2020年高考物理试题分类汇编—磁场(后附答案)
全国通用2020-2022年三年高考物理真题分项汇编专题10磁场

4、(2022·全国甲卷·T18)空间存在着匀强磁场和匀强电场,磁场的方向垂直于纸面( 平面)向里,电场的方向沿y轴正方向。一带正电的粒子在电场和磁场的作用下,从坐标原点O由静止开始运动。下列四幅图中,可能正确描述该粒子运动轨迹的是( )
A. B.
C. D.
【答案】B
【解析】
AC.在xOy平面内电场的方向沿y轴正方向,故在坐标原点O静止的带正电粒子在电场力作用下会向y轴正方向运动。磁场方向垂直于纸面向里,根据左手定则,可判断出向y轴正方向运动的粒子同时受到沿x轴负方向的洛伦兹力,故带电粒子向x轴负方向偏转。AC错误;
CD.对PQ的整体受力分析,竖直方向电子秤对Q的支持力大小等于 + ,即Q对电子秤的压力大小等于 + ,选项C错误,D正确。
故选D。
8、(2022·浙江1月卷·T3)利用如图所示装置探究匀强磁场中影响通电导线受力的因素,导线垂直匀强磁场方向放置。先保持导线通电部分的长度L不变,改变电流I的大小,然后保持电流I不变,改变导线通电部分的长度L,得到导线受到的力F分别与I和L的关系图像,则正确的是( )
减速阶段加速度大小最大时,磁场方向斜向左上方,有
故BC正确,AD错误。
故选BC。
11、(2022·浙江1月卷·T22)如图为研究光电效应的装置示意图,该装置可用于分析光子的信息。在xOy平面(纸面)内,垂直纸面的金属薄板M、N与y轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心、圆心角为90°的半径不同的两条圆弧所围的区域Ⅰ,整个区域Ⅰ内存在大小可调、方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域Ⅰ右侧还有一左边界与y轴平行且相距为l、下边界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,其中的磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板间电压U加速(板间电场视为匀强电场),调节区域Ⅰ的电场强度和区域Ⅱ的磁感应强度,使电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m、电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为ν的光照射板M时有光电子逸出,
2020年高考磁场专题复习卷(附答案)

2020年高考磁场专题复习卷(附答案)一、单选题(共14题;共28分)1.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动.假定两板与冰面间的动摩擦因数相同.已知甲在冰上滑行的距离比乙远,这是由于()A. 在推的过程中,甲推乙的力小于乙推甲的力B. 在推的过程中,甲推乙的时间小于乙推甲的时间C. 在刚分开时,甲的初速度大于乙的初速度D. 在分开后,甲的加速度的大小小于乙的加速度的大小2.如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为﹣q的带电粒子(重力不计)从AB边的中点O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场的大小B需满足()A. B>B. B<C. B>D. B<3.平面OM和平面ON之间的夹角为,其横截面纸面如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外一带电粒子的质量为m,电荷量为粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成角已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场不计重力粒子离开磁场的射点到两平面交线O的距离为A. B. C. D.4.关于电场强度、磁感应强度,下列说法中正确的是()A. 由真空中点电荷的电场强度公式E=k 可知,当r趋近于零时,其电场强度趋近于无限大B. 电场强度的定义式E= 适用于任何电场C. 由安培力公式F=BIL可知,一小段通电导体在某处不受安培力,说明此处一定无磁场D. 通电导线在磁场中受力越大,说明磁场越强5.如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下,一边长为的正方形金属线框在导轨上向左匀速运动,线框中感应电流i随时间t变化的正确图线可能是()A. B. C. D.6.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两块导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1或U2的变化情况为(不计重力,不考虑边缘效应)()A. 仅增大U1d将增大B. 仅增大U1 d将减小C. 仅增大U2 d将增大D. 仅增大U2 d将减小7.如图所示,有界匀强磁场边界线SP∥MN,速率不同的同种带电粒子从S点沿SP方向同时射入磁场.其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,设粒子从S到A、B 所需时间分别为t1、t2,则t1∶t2为(重力不计)( )A. 1∶3B. 4∶3C. 1∶1D. 3∶28.如图所示,竖直悬挂的金属棒AB原来处于静止状态.金属棒CD棒竖直放置在水平磁场中,CD与AB通过导线连接组成回路,由于CD棒的运动,导致AB棒向右摆动,则CD棒的运动可能为()A. 水平向右平动B. 水平向左平动C. 垂直纸面向里平动D. 垂直纸面向外平动9.如图5所示,MN为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B1=2B2,一带电荷量为+q、质量为m的粒子从O点垂直MN进入B1磁场,则经过多长时间它将向下再一次通过O点( )A. B. C. D.10.下列说法中正确的是()A. 磁场中某一点的磁感应强度可以这样测定:把一小段通电导线放在该点时受到的磁场力F与该导线的长度L、通过的电流I乘积的比值.即B=B. 通电导线放在磁场中的某点,该点就有磁感应强度,如果将通电导线拿走,该点的磁感应强度就为零C. 磁感应强度B= 只是定义式,它的大小取决于场源以及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D. 通电导线所受磁场力的方向就是磁场的方向11.如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子的能量逐渐减小,从图中可以看出()A. 带电粒子带正电,是从B点射入的B. 带电粒子带负电,是从B点射入的C. 带电粒子带负电,是从A点射入的D. 带电粒子带正电,是从A点射入的12.春天,水边上的湿地是很松软的,人在这些湿地上行走时容易下陷,在人下陷时()A. 人对湿地地面的压力大小等于湿地地面对他的支持力大小B. 人对湿地地面的压力大于湿地地面对他的支持力C. 人对湿地地面的压力小于湿地地面对他的支持力D. 下陷的加速度方向未知,不能确定以上说法哪一个正确13.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.己知磁场I、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A. 2cosθB. sinθC. cosθD. tanθ14.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f,则下列说法正确的是()A. 质子在匀强磁场每运动一周被加速一次B. 质子被加速后的最大速度与加速电场的电压大小有关C. 质子被加速后的最大速度不可能超过2πfRD. 不改变B和f,该回旋加速器也能用于加速α粒子二、多选题(共4题;共12分)15.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
考点十一 磁场--2020年高考物理分类题库

考点十一磁场1.(2020·全国Ⅰ卷)一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,为半圆,ac、bd 与直径ab 共线,ac 间的距离等于半圆的半径。
一束质量为m、电荷量为q(q>0)的粒子,在纸面内从c 点垂直于ac 射入磁场,这些粒子具有各种速率。
不计粒子之间的相互作用,在磁场中运动时间最长的粒子,其运动时间为()A.76m qBπ B.54m qBπ C.43m qBπ D.32m qBπ【解析】选C。
粒子在磁场中做匀速圆周运动有qBv=2mv r ,T=2r vπ,可得粒子在磁场中的周期T=2m qBπ,粒子在磁场中运动的时间2mt T qB θθπ=⋅=,则轨迹对应的圆心角越大,运动时间越长。
设半圆ab 的半径为R,如图,粒子垂直ca 射入磁场,则轨迹圆心必在ca 直线上,当半径r≤0.5R 和r≥1.5R 时,粒子分别从ac、bd 区域射出,磁场中的轨迹为半圆,运动时间等于半个周期。
当0.5R<r<1.5R 时,粒子从半圆边界射出,将轨迹半径从0.5R 逐渐增大,粒子射出位置从半圆顶端向下移动,轨迹圆心角从π逐渐增大,当ce 与半圆ab 相切时,轨迹圆心角最大,此时轨迹半径r=R,如图,则轨迹对应的最大圆心角θ=π+3π=43π,粒子运动最长时间4243223m m t T qB qBπθππππ==⨯=,故选项C 正确。
【方法技巧】“放缩圆”法适用条件速度方向一定、大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP'上界定方法以入射点P 为定点,圆心位于PP'直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法2.(2020·全国Ⅱ卷)CT 扫描是计算机X 射线断层扫描技术的简称,CT 扫描机可用于对多种病情的探测。
2020年高校自主招生好题精选物理专项汇编:磁场(解析版)

2020年高校自主招生好题精选物理专项汇编:磁场(解析版)1.(复旦大学自主招生)一个充电的球形电容器,由于绝缘层的轻微漏电而缓慢放电,则( ) A.放电电流将产生垂直于球面的磁场B.放电电流将产生沿着经度线的磁场C.放电电流将产生沿着纬度线的磁场D.放电电流不产生磁场【答案】D【解析】由于充电的球形电容器中的电场方向为径向均匀辐射状,故放电电流也为径向均匀辐射状,放电电流垂直于球面。
但是由于对称性,放电电流产生磁场将相互抵消,选项D正确。
2.(“卓越”自主招生)如图所示,匀强磁场的方向垂直于纸面向里。
在磁场中某点沿水平虚线方向发射两个带正电的粒子A和B,其速度分别为v A、v B,两者的质量和电荷量均相同,两个粒子分别经过t A、t B从P A、P B射出,且P A、P B在同一水平线上,则( )A.v A>v B , t A>t B B.v A>v B , t A<t BC.v A<v B , t A>t B D.v A<v B , t A<t B【答案】B【解析】画出粒子运动的轨迹,由图可知,v A>v B。
根据带电粒子在磁场中做匀速圆周运动的周期公式可知,粒子在匀强磁场中运动时间与轨迹所对的圆心角成正比,所以t A<t B,选项B 正确。
3.(复旦大学自主招生)把动能和速度方向相同的质子和α粒子分离开,如果使用匀强电场及匀强磁场,可行的方法是( )A.只能用电场 B.只能用磁场C.电场和磁场都可以 D.电场和磁场都不行【答案】A【解析】带电粒子垂直电场方向射入匀强电场中,利用类平抛运动规律,带电粒子在电场中偏转距离y =12at 2=12qE m ·⎝ ⎛⎭⎪⎫L v 2=qEL 22mv 2。
由于质子和α粒子带电量q 不同,在电场中偏转距离y 不同,可以把动能和速度方向相同的质子和α粒子分离开,选项A 正确。
带电粒子垂直磁场方向进入匀强磁场中,利用洛伦兹力等于向心力,qvB =m v 2R ,解得R =mv qB =2mE k qB 。
【复习指导】2020年高考物理重点试题分项版汇编系列专题11磁场含解析

,可知,导致半径减小,则
qB
x 也减小,故 C 错误;减小偏转电场的电压
U 的大小,设速度与磁场边界的夹角为
θ,则由半径公式
R
mv
m v0 sin ,结合几何关系,可得:
Bq Bq
x=2Rsin θ2=mv0 ,则会导致 x 不变,故 D 正确;故选 D. Bq
点睛:考查粒子做类平抛运动与匀速圆周运动的处理规律,掌握圆周运动的半径公式,注意运动的合成与分解的
C. 超级电容器相当电源,放电时两端电压不变
D. 在电容器放电过程中,电容器电容不断减小
【答案】 B
【解析】电容器下极板接正极,所以充电后
N乙极带正电,故 A 错误;放电时,电流由 F 到 E,则由左手定则可
知,安培力向右,所以导体棒向右运动,故
B 正确;电容器放电时,电量和电压均减小,故
C 错误;电容是电容
粒子而变为钍核,在匀强磁场中的径迹如图所示,则正确的说法
()
A. 1 是 , 2 是钍 B. 1 是钍, 2 是 C. 3 是 , 4 是钍 D. 3 是钍, 4 是 【答案】 B 【解析】 一个静止的铀核发生 衰变后变为钍核,
三种情况下带电粒子在两个相互平行平面之间运动时间及加速度大小.各自由相应规律表示出时间和加速度,从
而得到结论. 在复合场中,带电粒子做匀速直线运动,则有
Eq=Bqv,则有 E=Bv.在复合场中的时间
t1
d
,而在单一电场中
v
部编本资料欢迎下载!
最新人教版小学资料
水平方向也是做匀速直线运动,
所以运动的时间 t2
段 ab、bc 和 cd 的长度均为 L,且∠ abc =∠ bcd= 135°。流经导线的电流为 I ,方向如图中箭头所示。 导线段 abcd
2020高考物理精品习题:磁场(全套含解析)高中物理(20200818125802)

【答案】A5.电饭锅工作时有两种状态:一种是锅内水烧开前的加热状态,另一种是锅内 水烧开后的保温状态,如下图10-1-9是一学生设计的电饭锅电路原理示意图,S 是用感温材料制造的开关•以下讲法中正确的选项是〔 〕A .加热状态时是用 R 1、R 2同时加热的. B. 当开关S 接通时电饭锅为加热状态, S 断开时为保温状态2020高考物理精品习题:磁场(全套含解析 )高中物理第I 课时 部分电路?电功和电功率 i •关于电阻率,以下讲法中不正确的选项是 〔 〕 A •电阻率是表征材料导电性能好坏的物理量,电阻率越大,其导电性能越好 B •各种材料的电阻率都与温度有关,金属的电阻率随温度的升高而增大 C .所谓超导体,当其温度降低到接近绝对零度的某个临界温度时,它的电阻率突然变为零 D •某些合金的电阻率几乎不受温度变化的阻碍,通常用它们制作标准电阻【解析】电阻率表示导体的导电好坏,电阻率越小,导体的导电性能越好. 【答案】 A 2•一个标有” 220V A .接近于807 Q C .明显大于807 Q60W 〃的白炽灯泡,当用多用电表的欧姆挡去测量它的电阻时,其阻值〔 B 接近于0Q D .明显小于807 Q 【解析】 用多用电表的欧姆挡去测量灯泡的电阻时, 应把灯泡从电路中断开, 由于金属的电阻率随温度的升高而增大,现在它的电阻明显小于正常发光时的电阻 【答案】 D 测出的是其不发光时电阻,807 Q 3•如下图10-1-7,一幢居民楼里住着生活水平各不相同的 24户居民,因此整幢居民楼里有各种不同的电 器,例如电炉、电视机、微波炉、电脑等等•停电时,用多用电表测得 A 、B 间的电阻为R ;供电后,各 家电器同时使用,测得 A 、B 间电压为U ,进线电流为I ,那么运算该幢居民楼用电的总功率能够用的公 式是〔 〕c c U 2A . P = I 2R B.P = R C.P = IU D.以上公式都能够 【解析】 因居民楼内各种电器都有,因此不是纯电阻电路, 因此A 、B 、D 不对. 【答案】 CA 居 U 民楼 B A 图 10-1-7 4•如下图10-1-8 ,厚薄平均的矩形金属薄片边长 ab=10 cm , bc=5 cm ,当将A 与B 接入电压为U 的电路中时, 电流强度为1 A ,假设将C 与D 接入电压为U 的电路中,那么电流为 A.4A B.2A 1C. — A 21 D. —A 4 【解析】由电阻定律R = L ,当A 与B 接入电路中时,S ab »亠 R 1= R ,其中 图 10-1-8d 表示金属片的厚度•当 D 接入电路中时, bc R 2= ab d可知R 1= 4,由欧姆定律得 互=4,应选 AR 2I 1图 10-1-9C .要使R 2在保温状态时的功率为加热状态时的1/8 , R 1/R 2 应为 7 : 1当 S 断开,R 1 与 R 2 串联,P'= 2202/〔 R 1 + R 2〕; P > P'A 不正确B 正确.由于电路中总电压 U 不变,D .要使R 2在保温状态时的功率为加热状态时的 1/8, R 1/R 2 应为〔2 . 2 — 1〕:1 应选择功率公式 P =—,可知R 2 2 2202 2202 R 2 R 2 R 1 R 2 R 1 R 28 得兰 —LJ 即D 正确 R 2 1 【答案】BD 6•电子绕核运动可等效为一环形电流,设氢原子中的电子以速度 子的电量,那么其等效电流的电流强度等于 ________________ . 【解析】由电流的定义式I = q/t,那么电子的电流强度的大小应为v 在半径为r 的轨道上运动,用 e 表示电I = e/T,而电子运动的周期 ev T = 2 n /r ,得 I =2 r 【答案】 ev T7 7.—直流电源给蓄电池充电如下图 10-1-10,假设蓄电池内阻 电流表的读数为I ,那么输入蓄电池的电功率为 为 ________ ,电能转化为化学能的功率为 _ 【答案】UI,I 2r,UI-I 2r r ,电压表读数 ,蓄电池的发热功率 &某一直流电动机提升重物的装置,如下图 10-1-11 ,重物的质量 m=50kg ,电源提供给电动机的电压为 U=110V ,不计各种摩擦,当电动机以 v=0.9m/s 的恒定速率向上提升重物时,电路中的电流强度 I=5.0A , g=10m/s 2〕. 求电动机的线圈电阻大小〔取 【解析】电动机的输入功率 P = UI ,电动机的输出功率 P 1=mgv ,电动机发热功率P 2=I 2r 而 P 2=P — P i ,即卩 I 2r= UI — mgv图 10-1-11 代入数据解得电动机的线圈电阻大小为 r=4 Q 【答案】 r=4 Q 9•在图10-1-12中,AB 和A'B'是长度均为L = 2km ,每km 电阻值为p= 1Q 的两根输电线.假设发觉在 距离A 和A'等远的两点C 和C'间发生漏电,相当于在两点间连接了一个电阻•接入电动势 E = 90V 、内 阻不计的电源:当电源接在 A 、A'间时,测得 A'间电压为 U A = 45V.求A 与C 相距 多远? 【解析】在测量过程中的等效电路如 下图〔甲〕、〔乙〕所示•当电源接 在A 、A'时,能够认为电流仅在 A'C'CA 中流,现在U B = 72V 为漏电 阻R 上的电压.设 AC 和BC 间每根 输电线的电阻为 R AC 和R BC .那么有: 芈 R …①同理,当电源接在 E 2R AC R 图 10-1-12B 、B'间时,那么有:U AER…②2R BC R由①②两式可得:【解析】当S 闭合时, 那么可知S 闭合时为加热状态, R 1 被短路,P = 2202 /R 2;S 断开时为保温状态;即【答案】0.4km1R AC = — R BC4依照电阻定律 R = L %L ,可得A 、C 间相距为:SL AC =2km0.4km10.如下图 10-1-13 是- -种悬球式加速度仪 .它能够用来测定沿水平轨道做匀加速直线运动的列车的加速 度.m 是一个金属球,它系在细金属丝的下端,金属丝的上端悬挂在 O 点,AB 是一根长为L 的电阻丝,其阻值为R.金属丝与电阻丝接触良好, 摩擦不计.电阻丝的中点 C 焊接一根导线.从O 点也引出一根导线,两线 之间接入一个电压表 ①〔金属丝和导线电阻不计〕.图中虚线OC 与AB 相垂直,且 OC=h ,电阻丝AB 接在电压恒为 U 的直流稳压电源上.整个 装置固定在列车中使 AB 沿着车前进的方向.列车静止时金属丝呈竖直 状态•当列车加速或减速前进时,金属线将偏离竖直方向 0,从电压表的 读数变化能够测出加速度的大小 〔1〕当列车向右做匀加速直线运动时,试写出加速度 a 与0角的关系 及加速度a 与电压表读数 U'的对应关系. 图 10-1-13〔2〕那个装置能测得的最大加速度是多少 ? 【解析】〔1〕小球受力如下图,由牛顿定律得:a=F 合=mgta ^ =gtan 0 . m m设细金属丝与竖直方向夹角为 0时,其与电阻丝交点为 D , CD 间的电压为U ;U R CD CD CD CD L U 那么 CD,故得 a=gtan 0 =g • g. U R AB AB L h hU 〔2〕因CD 间的电压最大值为 U/2,即U max -U/2,因此a max = — g.2h F E【答案】〔1〕a=gtan0.〔 2〕a max = — g2h 第H 课时 电路分析•滑动变阻器1. 如下图10-2-14,在A 、B 两端加一恒定不变的电压 U ,电阻R 1为 60 Q,假设将R 1短路,R 2中的电流增大到原先的 4倍;那么R 2为〔 〕 A . 40 Q B . 20 Q C . 120 Q D . 6 Q 【答案】B 2. 如下图10-2-15 , D 为一插头,可接入电压恒定的照明电路中, a 、b 、c 为三只 R 1R 2A vBU图 10-2-14相同且功率较大的电炉, a 靠近电源,b 、c 离电源较远,而离用户电灯 炉接入电路后对电灯的阻碍,以下讲法中正确的选项是 A •使用电炉a 时对电灯的阻碍最大 L 专门近,输电线有电阻•关于电 图 10-2-15B •使用电炉b 时对电灯的阻碍比使用电炉 a 时大 C. 使用电炉c 时对电灯几乎没有阻碍 D •使用电炉b 或c 时对电灯阻碍几乎一样【解析】输电线有一定电阻, 在输电线上会产生电压缺失. 使用电炉c 或b 时,对输电线中电流阻碍较大, 使线路上的电压缺失较大, 从而对用户电灯产生较大的阻碍, 而使用电炉a 对线路上的电压缺失阻碍甚微, 能够忽略不计. 【答案】BD3•如图10-2-16 〔甲〕所示电路,电源电动势为 E ,内阻不计,滑动变阻器的最大阻值为 R ,负载电阻为 R o .当滑动变阻器的滑动端S 在某位置时,R o 两端电压为E/2,滑动变阻器上消耗的功率为P .假设将R oA . R o 两端的电压将小于 E/2B . R o 两端的电压将等于 E/2C .滑动变阻器上消耗的功率一定小于 PD .滑动变阻器上消耗的功率可能大于P【解析】在甲图中,设变阻器 R 滑动头以上、以下的电阻 分不为R上、R 下,那么R o //R 下=R 上,有R o > R 上;当接成乙图 电路时,由于R o >R 上,那么R o 两端的电压必大于 E/2,故A 、 而滑动变阻器上消耗的功率能够大于 P .应选D .【答案】D4•如下图io-2-17是一电路板的示意图,a 、b 、c 、d 为接线柱,a 、d 与22oV 的交流电源连接, 间、cd 间分不连接一个电阻.现发觉电路中没有电流,为检查电路故障,用一交流电压表分不测得 两点间以及a 、c 两点间的电压均为 22oV ,由此可知〔 A . ab 间电路通, cd 间电路不通 B . ab 间电路不通,bc 间电路通 C . ab 间电路通, bc 间电路不通 D . bc 间电路不通,cd 间电路通【解析】第一应明确两点:〔 1〕电路中无电流即l=o 时,任何电阻两端均无电压;〔 2〕假设电路中仅有一处断路,那么电路中哪里断路,横跨断路处任意两点间的电压均是电源电压.由题可知, bd 间电压为22oV ,讲明断路点必在 bd 之间;ac 间电压为22oV ,讲明断点又必在 ac 间;两者共同区间是 bc ,故bc 断路,其余各段均完好. 【答案】CD5•传感器可将非电学量转化为电学量,起自动操纵作用.如运算机鼠标中有位移传感器,电熨斗、电饭煲中有温度传感器,电视机、录象机、影碟机、空调机中有光电传感器 ……演示位移传感器的工作原理如下图 io-2-17,物体M 在导 轨上平移时,带动滑动变阻器的金属滑杆 P ,通过电压表显示的数据, 来反映物 体位移的大小 X ,假设电压表是理想的, 那么以下讲法中正确的选项是 〔 〕A .物体M 运动时,电源内的电流会产生变化B .物体M 运动时,电压表的示数会发生变化C .物体M 不动时,电路中没有电流D .物体M 不动时,电压表没有示数【解析】滑动变阻器与电流构成闭合回路,因此回路中总是有电流的,这与与电源位置互换,接成图〔乙〕所示电路时,滑动触头 S 的位置不变,那么〔〔甲〕 〔乙〕ab 间、bc b 、d M 运动与否无关,C 错误.图〕E图 io-2-17中的滑动变阻器实际上是一个分压器,电压表测量的是滑动变阻器左边部分的电压,在图中假设杆 P 右移那么示数增大,左移那么示数减小•因表是理想的,因此 P 点的移动对回路中的电流是无阻碍的•综上所 述,只有B 正确. 【答案】 6.如下图 R 1、R 2、 P'1: P'2: 【解析】 P 1: R 1、 =6 : P 2 : R 2、 B 10-2-18的电路中,电阻 R i =1 Q, R 2=2 Q, R B =3 Q,在A 、B 间接电源,S i 、S 2都打开,现在电阻 R B 消耗的功率之比 P 1: P 2: _______ P 3= ;当S 1、S 2都闭合时,电阻 R 1、R 2、R 3消耗的功率之比 P'3= ________. 当S 1、S 2都打开时, P 3= R 1 : R 2: R 3= 1 R 3相互并联, R 1、R 2、R 3相互串联,那么 :2: 3•当S 1、S 2都闭合时,A P'1: P'2: P'3=1/R 1: 1/R 2: 1/R 3 Si- R 2 RB 3: 2. 【答案】1 : 2 : 3, 6: S 2 图 10-2-18 7•在图 10-2-19 B 间的总电阻为 【解析】用等效替代法,可把除 R 1 与等效电阻R 为并联关系,那么R AB =RR 1〔R+R 1〕=12R 〔 12+R 〕=4,解得R=6Q , 假设 R‘1=6 Q 时,那么 R'AB =RR'1/〔 R+R'1〕=6 ⑹〔6+6〕=3 Q.【答案】3 8.如下图 10-2-20 的电路中,R 1=4 Q, R 2=10 Q, R B =6 Q, R 4=3 Q, a 、b 为接线柱,电路两端所加电压为 24V ,当a 、b 间接入一理想电流表时, - 它的示数应是多少? 【解析】如图乙所示,从图能够看出,接入理想电流表后, 再与R 2串联;而R 2+ R 34与R 1又是并联关系.电流表测的是 的电流之和. R 34 = R 3R 4/〔 R 3+R 4〕=2 Q R 234=R 34 + R 2=12 Q|2=U/R 234 =2A l 1=U/R 1=6A【答案】6.67A 8个不同的电阻组成,R 1=12 Q,其余电阻值未知, 测得A 、 4 Q,今将R 1换成6 Q 的电阻,A 、B 间总电阻变成 ____________ Q. R 1外的其他电阻等效为一个电阻 R ,在AB 间 所示的 旦_ _a bR 3R 2l 3/|4=R 4/R 3=1/2 ••• l 3=|2/3=2/3A ,••• I A =I 1 + I 3=6.67AR 3与R 4并联, R i 与 R 3 —R 4R 2-------- 0 ——_. R4R U --------------图 10-2-20其总电阻为 电路两端加上恒定电压 U ,移动R 的滑动触片,求电流表的示数变化范畴.【解析】设滑动变阻器滑动触头左边部分的电阻为R x . 电路连接为R 0与R x 并联,再与滑动变阻器右边部分的电阻 R - R x 串联, 9.如下图10-2-21,电路中R 0为定值电阻,R 为滑动变阻器, U -乙 R ,当在U 图 10-2-21那么干路中的电流 R 并 + R — R x R 0R xR R xR o R x因此电流表示数| R 0 R xUR °R x R 0R 0 R x "、0、xR RR 0 R xXUR 。
2020年磁场测试(含答案)(1)

2020年普通高等学校招生全国统一考试磁场能力测试二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.下列关于磁场的说法中,正确的是( )A. 磁场和电场一样,是客观存在的特殊物质B. 磁场是为了解释磁极间相互作用而人为规定的C. 磁极与磁极间是直接发生作用的D. 磁场只有在磁极与磁极、磁极与电流发生作用时才产生15.长为10 cm的通电直导线,通以1 A的电流,在磁场强弱、方向都一样的空间(匀强磁场)中某处受到的磁场力为0.4 N,则该磁场的磁感应强度( )A.等于4 T B.大于或等于4 TC.小于或等于4 T D.上述说法都错误16、关于磁感应强度B=FIL和电场强度E=Fq,下列说法中正确的是( )A.一小段通电直导线在某处不受磁场力作用,说明此处一定无磁场B.一试探电荷在某处不受电场力作用,说明此处一定无电场C.一小段通电导线在磁场中所受磁场力越大,说明此处的磁场越强D.磁感应强度的方向与该处一小段通电导线所受磁场力的方向可能相同17.如图所示是等腰直角三棱锥,其中侧斜面abcd为边长为L的正方形,abef和ade均为竖直面,dcfe为水平面。
将次等腰直角三棱锥安图示方式放置于竖直向下、磁感应强度为B的匀强磁场中,下面说法中正确的是A.通过abcd面的磁通量大小为BL²B.通过dcfe面的磁通量大小为BL²C.通过ade的磁通量为零D.通过abfe面的磁通量大小为BL²18.电流天平是一种测量磁场力的装置,如图所示。
两相距很近的通电平行线圈Ⅰ和Ⅱ,线圈Ⅰ固定,线圈Ⅱ置于天平托盘上。
当两线圈均无电流通过时,天平示数恰好为零。
下列说法正确的是A.当天平示数为负时,两线圈电流方向相同B.当天平示数为正时,两线圈电流方向相同C.线圈Ⅰ对线圈Ⅱ的作用力大于线圈Ⅱ对线圈Ⅰ的作用力D.线圈Ⅰ对线圈Ⅱ的作用力与托盘对线圈Ⅱ的作用力是一对相互作用19、如图为显像管原理示意图,电子束经电子枪加速后,进入偏转磁场偏转,不加磁场时,电子束打在荧光屏正中的O点。
2020年高考物理试题分类汇编——电磁感应

2020 年高考物理试题分类汇编——电磁感觉〔全国卷1〕17.某地的地磁场磁感觉强度的竖直重量方向向下,大小为 4.5 10 5 T。
一敏捷电压表连结在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水〔视为导体〕流过。
设落潮时,海水自西向东流,流速为2m/s。
以下讲法正确的选项是A .河北岸的电势较高B.河南岸的电势较高C.电压表记录的电压为9mV D.电压表记录的电压为5mV【答案】BD【分析】海水在落潮时自西向东流,该过程可以理解得为:自西向东运动的导体棒在切割竖直向下的磁场。
依据右手定那么,右岸即北岸是正极电势高,南岸电势低, D 对 C 错。
依据法拉第电磁感觉定律E BLv 4.5 10 5100 2 9 10 3V, B对A错。
【命题企图与考点定位】导体棒切割磁场的实质应用题。
〔全国卷2〕18. 如图,空间某地区中有一匀强磁场,磁感觉强度方向水平,且垂直于纸面向里,磁场上界限 b 和下界限 d 水平。
在竖直面内有一矩形金属一致加线圈,线圈上下面的距离特意短,下面水平。
线圈从水平面 a 开始着落。
磁场上下界限之间的距离大于水平面a、 b 之间的距离。
假定线圈下面刚经过水平面b、c〔位于磁场中〕和 d 时,线圈所遇到的磁场力的大小分不为F b、 F c和 F d,那么A.F d> F c> F bB. F c<F d< F bC.F c> F b> F dD. F c< F b< F d【答案】 D【分析】线圈从a到b 做自由落体运动,在b 点开始进入磁场切割磁感线所有遇到安培力F b,因为线圈的上下面的距离特意短,所以经历特意短的变速运动而进入磁场,此后线圈中磁通量不变不产生感觉电流,在 c 处不受安培力,但线圈在重力作用下仍旧加快,所以从 d 处切割磁感线所受安培力必然大于答案 D。
b 处,【命题企图与考点定位】线圈切割磁感线的竖直运动,应用法拉第电磁感觉定律求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考物理试题分类汇编—磁场(后附答案)26.(21分)如下图,在0x ≤≤区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°范围内。
已知沿y 轴正方向发射的粒子在0t t =时刻刚好从磁场边界上,)P a 点离开磁场。
求:⑴ 粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m ;⑵ 此时刻仍在磁场中的粒子的初速度方向与y 轴正方向夹角的取值范围; ⑶ 从粒子发射到全部粒子离开磁场所用的时间。
【答案】⑴a R 332=32Bt m q π= ⑵速度与y 轴的正方向的夹角范围是60°到120°⑶从粒子发射到全部离开所用 时间 为02t【解析】 ⑴粒子沿y 轴的正方向进入磁场,从P 点经过做OP 的垂直平分线与x 轴的交点为圆心,根据直角三角形有222)3(R a a R -+=解得a R 332=23sin ==R a θ,则粒子做圆周运动的的圆心角为120°,周期为03t T =粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得R T m Bqv 2)2(π=,T Rv π2=,化简得032Bt m q π= ⑵仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出。
角度最小时从磁场右边界穿出圆心角120°,所经过圆弧的弦与⑴中相等穿出点如图,根据弦与半径、x 轴的夹角都是30°,所以此时速度与y 轴的正方向的夹角是60°。
角度最大时从磁场左边界穿出,半径与y 轴的的夹角是60°,则此时速度与y轴的正方向的夹角是120°。
所以速度与y 轴的正方向的夹角范围是60°到120° ⑶在磁场中运动时间最长的粒子的轨迹应该与磁场的右边界相切,在三角形中两个相等的腰为a R 332=,而它的高是 a a a h 333323=-=,半径与y 轴的的夹角是30°,这种粒子的圆心角是240°。
所用 时间 为02t 。
所以从粒子发射到全部离开所用 时间 为02t 。
26(21分)图中左边有一对平行金属板,两板相距为d ,电压为V;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。
图中右边有一边长为a 的正三角形区域EFG(EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。
假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。
不计重力(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。
(2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为34a ,求离子乙的质量。
(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。
解析:(1)在粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v ,电场的场强为E 0,根据平衡条件得00E q B qv = ①0VE d=② 由①②化简得0Vv B d=③ 粒子甲垂直边界EF 进入磁场,又垂直边界EF 穿出磁场,则轨迹圆心在EF 上。
粒子运动中经过EG ,说明圆轨迹与EG 相切,在如图的三角形中半径为R=acos30°tan15° ④ tan15°=1cos302sin 30-︒=︒⑤联立④⑤化简得3)2R a = ⑥在磁场中粒子所需向心力由洛伦磁力提供,根据牛顿第二定律得203)2mv B qv a= ⑦联立③⑦化简得03)2qadBB m V =⑧ (2)由于1点将EG 边按1比3等分,根据三角形的性质说明此轨迹的弦与EG 垂直,在如图的三角形中,有1cos30sin 302cos304a a R ︒︒⨯==︒⑨同理4qadBB m V=(10) (3)最轻离子的质量是甲的一半,根据半径公式mvR Bq=离子的轨迹半径与离子质量呈正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF 穿出磁场,甲最远离H的距离为3)a ,最轻离子最近离H的距离为3)2a ,所以在离H的距离为3)a到3)2a 之间的EF 边界上有离子穿出磁场。
比甲质量大的离子都从EG 穿出磁场,期中甲运动中经过EG 上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG 上穿出磁场的粒子都在这两点之间。
25.(18分)如图所示,在0≤x≤a 、o≤y≤2a范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B 。
坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~90°范围内.己知粒子在磁场中做圆周运动的半径介于2a到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的:(1)速度大小;(2)速度方向与y 轴正方向夹角正弦。
解析:设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦磁力公式,得2mv qvB R=,解得:mv R qB =当2a<R <a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意,4T t =时,2OCA π∠=设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系可得:sin ,sin cos 2aR R R a R ααα=-=-再加上22sin cos 1αα+=,解得:6(2,(2,sin 2210aqB R a v m α-=-=-= 13. 如图,长为2l 的直导线拆成边长相等,夹角为60o的V 形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B ,当在该导线中通以电流强度为I 的电流时,该V 形通电导线受到的安培力大小为(A )0 (B )0.5BIl (C )BIl (D )2BIl 答案:C解析:导线有效长度为2l sin30°=l ,所以该V 形通电导线收到的安培力大小为BIl 。
选C 。
本题考查安培力大小的计算。
难度:易。
21.如题21图所示,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁块,在纸面民内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示由以上信息可知,从图中a 、b 、c 处进大的粒子对应表中的编号分别为 A 3、5、4 B4、 2、5 C5、3、2 D2、4、5 答案:D【解析】根据半径公式Bqmvr =结合表格中数据可求得1—5各组粒子的半径之比依次为0.5︰2︰3︰3︰2,说明第一组正粒子的半径最小,该粒子从MQ 边界进入磁场逆时针运动。
由图a 、b 粒子进入磁场也是逆时针运动,则都为正电荷,而且a 、b 粒子的半径比为2︰3,则a 一定是第2组粒子,b 是第4组粒子。
c 顺时针运动,都为负电荷,半径与a 相等是第5组粒子。
正确答案D 。
9.如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO ’与SS ’垂直。
a 、b 、c 三个质子先后从S 点沿垂直于磁场的方向摄入磁场,它们的速度大小相等,b 的速度方向与SS ’垂直,a 、c 的速度方向与b 的速度方向间的夹角分别为αβ、,且αβ>。
三个质子经过附加磁场区域后能达到同一点S ’,则下列说法中正确的有A .三个质子从S 运动到S ’的时间相等B .三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO ’轴上C .若撤去附加磁场,a 到达SS ’连线上的位置距S 点最近D .附加磁场方向与原磁场方向相同答案:CD 解析:A.三个质子从S 运动到S’的时间不相等,A 错误;B.三个质子在附加磁场意外区域运动时,只有b 运动轨迹的圆心在OO’轴上,因为半径相等,而圆心在初速度方向的垂线上,所以B 错误;C.用作图法可知,若撤去附加电场,a 到达SS’连线上的位置距S 点最近,b 最远;C 正确;D.因b 要增大曲率,才能使到达SS’连线上的位置向S 点靠近,所以附加磁场方向与原磁场方向相同,D 正确;本体选CD 。
本体考查带电粒子在磁场中的运动。
难度:难。
21、(19分)如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。
导体棒a 和b 放在导轨上,与导轨垂直并良好接触。
斜面上水平虚线PQ 以下区域内,存在着垂直穿过斜面向上的匀强磁场。
现对a 棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b 棒恰好静止。
当a 棒运动到磁场的上边界PQ 处时,撤去拉力,a 棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b 棒已滑离导轨。
当a 棒再次滑回到磁场边界PQ 处时,又恰能沿导轨匀速向下运动。
已知a 棒、b 棒和定值电阻的阻值均为R,b 棒的质量为m ,重力加速度为g ,导轨电阻不计。
求(1)a 棒在磁场中沿导轨向上运动的过程中,a 棒中的电流强度I ,与定值电阻R 中的电流强度I R 之比;(2)a 棒质量m a ;(3)a 棒在磁场中沿导轨向上运动时所受的拉力F 。
解析:(1)a 棒沿导轨向上运动时,a 棒、b 棒及电阻R 中的电流分别为I a 、I b 、I R ,有R b b I R I R = a b R I I I =+解得:21a b I I = (2)由于a 棒在PQ 上方滑动过程中机械能守恒,因而a 棒在磁场中向上滑动的速度大小v 1与在磁场中向下滑动的速度大小v 2相等,即v 1=v 2=v设磁场的磁感应强度为B ,导体棒长为L 乙,a 棒在磁场中运动时产生的感应电动势为 E=Blv当a 棒沿斜面向上运动时322b EI R =⨯sin b A BI L m g θ=向下匀速运动时,a 棒中的电流为I a ’、则'2a EI R='sin a A BI L m g θ=由以上各式联立解得:32a m m =(3)由题可知导体棒a 沿斜面向上运动时,所受拉力7sin sin 2a F BI L mg mg θθ=+=36.(18分)如图16(a )所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N 1、N 2构成,两盘面平行且与转轴垂直,相距为L ,盘上各开一狭缝,两狭缝夹角θ可调(如图16(b ));右为水平放置的长为d 的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N 1,能通过N 2的粒子经O 点垂直进入磁场。