出以下说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④ 相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有〔0 〞1 2 2.5 魏A. 1个B. 2个C. 3个D. 4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度? 乙的速度,所以甲比乙早0.5小时到达目的地,所以〔1〕〔2〕正确.应选B.考点:此题考查的是学生从图象中读取信息的数形结合水平点评:同学们要注意分析其中的关键点〞,还要善于分析各图象的变化趋势.13 .如下图:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形局部的面积为S 〔阴影局部〕,那么S与t的大致图象应为〔【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为 V ,由于V 分为三个阶段,①小正方形向右未完成穿入大正方形,S 2 2 vt 1 4 vt 〔vt < 1〕.②小正方形穿入大正方形但未穿出大正方形, S 2 2 1 1 3,③小正方形穿出大正方形,S 2 2 〔1 1 vt 〕 3 vt 〔vt< 1〕,符合变化趋势的是 A 和C, 〔1 C 中面积减小太多不符合实际情况, ,只有A 中的符合实际情况. 应选A.14 . 2021年,中国少年岑小林在第六届上海国际交互绳大赛上,破跳次数最多〞吉尼斯世界纪录!实践证实1分钟跳绳的最正确状态是前最后10秒冲刺,中间频率保持不变,那么跳绳频率〔次 /秒〕与时间用以下哪幅图来近似地刻画〔〕小特毕次,秒〕0 20 5060时间I 件〕 【答案】C 【解析】 【分析】根据前20秒频率匀速增加,最后 10秒冲刺,中间频率保持不变判断图象即可. 【详解】解:根据题意可知,中间 20: 50秒频率保持不变,排除选项 A 和D,再根据最后10秒冲刺,频率是增加的,排除选项 B,因此,选项C 正确.应选:C. 【点睛】此题考查的知识点是一次函数的实际应用,理解题意是解此题的关键.“ 3眇内单脚单摇轮换 20秒频率匀速增加,〔秒〕之间的关系可以A.* 20 5.f©时间〔秒〕C.惋嘴次/秒〕15.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:祛码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5【答案】B【解析】【分析】通过〔0, 2〕和〔100, 4〕利用待定系数法求出一次函数的解析式,再比照图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点〔0, 2〕和〔100, 4〕.设一次函数解析式为y=kx+b, 代入点〔0,2〕和点〔100,4〕可解得,k=0.02, b=2.那么一次函数解析式为y=0.02x+2.显然当y=7.5 时,x=275,应选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.16.如下图,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠局部后的面积为s,那么s与t的大致图象应为〔〕A. AB. BC. CD. D【答案】D【解析】根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形, S=2X 2-vt X 1=4-vt②小正方形穿入大正方形但未穿出大正方形, S=2X 2-1 X 1=3③小正方形穿出大正方形,S=VtXJ分析选项可得,D符合,应选D.【点睛】此题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.17 .如图1.正祥BC中,E, F, G分别是AB, BC, CA上的点,且AE= BF= CG,设△EFG的面积为v, AE的长为x, y关于x的函数图象如图2,那么4EFG的最小面积为A.当B. —C. 2D. 5/3【答案】A【解析】【分析】此题根据图2判断在FG的面积y最小时和最大时分别对应的x值,从而确定AB, EG的长度,求出等边三角形EFG的最小面积.【详解】由图2可知,x=2时4EFG的面积y最大,此时E与B重合,所以AB= 2,,等边三角形ABC的高为B,等边三角形ABC的面积为J3,由图2可知,x= 1时AEFG的面积y最小,此时AE= AG= CG= CF= BG= BE,显然AEGF是等边三角形且边长为1 ,所以4EGF的面积为^3,4应选A.【点睛】此题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.18 .甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面50m处,假设两人同时起跑,那么从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( )【答案】C【解析】【分析】甲在乙前面50m处,假设两人同时起跑,在经过25秒,乙追上甲,那么相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,那么相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m处,假设两人同时起跑,经过50+ (6-4) =25秒,乙追上甲,那么相距是0千米,故A、B错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600+ 6=100#,故B.、D错误;相遇以后两人之间的最大距离是: 2 X (100-25)=150米.应选C.【点睛】此题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的根本数量关系:速度刈寸间=距离,是解题的关键.19 .如图,点P是?ABCD边上的一动点,E是AD的中点,点P沿E- Df C-B的路径移动,设P点经过的路径长为x, ABAP的面积是v,那么以下能大致反映y与x的函数关系的3C【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,4BAP的面积的变化趋势. 【详解】通过条件可知,当点P与点E重合时,4BAP的面积大于0;当点P在AD边上运动时,ABAP的底边AB不变,那么其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变, ABAP面积保持不变;当点P带CB边上运动时,ABAP的底边AB不变,那么其面积是x的一次函数,面积随x增大而减小;应选D.【点睛】此题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.20 .如图1,在扇形OAB中, O 60 ,点P从点O出发,沿O A B以1cm/s2的速度匀速运动到点B,图2是点P运动过程中,VOBP的面积y cm 随时间x s变D. 2^2 ,2 2 2~2-3【答案】B【解析】【分析】,3 ,由此可求得a的值,再利用弧长公式进而求得b的值结合函数图像中的〔a, 4百〕可知OB=OA=q S ZAOB=4即可.【详解】解:由图像可知,当点P到达点A时,OB=OA=a, S IAOB= 473 ,过点A 作AD ,OB 交OB 于点D,AD ・•・在 RtAAOD 中,sin/AOD=U AO • •• / AOB=60 ,「.sin60=殷殷/ AO a 2 '..AD 哼 a,, S Z\AOB = 4 J 3 ,• '1 — a —— a 4-J 3 , 2 2• •a=4 〔舍负〕,应选:B.此题是动点函数图象问题,考查了扇形弧长、解直角三角形等相关知识,解答时注意数形 结合思想的应用.那么/AOD=90 , ・•・弧AB 的长为:604土1803。

初中数学函数基础知识基础测试题(1)

初中数学函数基础知识基础测试题(1)

初中数学函数基础知识基础测试题(1)一、选择题1.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以B 正确.故选:B .【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.2.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C .D .【答案】D【解析】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14(x −3)2+94 根据函数关系式可看出D 中的函数图象与之对应.故选D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.3.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =,依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.4.已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【详解】 解:由题意得,12×2πR×l =8π, 则R =8lπ, 故选A .【点睛】 本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.5.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算9的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误; 122723333==是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.如图所示,菱形ABCD 中,直线l ⊥边AB ,并从点A 出发向右平移,设直线l 在菱形ABCD 内部截得的线段EF 的长为y ,平移距离x =AF ,y 与x 之间的函数关系的图象如图2所示,则菱形ABCD 的面积为( )A .3B 3C .3D .3【答案】C【解析】【分析】 将图1和图2结合起来分析,分别得出直线l 过点D ,B 和C 时对应的x 值和y 值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l 过点D 时,x =AF =a ,菱形ABCD 的高等于线段EF 的长,此时y =EF 3;直线l 向右平移直到点F 过点B 时,y 3;当直线l 过点C 时,x =a +2,y =0∴菱形的边长为a +2﹣a =2∴当点E 与点D 重合时,由勾股定理得a 2+23)=4∴a =1 3∴菱形的面积为3故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,7.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.9.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.10.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()A.B.C.D.【答案】B【解析】【分析】正确理解函数图象即可得出答案.【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.故选B.【点睛】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.22B.23C.25D.26【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDSV=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCSV=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴AB=2242=25.故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.13.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,=⨯-⨯=-≤.S vt vt vt2214(1)②小正方形穿入大正方形但未穿出大正方形,22113S=⨯-⨯=,③小正方形穿出大正方形,22(11)3(1)S vt vt vt =⨯-⨯-=+≤,∴符合变化趋势的是A 和C ,但C 中面积减小太多不符合实际情况,∴只有A 中的符合实际情况.故选A .17.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x x y x x x x ⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C 选项符合题意.故选:C .【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.18.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h【答案】C【解析】甲的速度是:20÷4=5km/h ;乙的速度是:20÷1=20km/h ; 由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C .19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中, 2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )A .B .C.D.【答案】D【解析】【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【详解】解:∵EF∥BC,∴△AEF∽△ABC,∴55EF x BC-=,∴EF=55x-•10=10-2x,∴S=12(10-2x)•x=-x2+5x=-(x-52)2+254,∴S与x的关系式为S=-(x-52)2+254(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.。

初中数学函数基础知识基础测试题及答案解析

初中数学函数基础知识基础测试题及答案解析
【详解】
解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;
B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;
C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;
D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,
【点睛】
本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,
5.如图,在 中, , 是边 上一条运动的线段(点 不与点 重合,点 不与点 重合),且 , 交 于点 , 交 于点 ,在 从左至右的运动过程中,设 , 的面积减去 的面积为 ,则下列图象中,能表示 与 的函数关系的图象大致是()
A. B.
C. D.
【答案】D
【解析】
【分析】
判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.
【详解】
解:∵EF∥BC,
∴△AEF∽△ABC,
∴ ,
∴EF= •10=10-2x,
∴S= (10-2x)•x=-x2+5x=-(x- )2+ ,
观察图象,A、B、D的路程始终都在变化,故错误;
C、修车是的路程没变化,故C正确;
故选:C.
【点睛】
考核知识点:函数的图象.理解题意看懂图是关键.
10.如图,AB为半圆的直径,点P为AB上一动点.动点P从点A出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为()
A. B. C. D.
【答案】D

海口市初中数学有理数基础测试题含答案解析

海口市初中数学有理数基础测试题含答案解析

海口市初中数学有理数基础测试题含答案解析一、选择题1.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】利用2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴+++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.2.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.3.下列等式一定成立的是( )A .945-=B .1331-=-C .93=±D .32166--=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】A. 94321-=-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.4.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .5.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a6.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在7.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .,5或13【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.8.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |.由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( ) A .B .C .D .【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.11.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.12.-14的绝对值是( ) A .-4B .14C .4D .0.4【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.13.在﹣6,0,﹣1,4这四个数中,最大的数是()A.4 B.﹣6 C.0 D.﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A.【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.14.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.15.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.18.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】 开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.。

初中数学二次根式基础测试题附答案

初中数学二次根式基础测试题附答案
解: A 、 x 1 x 2 x ,故本选项错误; 33
B 、 a3 a2 a5 ,故本选项错误;
C 、 ( 5 1)( 5 1) 5 1 4 ,故本选项正确;
D 、 a2 2 a4 ,故本选项错误;
故选: C .
【点睛】 本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法 是解题的关键.
8.下列计算或运算中,正确的是()
A. 2 a a 2
B. 18 8 2
C. 6 15 2 3 3 45
D. 3 3 27
【答案】B
【解析】
【分析】
根据二次根性质和运算法则逐一判断即可得.
【详解】
A、2 a =2× a 2a ,此选项错误;
2
2
B、 18 8 =3 2 -2 2 = 2 ,此选项正确; C、 6 15 2 3 3 5 ,此选项错误;
B、 1 2 , 2 与 1 是同类二次根式;
22
2
C、 4ab 2 ab, ab4 b2 a , 4ab 与 ab4 不是同类二次根式;
D、 a 1 与 a 1 不是同类二次根式;
故选:B. 【点睛】 本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式 后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
16.下列各式中是二次根式的是( )
A. 3 8
【答案】C 【解析】 【分析】
B. 1
C. 2
根据二次根式的定义逐一判断即可. 【详解】
A、 3 8 的根指数为 3,不是二次根式;
B、 1 的被开方数﹣1<0,无意义;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学基础知识测试题
姓名得分学校
2分,满分60分)一、填空题(本题共30小题,每小题统称为实数.和1、
y3?53?2y.2、方程1-=的解为86
x3?4? 0,>.3、不等式组的解集是?x?570 ≤?枚,则可得方枚,贰分硬币有y4、伍分和贰分的硬币共100枚,值3元2角.若设伍分硬币有x .程组
2362.5、计算:28x y ÷7x y =
23326、因式分解:x +x -y -y.=
1x?x 时,分式时,其值为零.有意义;又当x 7、当23x?
2byx?a22.;(x-y)÷==8、计算:+2yx?b?abb?a
.;121900000=9、用科学记数法表示:—0.00002008=
6481.;-的立方根为10 、的平方根为125
12518.)=11、计算:-=;(3+2 2
yx?1.==;
12 、分母有理化:5yx?的长方形铁片,在四个角各剪去一个边长相等的小正方形,做成一个长,宽6cm 13、一块长8cm
2 .,则可得方程为方体无盖的盒子,使它的底面积为24 cm .若设小正方形边长为x cm2.14 、如果关于x方程2x的取值范围是-4x +k=0有两个不相等的实数根,那么k
112.=+6x—10的两个根,则+=是方程15、若x、x2x21xx
2122.16 、以+1 和—1为根的一元二次方程是
2.-4x-1=17、在实数范围内因式分解:3x
25?x.的解是18、方程x +=5.yyy19、已知正比例函数=kx,且当x=5时,=7,那么当x=10时,=k在它的图象所在的象限内,函数值随=x的减小时,如果反比例函数y 20、当k x
而增大.
21、在直角坐标系中,经过点(-2,1)和(1,-5)的直线的解析式
是.
22、如果k<0,b>0,那么一次函数y=kx+b的图象经过第象
限.
)之间的函数关系式cm(x)与底长cm(y,那么腰长24cm、如果一个等腰三角形的周长为23.
.是
2.3的图象的开口向;顶点是24、二次函数y=-2x +4 x-
.、经过点(1,3)、(-1,-7)、(-2,-6)的抛物线的解析式是252个单位后,所得到的抛物线的个单位,向下平移4+7向右平移=-3(x-1)326、把抛物线y .解析式是
16岁,这个班级学生的平均年龄是27、柳营中学某班学生中,有18人14岁,16人15岁,6人岁..28、当一组数据有8个数从小到大排列时,这组数据的中位数是
.如果在频数分布直方图中的,最小的数为122 、一组数据共有80个数,其中最大的数为16829 组.组距为5,则可把这组数据分成
.29、23、30、27、31的标准差是30、样本
60分)小题,每小题2分,满分二、填空题(本题共30 互补.相等,、如果两条平行线被第三条直线所截,那么31
,、命题“两直线平行,同旁内角互补”的题设是32
.结论是
.、m,则m的取值范围是33、若三角形三边长分别是6、11
边形.34、如果一个多边形的内角和为2520°,那么这个多边形是
互相重合.、、等腰三角形的、35
三角形.=50°,则△ABC 是36、在△ABC中,若∠A=80°,∠B.cm =5cm,则AB=37、在Rt△ABC中,∠C=90°,∠A=60°.若AC AB 边上的高CD=°,、在Rt△ABC中,∠C=90 如果AC=3cm,BC=4cm,那么
38 .cm 、如果一个平行四边形的两个邻角的差为30°,那么这个平行四边形的较大的一个内角为39 .(度)的四边形是平行四边形.、两组对边分别40
12cm,则这菱形的周长为41、在菱形ABCD中,若有一个内角为120°,且较短的一条对角线长cm.的平行四边形是正方形.42、两条对角线
.中,AD∥BC,若AB=DC,则相等的底角是、在梯形43ABCD
形.44、顺次连结菱形的四边的中点所得到的图形是
AC,则EC=35,AB=9,AB、E分别在、AC边上,若DE∥BC,AD=45、在△ABC中,点D .=
1 =EC,=3cm 边上,AD=
2 cm,DB=4cm,AE分别在46、在△ABC中,点D、EAB、AC .∽△ADE ,所以△ABC cm,因为且
ABC平方厘米,那么△的面积为12交于点G.如果△AEG、△ABC的三条中线AD、BE、CF 47 平方厘米.的面积为
倍,那么面积扩大为原来的48、把一个三角形改成和它相似的三角形,如果边长扩大为原来的10 倍.4.A为锐角,tgA=,那么ctgA=49、如果∠5
.sin30°=;tg60°=、计算:50
3=,那么∠B=°.如果sinA中,∠C=90.(度)51、在Rt△ABC 252、如果飞机在离地面5000米的高空俯视地面上一个目标时,俯角为30°,那么飞机离目标的距离为
米.
53、斜坡的坡度为1︰4,斜坡的水平宽度为20m,则斜坡的垂直高度为
m.
54、在半径为10cm的圆中,20°的圆心角所对的弧长为
cm.
55、若两圆半径分别为9cm和4cm,圆心距为5cm,则两圆位置关系
为.
.C,且OC⊥AB,则直线AB是⊙O的56 、若直线AB经过⊙O上一点
ABCA=7cm,它的内切圆切于点D,那么AD=57、在△ABC 中,如果AB=9cm,BC=4cm,cm.,BC=12cm,那么△ABC内切圆的半径为
AC58、在Rt△ABC中,∠C=90°.如果=5cm .cm,连心线与外cm 15cm的两圆相外切,其外公切线的长为59、半径分别为5cm和
(度).公切线所夹的锐角为
对称图形.对称图形,边数是偶数的正多边形又是60、任何正多边形都是
答案
100?x?y?723x.6.3、x≤-、((y)x.4、.5、4x-2一、1、有理数;无理数.、y=3 ? 3205x?2y?5?b2?a8225-、10×10).9、-2.008×10.;+xy+yy+x+).7、≠-1.219、;=1 .8;(x+y b?3axy2x?y?145552、.6-2x)=24±3;-(或12;1229;+11.8、..13、(-2x)(552y?x7?272?222-x17、(2=x+10 .0=).14、k<2 15、6 .16、x-.x.)(x -)18、7x-+6331、.24x0<<=-.23、y12 x+12,、-、>14 3 x =.19、.20、0 .21y=-2x3 .22一、二、四222个数的和第54.14.7 28、第、.)-(=-、.-2xy25),-(下;11.、=+5x4 26y3x4+3 272.、.、平均数.2910 302
、35.34、16 .、32两直线平行;同旁内角互补.33、5<m<17 二、31、同位角或内错角;同旁内角.平行(或、、105°.4039、10 .38、2.4 .顶角的平分线;底边上的中线;底边上的高.36、等腰.3736=∠、、矩.45∠DAE.46=∠4342、垂直且相等.、∠A=∠D,∠BC.44、..相等)41、48 41ADAE53、54、535 .、5130°.52、10000 ;....=47、72 48、100 49、50、..,CAB24ABAC103;30°.6010、轴;中心.、.、.、切线.56、.π55内切.、576 582 599。

相关文档
最新文档