中频治疗仪、其主机、分机及分机的控制电路的制作流程

中频治疗仪、其主机、分机及分机的控制电路的制作流程
中频治疗仪、其主机、分机及分机的控制电路的制作流程

图片简介:

本技术涉及医疗器械技术领域,提供了一种中频治疗仪、其主机、分机及分机的控制电路。其中,该控制电路包括:被配置为检测和接收所述中频治疗仪的主机发送的无线遥控信号,并将所述无线遥控信号转换为待解码信号的无线接收单元;与所述无线接收单元连接,被配置为对所述待解码信号进行解码以得到解码信号的分机控制单元;与所述分机控制单元连接,被配置为根据所述解码信号生成中频脉冲的脉冲发生单元,其中,所述中频脉冲用于输出给所述分机的电极片。本技术提供的中频治疗仪、其主机、分机及分机的控制电路,支持主机对多路分机的无线遥控,分机佩戴于患者一方,能够提高进行中频治疗的灵活性和便捷性。

技术要求

1.一种中频治疗仪的分机的控制电路,其特征在于,该控制电路包括:

被配置为检测和接收所述中频治疗仪的主机发送的无线遥控信号,并将所述无线遥控信

号转换为待解码信号的无线接收单元;

与所述无线接收单元连接,被配置为对所述待解码信号进行解码以得到解码信号的分机

控制单元;

与所述分机控制单元连接,被配置为根据所述解码信号生成中频脉冲的脉冲发生单元,

其中,所述中频脉冲用于输出给所述分机的电极片。

2.根据权利要求1所述的中频治疗仪的分机的控制电路,其特征在于,该控制电路还包括:

与所述脉冲发生单元连接,被配置为增大所述中频脉冲的幅值电压的直流升压单元。

3.根据权利要求1或2所述的中频治疗仪的分机的控制电路,其特征在于,所述无线接收单元由无线接收模块、以及连接该无线接收模块的第一外围电路组成,所述无线接收模块为LR45B。

4.根据权利要求1或2所述的中频治疗仪的分机的控制电路,其特征在于,所述分机控制单元由控制芯片、以及连接该控制芯片的第二外围电路构成,所述控制芯片为STC15单片机。

5.根据权利要求1或2所述的中频治疗仪的分机的控制电路,其特征在于,所述脉冲发生单元包括电压调节电路、控制信号处理电路和数据信号处理电路。

6.根据权利要求2所述的中频治疗仪的分机的控制电路,其特征在于,所述升压单元由直流升压芯片,以及连接该直流升压芯片的第三外围电路构成,所述直流升压芯片为

HM1308。

7.一种中频治疗仪的主机,其特征在于,该主机包括:

被配置为获取操作指令,并根据所述操作指令生成编码信号的主机控制单元;

与所述主机控制单元连接,被配置为将所述编码信号转换为无线遥控信号的无线发射单元,其中,所述无线遥控信号用于被所述中频治疗仪的分机的控制电路上的无线接收单元检测和接收。

8.根据权利要求7所述的中频治疗仪的主机,其特征在于,所述主机控制单元包括STC15单片机;

所述无线发射单元由无线发射模块、以及连接该无线发射模块的第四外围电路组成,所述无线发射模块为H34C。

9.一种中频治疗仪的分机,其特征在于,所述分机包括电极片以及如权利要求1至6中任一项所述的控制电路。

10.一种中频治疗仪,其特征在于,所述中频治疗仪包括如权利要求7或8任一项所述的主机,以及,如权利要求9所述的分机。

技术说明书

中频治疗仪、其主机、分机及分机的控制电路

技术领域

本技术属于医疗器械技术领域,更具体地说,是涉及一种中频治疗仪、其主机、分机及分机的控制电路。

背景技术

中频治疗仪是现代电子学、磁疗学和传统的中医脏象学、经络学相结合的新型理疗仪器,它通过电极片传导脉冲电流来刺激人体的穴位,从而产生针灸、热疗、电疗或磁疗的治疗效果,具备通经活络,调理气血,祛淤止痛的功效。与低频治疗仪相比,中频治疗仪输出的脉冲电流表皮刺痛感弱、深度感强、治疗效果和用户体验更好。

然而,目前的中频治疗仪通常包括由电线连接的主机和电极片,而电线的长度通常不过过长,故在治疗期间,患者不能离开主机过远,对患者造成了不便;另外,在对多个患者同时进行治疗时,多个患者需要围绕在主机四周,并且还需要从主机引出多根连接电极的电线,线路环境杂乱,很容易导致意外发生,安全性不够高。

技术内容

本技术的目的在于提供一种中频治疗仪、其主机、分机及分机的控制电路,旨在解决现有技术中的中频治疗仪的主机采用电线与电极连接导致的不够便捷和不够安全的问题。

为实现上述目的,本技术采用的技术方案是:一种中频治疗仪的分机的控制电路,该控制电路包括:被配置为检测和接收所述中频治疗仪的主机发送的无线遥控信号,并将所述无线遥控信号转换为待解码信号的无线接收单元;与所述无线接收单元连接,被配置为对所述待解码信号进行解码以得到解码信号的分机控制单元;与所述分机控制单元连接,被配置为根据所述解码信号生成中频脉冲的脉冲发生单元,其中,所述中频脉冲用于输出给所述分机的电极片。

可选的,该控制电路还包括:与所述脉冲发生单元连接,被配置为增大所述中频脉冲的幅值电压的直流升压单元。

可选的,所述无线接收单元由无线接收模块、以及连接该无线接收模块的第一外围电路组成,所述无线接收模块为LR45B。

可选的,所述分机控制单元由控制芯片、以及连接该控制芯片的第二外围电路构成,所述控制芯片为STC15单片机。

可选的,所述脉冲发生单元包括电压调节电路、控制信号处理电路和数据信号处理电路。

可选的,所述升压单元由直流升压芯片,以及连接该直流升压芯片的第三外围电路构成,所述直流升压芯片为HM1308。

本技术还提供一种中频治疗仪的主机,该主机包括:被配置为获取操作指令,并根据所述操作指令生成编码信号的主机控制单元;与所述主机控制单元连接,被配置为将所述编码信号转换为无线遥控信号的无线发射单元,其中,所述无线遥控信号用于被所述中频治疗仪的分机的控制电路上的无线接收单元检测和接收。

可选的,所述主机控制单元包括STC15单片机;所述无线发射单元由无线发射模块、以及连接该无线发射模块的第四外围电路组成,所述无线发射模块为H34C。

本技术还提供一种中频治疗仪的分机,该分机包括电极片以及如上述的中频治疗仪的分机的控制电路。

本技术还提供一种中频治疗仪,该中频治疗仪包括如上述的中频治疗仪的主机,以及,如上述的中频治疗仪的分机。

本技术所提供的中频治疗仪的有益效果在于:其分机采用了包括无线接收单元、分机控制单元和脉冲发生单元的控制电路,通过无线接收单元实现对主机发送的无线遥控信号的检测接收,通过分机控制单元实现对无线遥控信号的解码,通过脉冲发生单元实现中频脉冲的生成,再利用电极片输出;可见,采用了该控制电路的中频治疗仪分机,能够与主机进行无线连接,并由主机通过无线遥控信号进行远程遥控操作,分机可由患者佩戴,无需考虑现有技术中的有线连接的限制,提高了进行中频治疗的灵活性和便捷性。

此外,本技术所提供的中频治疗仪的分机,其控制电路采用了分机控制单元对无线遥控信号进行解码,能够实现对编码的无线遥控信号的检测和识别,具有较好的安全性和抗干扰能力。

此外,本技术所提供的中频治疗仪,由于分机具有单独的控制电路,通过对各分机控制电路的分机控制单元进行地址码的写入,能够使主机与多路分机的无线遥控连接,可支持多路分机的接入和控制。

附图说明

图1为本技术实施例提供的中频治疗仪的分机的控制电路的电路模块结构示意图。

图2为本技术实施例提供的无线接收单元的电路结构示意图。

图3为本技术实施例提供的分机控制单元的电路结构示意图。

图4为本技术实施例提供的脉冲发生单元的电路结构示意图。

图5为本技术实施例提供的直流升压单元的电路结构示意图。

图6为本技术实施例提供的中频治疗仪的主机的无线发射单元的电路结构示意图。

具体实施方式

为了使本技术领域的人员更好地理解本方案,下面将结合本方案实施例中的附图,对本方案实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本方案一部分的实施例,而不是全部的实施例。基于本方案中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本方案保护的范围。

本方案的说明书和权利要求书及上述附图中的术语“包括”以及其他任何变形,是指“包括但不限于”,意图在于覆盖不排他的包含,并不仅限于文中列举的示例。此外,术语“第一”和“第二”等是用于区别不同对象,而非用于描述特定顺序。

以下结合具体附图对本技术的实现进行详细的描述。

图1示出了本技术提供的中频治疗仪的分机的控制电路的电路模块结构示意图,为了便于说明,仅示出了与本技术实施例相关的部分,详述如下。

如图1所示,一种中频治疗仪的分机的控制电路10,包括:被配置为检测和接收所述中频治疗仪的主机发送的无线遥控信号,并将所述无线遥控信号转换为待解码信号的无线接收单元101,与无线接收单元101连接,被配置为对所述待解码信号进行解码以得到解码信号的分机控制单元102,与分机控制单元102连接,被配置为根据所述解码信号生成中频脉冲的脉冲发生单元103,其中,脉冲发生单元103生成的中频脉冲用于输出给该中频治疗仪的分机的电极片11。

由上可知,本技术所提供的中频治疗仪的分机的控制电路,包括无线接收单元、分机控制单元和脉冲发生单元的控制电路,可以通过无线接收单元实现对主机发送的无线遥控信号的检测接收,可以通过分机控制单元实现对无线遥控信号的解码,可以通过脉冲发生单元实现中频脉冲的生成,最后利用电极片输出。采用了该控制电路的中频治疗仪分机,能够与主机进行无线连接,受主机的无线遥控信号的远程遥控,分机可由患者佩戴,摆脱了现有技术中的主机与电极片通过有线连接的应用限制,提高了进行中频治疗的灵活性和便捷性。

在一个可选实施例中,控制电路10还包括:与脉冲发生单元103连接,被配置为调整脉冲发生单元103生成的中频脉冲的幅值电压的直流升压单元104。通过直流升压单元104可以实现对脉冲发生单元103生成的中频脉冲的幅值电压进行升压调整,调整后可使脉冲发生单元103生成的中频脉冲输出到电极片后,接触电极片的患者能够感受到较大的力感,提高治疗效果。

在一种应用场景中,直流升压单元104可以连接分机控制单元102,向分机控制单元102输出直流升压信号,并由分机控制单元102实现对脉冲发生单元103生成的中频脉冲的升压控制。

在另一种应用场景中,直流升压单元104可以连接另一个控制单元(非分机控制单元102),并由该另一个控制单元实现对脉冲发生单元103生成的中频脉冲的升压控制。

图2示出了本技术提供的无线接收单元101的电路结构图,如图2所示,无线接收单元101可以由无线接收模块U1、以及连接该无线接收模块U1的第一外围电路组成。其中,第一外围电路可以包括接收天线ANT1、第一电容C1、第二电容C2、第一电阻R1、第二电阻R2、第一三极管Q1、第三电阻R3。其中,VCC表示电源输入,GND表示接地。

具体的,无线接收模块U1可以选用LR45B,具有高灵敏度、远距离、抗电机干扰的特点。LR45B的天线管脚连接接收天线ANT1,电源管脚连接VCC输入并通过C1和C2接地,LR45B的数据输出管脚通过R2连接Q1的基极(B)、并通过R1接地,Q1的发射极(E)接地,集电极(C)输出待解码信号,集电极(C)还通过R3连接电源输入。其中,ANT1接收无线遥控信号并进行处理,输出低电流给Q1,通过Q1进行电流放大,输出较高的电流信号(待解码信号)S1。

图3示出了本技术提供的分机控制单元102的电路结构图,如图3所示,分机控制单元102由控制芯片U2、以及连接该控制芯片U2的第二外围电路构成,具体的,控制芯片U2可以选用单片机STC15W404AS。其中,U2的输入管脚2连接无线接收单元101的输出,例如,连接图2所示电路图中Q1的集电极(C)。U2对输入的待解码信号进行解码处理输出,其中,解码后的信号包括数据信号DATA和控制信号CTL1,数据信号DATA通过输出管脚3出,控制信号CTL1通过输出管脚16输出。U2的11和12管脚可以分别连接一个物理按键,用于接收外部操作信号key1和key2。U2的4和5管脚可以分别连接一个指示灯,用于对应反馈对操作信号key1和key2的处理结果。U2的管脚6接电源、并通过电容C3接地,U2的管脚8接地。U2的9和10管脚可以连接一个4P插座(XS1),该4P插座的两个接头分别连接输入电源和接地。

图4示出了本技术提供的脉冲发生单元103的电路结构图,如图4所示,脉冲发生单元103包括电压调节电路400、控制信号处理电路410和数据信号处理电路420。其中,电压调节电路400的输入端(如图4所示,R10的右侧一段)接收电压调节信号,该电压调节信号用于对脉冲发生单元103输出的中频脉冲进行直流升压。控制信号处理电路410通过PNP三极管Q3的E极连接电压调节电路400的输入,Q3的B极通过R8连接分机控制单元102的控制信号输出管脚,接收控制信号CTL1,Q3的C极连接数据信号电路420的一个输入端(NPN三极管Q2的B极)。数据信号处理电路420通过NPN三极管Q2的E极接收分机控制单元102输入的数据信号,经变压器T输出中频脉冲S3。

图5示出了本技术提供的直流升压单元104的电路结构图,如图5所示,直流升压单元104由直流升压芯片U3,以及连接U3的第三外围电路构成,U3可以选用HM1308,第三外围电路包括电容C7、C8和C9,二极管D2,电感L,三极管Q5,电阻R12、R13、R14、R15和R16,R16的右侧可以通过一个控制单元连接脉冲发生单元103的电压调节电路400的输入端,用于向电压调节电路400输入电压调节信号。在实际应用中,该控制单元可以直接采用上述的分机控制单元102,R16可连接分机控制单元102的管脚14(参见图3,CO-POWER)分机控制单元102进行处理后通过管脚1输出,管脚1可以连接电压调节电路400的输入端,向电压调节电路400输入电压调节信号。

在本技术实施例中,分机还可以配置可充电电池作为电源,在此不再赘述。

本技术还提供一种中频治疗仪的主机,包括:被配置为获取操作指令,并根据所述操作指令生成编码信号的主机控制单元;与所述主机控制单元连接,被配置为将所述编码信号转换为无线遥控信号的无线发射单元,其中,所述无线遥控信号用于被所述中频治疗仪的分机的控制电路上的无线接收单元检测和接收。

在本技术实施例中,主机发送的无线遥控信号可以包含分机的地址码,每个分机配置不同的地址码,主机通过地址码来实现对多个分机的控制。也即,分机对接收到的无线遥控信号进行解码,若解码出的地址码与本机匹配,则执行所接收的无线遥控信号,否则不作处理。

图6示出了本技术提供的中频治疗仪的主机的无线发射单元的电路结构示意图,如图6所示,无线发射单元由无线发射模块U4、以及连接该无线发射模块U4的第四外围电路组成,U4可以选用H34C,第四外围电路包括三极管Q6和Q7,电阻R17、R18和R19,发射天线ANT2。其中,R19的一端可以连接主机的操作控制单元,接收操作指令,R19的另一端通过Q6、Q7连接U4的输入管脚,U4处理后生成无线遥控信号,并通过天线管脚连接的发射天线ANT2将无线遥控信号发射出去,以便于分机的接收天线进行接收。

在一个实施例中,主机可以包括显示单元(用于操作控制),控制单元(用于将接收操作指令并生成指令信号传输给无线发射单元)和无线发射单元(用于将指令信号生成无线遥控信号并发射出去)。在本实施例中,中频治疗仪的主机的控制单元可以同样采用C51单片机来实现,可以选用现有技术实现,在此不再赘述。

本技术还提供一种中频治疗仪的分机,该分机包括电极片以及如上述的中频治疗仪的分机的控制电路。本技术所提供的中频治疗仪的分机,其控制电路采用了分机控制单元对无线遥控信号进行解码,能够实现对编码的无线遥控信号的检测和识别,具有较好的安全性和抗干扰能力。

本技术还提供一种中频治疗仪,该中频治疗仪包括如上述的中频治疗仪的主机,以及,如上述的中频治疗仪的分机。

本技术所提供的中频治疗仪,由于分机具有单独的控制电路,通过对各分机控制电路的分机控制单元进行地址码的写入,能够使主机与多路分机的无线遥控连接,可支持多路分机的接入和控制。

以上所述,以上实施例仅用以说明本技术的技术方案,而非对其限制;尽管参照前述实施例对本技术进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本技术各实施例技术方案的精神和范围。

继电器控制电路模块及原理讲解

继电器控制电路模块及原理讲解 发布: 2011-9-8 | 作者: —— | 来源:huangguohai| 查看: 564次| 用户关注: 能直接带动继电器工作的CMOS集成块电路在电子爱好者认识电路知识的的习惯中,总认为CMOS 集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下:CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的 能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-D C12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SC R2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施

中频炉控制电路原理

控制电路原理 整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为 整流触发部分、调节器部分、逆变部分、启动演算部分。详细电路见《控制电路原理图》。 1. 1 整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字 触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉 冲频率受移相控制电压Uk 的控制,Uk 降低,则振荡频率升高,而计数器的计数值是固 定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短, α角小,反之α角大。计数器开始计数时刻同样受同步信号控制,在α=0 时开始计数。 现假设在某Uk 值时,根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为 25KHZ,则在计数到256 个脉冲所需的时间为(1/25000)×256=10.2(ms)相当于约180 °电角度,该触发器的计数清零脉冲在同步电压〔线电压〕的30°处,这相当于三相 全控桥式整流电路β=30°位置, 从清零脉冲起,延时10.2ms 产生的输出触发脉冲, 也 即接近于三相桥式整流电路某一相晶闸管α=150°位置,如果需要得到准确的α=150° 触发脉冲, 可以略微调节一下电位器W4。显然有三套相同的触发电路,而压控振荡器和Uk 控制电压为公用,这样在一个周期中产生6 个相位差60°的触发脉冲。 数字触发器的优点是工作稳定,特别是用HTL 和CMOS 数字集成电路,可以有很强 的抗干扰能力。 IC16A 及其周围电路构成电压----频率转换器,其输出信号的周期随调节器的输出 电压Uk 而线性变化。W4 微调电位器是最低输出频率调节(相当于模拟电路锯齿波幅值调节)。 三相同步信号直接由晶闸管的门极引线K4、K6、K2 从主回路的三相进线上取得, 由R23、C1、R63、C40、R102、C63 进行滤波、移相,经6 只光电耦合器进行电位隔离,获得6 个相位互差60°、占空比略小于50%的矩形同步信号。 IC3、IC8、IC12(4536 计数器)构成三路数字延时器。三相同步信号对计数器进行 复位后,对电压---频率转换器的输出脉冲每计数256 个脉冲便输出一个延时脉冲,因计 数脉冲的频率是受Uk 控制的, 换句话说Uk 控制了延时脉冲。 计数器输出的脉冲经隔离、微分后变成窄脉冲,送到后级的NE556,它既有同步分 频器功能,亦有定输出脉冲宽度的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶 体管放大,驱动脉冲变压器输出。具体时序图见附图。 1.2 调节器工作原理 调节器部分共有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角 调节器。 其中电压调节器、电流调节器组成常规的电压、电流双闭环系统。在启动和运行 的整个阶段,电流调节器始终参与工作,而电压环仅工作于运行阶段。另一阻抗调节器 从输入上看,它与电流调节器LT2 的输入完全是并联关系,区别仅在于阻抗调节器的负 反馈系数较电流调节器略大,再者就是电流调节器的输出控制的是整流桥的输出直流电压,而阻抗调节器的输出控制的是中频电压与直流电压的比例关系,即逆变功率因数角。调节器电路的工作过程可以分为两种情况:一种是在直流电压没有达到最大值的 时候,由于阻抗调节器的反馈系数略大,阻抗调节器的给定小于反馈,阻抗调节器便工 作于限幅状态,对应的为最小逆变θ角,此时可以认为阻抗调节器不起作用,系统完全 西是一个标准的电压、电流双闭环系统。另一种情况是直流电压巳经达到最大值,电流调节器开始限幅不再起作用,电压调节器的输出增加,而反馈电流却不变化,对阻抗调节

电气控制电路基础(电气原理图)

电气控制电路基础(电气原理图) 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制,也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局

电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KMI、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转90o,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图的下方。

中频电源的原理与维修

晶闸管中频感应加热电源是利用晶闸管将三相工频交流电能变换成几百或几千赫兹的 单相交流电能。具有控制方便、效率高、运行可靠、劳动强度低的特点,广泛用于铸钢、不锈钢或合金钢的冶炼、真空冶炼、锻件的加热和钢管的弯曲、挤压成型、工件 的预热、钢件表面淬火、退火热处理、金属零件的焊接、粉末冶金、输送高温工质的 管道加热、晶体的生长等不同场合。在我厂,中频电源装置主要用于铸钢、不锈钢和 青铜等的冶炼。 中频电源的工作原理为:采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定 频率(一般为1000至8000Hz)的单相中频电流。负载由感应线圈和补偿电容器组成,连接成并联谐振电路。 一般情况下,可以把中频电源的故障按照故障现象分为完全不能起动和起动后不 能正常工作两大类。作为一般的原则,当出现故障后,应在断电的情况下对整个系统 作全面检查,它包括以下几个方面: (一)电源:用万用表测一下主电路开关(接触器)和控制保险丝后面是否有电,这将排除这些元件断路的可能性。 (二)整流器:整流器采用三相全控桥式整流电路,它包括六个快速熔断器、六 个晶闸管、六个脉冲变压器和一个续流二极管。在快速熔断器上有一个红色的指示器,正常时指示器缩在外壳里边,当快熔烧断后它将弹出,有些快熔的指示器较紧,当快 熔烧断后,它会卡在里面,所以为可靠起见,可以用万用表通断档测一下快熔,以判 断它是否烧断。 测量晶闸管的简单方法是用万用表电阻挡(200Ω挡)测一下其阴极—阳极、门极—阴极电阻,测量时晶闸管不用取下来。正常情况下,阳极—阴极间电阻应为无穷大,门极—阴极电阻应在10—50Ω之间,过大或过小都表明这只晶闸管门极失效,它将不能被触发导通。 脉冲变压器次边接在晶闸管上,原边接在主控板上,用万用表测量原边电阻约为50Ω。续流二极管一般不容易出现故障,检查时用万用表二极管挡测其二端,正向时 万用表显示结压降约有500mV,反向不通。 (三)逆变器:逆变器包括四只快速晶闸管和四只脉冲变压器,可以按上述方法 检查。

电气控制柜设计步骤

电气控制柜设计步骤内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电控箱设计步骤 一、设计工艺 1、根据图纸(系统图、原理图)选主要部件; 2、按照功能、使用方法和制造标准排布主要器件; 3、根据排布结果选定箱(柜)尺寸(尽量选通用尺寸),校验器件排布结果; 4、根据图纸选其它辅助材料、元件; 5、绘制装配图、接线图,编制加工工艺卡; 6、采购所有器件、材料; 7、加工、或委托加工箱(柜)壳体; 8、按工艺卡装配主要器件,加工连接件、连接线; 9、按工艺卡装配附件、配件、接线; 10、整体装配完成,检验,试验(按产品生产标准要求项目进行); 11、按标准及合同要求进行产品包装,附检验合格证、试验记录。 12、送货出厂。 二、设计规程规范要求。 1、熟读设计方案任务书。掌握任务书中几点重要信息及参数,如果是在大型项目中,设计任务书会以合同的技术附件形式出现。这样就关系到控制箱的先进程度和设计制造的成本控制。只要掌握控制的自动化程度就行了,这关系到你下面的选型等工作。 2、根据控制要求进行方案性设计。如果是较大的项目这可以升级为可行性研究。即使是小的电控系统,起码也要列出不少2种的方案设计,在方案设计过程中,

要有详细的计算说明书,这样为你的设备设计提供依据,也是设计是否合理,是否科学的关键。直接关系到你的制造成本。 3、进行设备控制设计,选择最佳的方案后,再进行设备设计,这个设计阶段,主要是设备的选型,选择各种合理元器件要注意以下几点: 1)要能实现设计任务中要求的控制功能。 2)要保证设备一定的先进性(在一些技术附件中为有具体说明), 3)要控制好成本,不要盲目最求先进而造成不必要的成本浪费。 在确定所需要的各种元件设备后,就要进行原理图的设计,设计原理图时要根据自己的方案设计再结合所选电气元件的电气接线原理进行。 4、施工图设计。这里就不扯大工程设计步骤和要求了,单仅电控箱而言,根据所选元件的尺寸,综合考虑和选择电控箱的规格(国家有统一标准规格的电控箱柜台,也有非标的,非标的可根据你选择的电气元件进行规格设计)。 选择好或设计好电控箱的规格后,就可以进行箱内布置图的设计了,这个可以参照相关的电工工艺要求进行。 以下注意要点: 1)设备元件摆放布局合理、保证设备安全; 2)便于施工、检修等。 三、采购和安装调试规范要求。 1、根据上面的设备设计,设计出详细的材料清单,根据材料清单进行电气设备元件采购,这样就不会造成设备过剩浪费,或是设备出现短缺不足的现象。 2、根据上面的施工图设计,可以将采购回来的设备交予生产制造部门进行安装和接线了,并进行出场前的检验和测试。

电气控制柜控制箱查线步骤

控制柜箱查线步骤 1:核对柜体/箱体表面布局 比对台面/箱体表面、侧面的按钮仪表等的实际布局与图纸中的布局。注意检查:标牌、按钮、旋钮及灯的数量颜色等是否相同;标识内容是否一致;按钮、旋钮和灯的类型是否一致。(不同的部分注意用笔在图纸上或者柜体上标出) 2:核对柜内/箱内主要元件的布局 检查柜内或箱内PLC、空开、电源、插座等主要元件的数量、型号、布局和图纸上的情况是否一致。(不同的部分注意用笔在图纸上或者柜体上标出) 3:较对柜内/箱内主电路接线(220V、24V供电) 1)柜内/箱内220V电源供电进线端子上口到第一个空开上口(一般为2P空开,有1和3端)的连接,220V电源供电进线端子上口到220V电源指示灯的连接。 2)第一个空开下口(一般为2P空开,有2和4端)到端子(该端子用于其他220V空开的供电)上口的连接,该端子下口到其他220V 空开上口(一般为2P空开,有1和3端)及部分220V端子上口的连接。注:一般情况下相邻几个220V供电的2P空开的L端会用短接线短接,N端也会用短接线短接,以实现空开之间的并联。同时注意检查220V是否有短路,如果有短路应立即排除。 3)2)中提及的其他220V空开下口(一般为2P空开,有2和4端)到与之相连的端子上口的连接;2)中提及的其他220V空开下口(一般

为2P空开,有2和4端)到PS407、PS307、明伟电源及三眼插座的L 和N端的连接。PS407、PS307、明伟电源、三眼插座的PE与接地母排的连接。 4)PS407、PS307电源模块24V的L+、M-与IM153接口模块的L+、M-的连接; 给PLC模块供电的明伟电源24V的+与PLC模块的上部的空开上口(一般为1p的1)的连接,给PLC模块供电的24V明伟电源的-与M-端(接地母排)的连接;空开(与给PLC模块供电的明伟电源24V的+连接的那些空开)的下口与PLC模块上的需要接24V+的点的连接;PLC模块上需要接24V-的点与M-端(接地母排)的连接; 给现场的仪表,阀门,交换机等供电的明伟电源24V的+和与仪表、阀门、交换机等需供24V的设备连接的空开的上口(一般为1p 的1)的连接,给现场的仪表,阀门,交换机等供电的明伟电源24V 的-与M-端(接地母排)的连接;这些空开(仪表、阀门、交换机等需供24V的设备连接的空开)的下口与相应的端子连接,给现场的仪表,阀门,交换机等供电的明伟电源24V的-与相应端子的连接。4:较对柜内/箱内控制信号接线(220V、24V供电) 输入部分: 1)端子(引24V+电源,给外设传感器供电,与24V空开下口相接)与对应空开下口的连接。 2)端子(与外设传感器下口相接的端子相连接的端子)与PLC 模块上输入点的连接。

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

串联谐振中频电炉原理_串联谐振中频电炉电路特点

串联谐振中频电炉原理_串联谐振中频电炉特点 大家之前都在聊中频电炉,是不是对中频电炉非常了解呢,今天不妨大家一起来交流一下,互相学习一下经验,弥补一下自己的不足,那我就先来提一个问题,大家是否知道串联谐振中频电炉电路特点,还有就是串联谐振中频电炉原理有哪些具体应用,这个问题不好回答吧,既然大家都不知道,那今天就给大家科普一下串联谐振中频电炉原理,不知道的小伙伴可要仔细阅读哦!那么下文就开始介绍串联谐振中频电炉电路特点了。 【串联谐振中频电炉原理】 串联谐振中频电炉电路特点所谓串联谐振是指回路中LC串联,两者阻抗之和刚好为0,所以整个回路呈纯电阻性,整个回路阻抗变小,电流将变大。在电力系统中可能会造成过电压,所以在电力系统中也较电压谐振 【串联谐振中频电炉控制板详解】 串联谐振中频电炉电路特点整流控制电路简单,只是在一般三相晶闸管半控桥式整流电路用触发器的基础上,加一斜波发生器构成。斜波发生器是代替触发器的移相角设定功能。每次起动时,斜波发生器输出到触发器的电压会按预定的速率,由零逐渐升高,终稳定在某一值。因此,串联谐振中频电炉原理相应的触发脉冲的控制角会从变大逐渐减小,终稳定在0°,使晶闸管全导通,从而实现软起动。

在正常停止时,情况则相反,串联谐振中频电炉电路特点斜波发生器的输出电压由恒定值逐渐降至零,晶闸管从全导通状态逐渐过渡到截止。因故障停止时,则采取封锁触发脉冲的方法,使晶闸管快速截止。 逆变控制电路如图1-7-3所示.其工作波形示于图1-7-4。 在t=t0时刻触发KS1,方波环节把 经电流互感器CT1检出的电流信号变 成方波。方波的作用有二:一是方波 的后沿作为延时环节的延时起点:二 是方渡使计数器复位。方波结束,延 时环节开始延时,计数器开始计数。延时一td后,双稳环节输出端q3变成“1”,打开了图中上一个脉冲形成环节的门,串联谐振中频电炉原理允许计数器的溢出 脉冲通过。计数器的计数值是固定的(例如1024),计数值到,其输出端qs成“1”,经脉冲形成环节,生成固定宽度的脉冲,再经脉冲功放去触发晶闸管KS2。同理,KS2的导通电流经方波环节形成方波。方波结束,开始延时和计数,延时td后使q4成“1”。待计数值到,q6成“1”,图中下侧的脉冲形成环节的输出端q8就会输出固定宽度脉冲,经功放后触发KS1,系统又将重复前述过程。 功率控制的实现过程为:逆变器的输入电压Ud和电流, Id的乘积与设定值比较,其差值输入到功率调节器,再把 它的输出与电流Id进行比较,经电流调节器运算后,去控 制压控振荡器的输出脉冲频率,使计数器的溢出脉冲时间 改变,进而改变晶闸管的触发脉冲频率,从而达到预期的 控制效果。这种控制效果体现在炉子参数额定值以上的重 负载情况下,保持炉子的输入功率恒定;在额定值以下的 轻负载范围内,则控制输出电流在限制值内。

电气控制柜技术协议书

目录 1 总则 (3) 2 系统运行条件 (4)

3 采用标准 (4) 4 设备规范 (5) 5 卖方的工作范围和责任 (10) 6 油漆、包装、运输和储存 (11) 7 质保措施 (11) 1.总则 1.1本技术规范适用于,它提出了该系统设备及辅助系统的功能设计、结构、性能、安装和试验等方面的技术要求。

1.2买方在本规范中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,卖方应提供一套满足本规范所列标准要求的高质量产品及其相应服务。对设备安装地点所在国家有关安全、环保等强制性标准,必须满足其要求。 1.3 卖方须执行本规范所列标准。有矛盾时,按较高标准执行。 1.4 本技术规范是电气控制柜订货合同的附件,与合同具有同等法律效力,在规范签订后,各方应按时交换资料,满足各方设计和制造进度的要求。 1.5卖方所供设备应按照有关法规、规范、标准等的要求,负责取得有关部门对其产品、文件、图纸的审查和批准。 卖方在进行认证过程中,为使认证工作进度满足交货进度,买方有权进行监督并提出合理的整改意见。卖方应安排足够有经验的人员来进行认证工作,确保能在资料正常审查所需时间内通过官方批准,因资料准备不充分、认证人员经验不足等卖方的原因而造成影响交货进度及工期,由卖方承担。 1.6除非得到买方的认可,卖方提供的设备、材料及零部件不应包含对人体有害的物质。 1.7 如卖方未明确对本技术规范提出差异,则视为其供货产品完全满足本技术规范及供货范围的要求。 1.8卖方提供的资料数据单位全部采用国际单位制。 1.9未尽事宜,双方友好协商解决。

2.系统运行条件 2.1安装地点:室内布置。 2.2海拔≦1000m 2.3环境温度:最高气温+40℃ 最低气温-25℃ 2.4相对湿度:月平均相对湿度不大于90% 日平均相对湿度不大于95% 2.5抗地震烈度8度 3.采用标准 电气设备及总线接口应符合下列标准(但不限于下列标准): -IEC71 绝缘配合 -IEC185 电流互感器 -IEC186 电压互感器 -IEC439 低压开关设备和控制设备组件 -IEC529 外壳防护等级 -IEC51 直接动作指示模拟电气测量仪器及附件 -IEC113 电工技术图表 -IEC158 低压接触器 -IEC255 继电器 -IEC269 低压熔断器 -ISO1690 电气设备噪声传播的测定 -GB50171-92 电气装置安装工程盘、柜及二次回路结线施工及验收规范-GB50254-96 电气装置安装工程低压电器施工及验收规范 -IEC-61158 现场总线标准 -EN-50170 欧洲现场总线标准 -JB/T 10308.3-2001 中国行业标准

空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析 单元电路原理简析 美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。美的KFR-26/33GW/CBPY型变频空调。属“数智星”变频系列。其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。它们的电路原理基本相似。结合图1~图6电路原理图,对整机单元电路作简要分析。 1.室内机主电源电路 电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容 C1和C2、T2过流保护和高频滤波后。一路经接线柱L、N两端送到室外机主电源电路的输入端。其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。 2.室内机辅助电源电路 电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。 3.室内风机控制电路 电路见上图、下图。在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。其发光强度控制内部双向可控硅的导通程度。从而进一步控制室内风机(FAN)的工作状态和运转速度。同时室内风机(FAN)的转速还受反馈电路控制,当风机转速信号通过R23、C20反馈到IC3(53)脚后,其内部风机转速检测电路则按照风机运转状况来确定风机转速。从而准确控制风机(FAN)的转速。 4.换气风机控制电路 电路见下图,为了让用户室内保持新鲜的空气,该空调设计了换气功能。由IC3(2)脚输出换气风机控制信号,当输出高电平时,经R10送到Q1的b极,Q1导通,驱动换气风机(M2)运转。从而实现与室外空气进行交换。 5.过零检测电路 电路见中图、下图,该电路一是检测供电电压是否正常;二是为双向可控硅提供同步触发信号。南电源变压器T1次级输出低压交流电,经D7和D8整流,输出频率约为100Hz脉动电压,经R43~R45 分压后的正弦交流信号,送到三极管Q3的b极,当b极电压大于0.7V时,Q3导通,C31通过Q3进行放电,主控芯片IC3(UPD780021)(51)脚便得到一个低电平;当b极电压小于0.7V时,Q3截止,+5V 电压通过R7对C31进行充电,于是IC3(51)脚便得到周期为10ms的(高电平)过零触发信号。 6.室内机晶振电路 电路见下图,由主控芯片IC3(48)、(49)脚内部电路与晶体XT1组成晶振电路,产生4.19MHz 主振荡频率信号。

中频炉培训内容

第一章基本知识 一、感应加热原理: 无芯感应电炉就像一个空芯变压器,并根据电磁感应原理工作。坩埚外的感应线圈相当于变压器的原绕组,坩埚内的金属炉料相当于副绕组。当感应线圈通一交变电流时,则因交变磁场的作用是短路连接的金属炉料产生强大的感应电流,电流流动时,为克服金属炉料的电阻而产生热量致使金属炉料加热熔化。 电磁感应现象:变化磁场在导体中引起电动势的现象称为电磁感应,也称“动磁生电”。当位于磁场中的导体与磁力线产生相对切割运动,或线圈中的磁通发生变化时,在导线或线圈中都会产生电动势;若导体和线圈构成闭合回路,则导体或线圈中将有电流。由电磁感应产生的电动势称感生电动势,由感生电动势引起的电流叫做感生电流。 涡流:在具有铁心的线圈中通以交流电时,铁心内就有交变磁通通过,因而在铁心内部必然产生感应电流,在铁心中自成闭合回路,因而形成状如水中漩涡的涡流。涡流的利用:利用涡流产生高温熔炼金属,或对金属进行热处理;电度表中铝盘转动及电工测量仪表中的磁感应阻尼器也就是根据涡流的原理工作的。涡流的危害:涡流消耗电能,使电机、电气设备效率降低; 使铁心发热;且涡流有去磁作用,会削弱原有磁场 二、可控硅的基础知识 1、优点:他是一种大功率的半导体器件,效率高、控制特性好、反应快、 寿命长、体积小、重量轻、可靠性高和方便维护。 2、结构:四层半导体叠交而成,有三个PN 结,外部有三个电极,分别是 阳极、阴极、控制极,分别为A、K、G。 3、工作原理:

将可控硅按图l---62连接,可以得到如下结果: ①开关K未合上时,灯不亮,可控硅未导通。 ②合上K,灯亮,这时可控硅上约有1V的电压降。 ③导通后即使打开K,灯仍亮,可控硅一经触发导通后,可自己维持导通状态。 ④如果降低电源电压E,灯泡逐渐变暗,当电流减小到某一定值(称为最小维持电流)以下时,可控硅关断,灯泡突然熄灭。 由此可知,要使可控硅导通,必须在A、K极间加上正向电压,同时加以适当的正向控制极电压(称触发电压)。一旦导通后,要使可控硅关断,必须采取降低阳极电压、反接或断开电路等措施,使正向电流小于最小维持电流。 4、晶闸管的保护 晶闸管虽然具有很多优点,但是,它们承受过电压和过电流的能力很差,这是晶闸管的主要弱点,因此,在各种晶闸管装置中必须采取适当的保护措施。 一、晶闸管的过电流保护 由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN结烧坏,造成元件内部短路或开路。 晶闸管发生过电流的原因主要有:负载端过载或短路;某个晶闸管被击穿短路,造成其它元件的过电流;触发电路工作不正常或受干扰,·使晶闸管误触发,引起过电流。晶闸管承受过电流能力很差,例如一个100A的晶闸管,它的过电流能力如表20—1所列。这就是说,当100A的晶闸管过电流为400A时,仅允许持续0.02 s,否则将因过热而损坏。由此可知,晶闸管允许在短时间内承受一定的过电流,所以,过电流保护的作用.就在于当发生过电流时,在允许的时间内将过电流切断,以防止元件损坏。 晶闸管过电流的保护措施有下列几种: 1、快速熔断器 普通熔断丝由于熔断时间长,用来保护晶闸管很可能在晶闸管烧坏之后熔断

电气控制柜的设计工艺

电气控制柜的设计工艺 电气控制柜的设计工艺 2011年12月13日星期二11:271、基本思路 电气控制柜设计的基本思路是一种逻辑思维,只要符合逻辑控制规律、能保证电气安全及满足生产工艺的要求,就可以 说是一种好的的设计。但为了满足电气控制设备的制造和使用要求,必须进行合理的电气控制工艺设计。这些设计包括电气 控制柜的结构设计、电气控制柜总体配置图、总接线图设计及各部分的电器装配图与接线图设计,同时还要有部分的元件目 录、进出线号及主要材料清单等技术资料。 2、电气控制柜总体配置设计 电气控制柜总体配置设计任务是根据电气原理图的 工作原理与控制要求,先将控制系统划分为几个组成部分(这些组成部 分均称作部件),再根据电气控制柜的复杂程度,把每一部件划成若干组件,然后再根据电气原理图的接线关系整理出各部分

的进出线号,并调整它们之间的连接方式。总体配置设计是以电气系统的总装配图与总接线图形式来表达的,图中应以示意 形式反映出各部分主要组件的位置及各部分接线关系、走线方式及使用的行线槽、管线等。 电气控制柜总装配图、接线图(根据需要可以分开,也可并在一起)是进行分部设计和协调各部分组成为一个完整系统的 依据。总体设计要使整个电气控制系统集中、紧凑,同时在空间允许条件下,把发热元件,噪声振动大的电气部件,尽量放 在离其它元件较远的地方或隔离起来;对于多工位的大型设备,还应考虑两地操作的方便性;控制柜的总电源开关、紧急停 止控制开关应安放在方便而明显的位置。总体配置设计得合理与否关系到电气控制系统的制造、装配质量,更将影响到电气 控制系统性能的实现及其工作的可靠性、操作、调试、维护等工作的方便及质量。 2.1 电气控制柜组件的划分 由于各种电器元件安装位置不同,在构成一个完整的电气控制系统时,就必须划分组件。划分组件的原则是:

PWM控制电路的基本构成及工作原理

基于DSP的三相SPWM变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、 系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器T MS320F28 335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如 图1所示。 图1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有电路简单、可 靠性高等特点。 (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。 (4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生S PWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。捕获单元完 成对输出信号的测频。 (5)电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流检测电路。所有的检测信号都经过电压跟随器隔离后由TMS320F28335的A/D通道输入。

中频电源原理及调节

中频电源原理及调试步骤 主电路原理 本系列中频电源装置是采用晶闸管元件,将三相工频交流电整流为直流,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定频率的单相中频电流。负载是由感应线圈和补偿电容器组成的。 联接成并联谐振电路。详细原理图见主电路图《1200KW/2.6KHz中频电源原理图》。三相工频交流电(550V、三相四线制)送至本装置隔离开关的三个进线端,自动空气开关ZK作为主回路的电源开关。电流检测采用电流互感器,该电流信号被电流互感器及5/0.1A电流变换器二次转换后送到控制电路板《KSRL.SCH》作为电流闭环信号和过电流保护信号。快速熔断器作为控制电路失控时的短路保护。为了减少开关操作过电压及由SCR换相时产生的"毛刺",在进线处设置了阻容滤波电路及压敏过电压吸收电路。 本装置采用三相桥式全控整流电路,可以获得较为平滑的电流波形,并且通过脉冲移相,可实现拉逆变工作状态。三相全控桥式整流电路的工作原理从略。 2.控制电路原理 整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为整流触发部分、调节器部分、逆变部分、启动演算部分。详细电路见《KSRL.SCH 控制电路原理图》。 2.1 整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉冲频率受α移相控制电压Vk的控制,Vk降低,则振荡频率升高,而计数器的计数量是固定的(256),计数脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短,α角减小,反之α角增大。计数器开始计数时刻同样受同步信号控制,在α=0°时开始计数。现假设在某Vk 值时, 根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为25KHZ , 则在计数到256 个脉冲所需的时间为(1/50000)×256=10.2 (mS) ,相当于约180°电角度,该触发器的计数清零脉冲在同步电压(线电压)的30°处,这相当于三相全控桥式整流电路的β=30°位置,从清零脉冲起,延时10.2mS产生的输出触发脉冲,接近于三相桥式整流电路某一相晶闸管α=150°的位置。如果需要得到准确的α=150°触发脉冲,可以略微调节一下电位器来实现。显然,有三套相同的触发电路,而压控振荡器和Vk控制电压为公用。这样,在一个周期中产生6个相位差60°的触发脉冲。数字触发器的优点是工作稳定,特别是用HTL或CMOS数字集成电路,则可以有很强的抗干扰能力。 调节器的输出信号到电压──频率转换器,其输出频率随调节器送来的输入电压VK而线性变化。通过频率的变化来控制a角,达到调节功率第目的。 三相同步信号直接由晶闸管的门极引线从主回路的三相进线上取得,由内部IC 进行滤波及移相,再经6只光电耦合器进行电位隔离,获得6个相位互差60度、占空比略小于50%的矩形波同步信号输出。 三相同步信号对计数器进行复位后,对电压——频率转换器的输出脉冲每计数256个脉冲便输出一个延时脉冲,因计数脉冲的频率是受VK控制的,换句话说,VK控制了触发脉冲的延时。

电气控制柜制作工艺及规范 (1)

控制柜制作工艺及规范 目录 一、前言 (1) 二、文件编制篇 (2) 三、标记篇 (2) 四、布局、排版篇 (3) 五、接线篇 (4) 六、接地及绝缘篇 (6) 七、检查篇 (6) 表A 以上文件参考国际标准 (7) 表B 导线、汇流排、紧固件配用表 (8) 表C 绝缘导线载流量计算表 (9) 表D 麻花钻与丝攻配合关系表 (10) 表E 控制柜内导线颜色选用表 (11) 表F 配线参考表 (11) 一、前言

统一制作规程,不仅能提高现场柜内维修的效率,并能降低新电柜对新手带来的门槛,还能缩短基层维修电工班组熟悉系统的时间,这些也可以归结为管理上的一句话“一切为用户着想”。 二、文件编制篇 1. 接受图纸后,一套装订成全图,包括系统图、原理图、材料表、面板布置图、底板布置图和端子 图等。用于全过程包括调试和图纸的存档,由技术人员保管使用。 2. 直至项目的结束要保持图纸的完整性、真实性、整洁性和过程信息记录的完整性。 3. 第二套图纸,包括材料表,面板布置图及底板布置图和端子图。主要用于材料核对、排版放样、 粘贴标签过程中使用。 4. 第三套装订,包括原理图接线图。由接线人员在接线过程中使用并保管。 5. 在图纸工艺安排过程中注意与材料表核对型号。如果发现错误立即,要求设计人员确认并签字。 6. 对主电路需标明所用导线截面积,或按照设计人员书面设计截面安排(见表C)。 7. 检查线路线号的完整性和正确性,比如重复和漏标线号都需设计人员填写“设计人员勘误确认表” 确认。 8. 对电源线标明所需线号管数量以方便统计。文件保存路径为:…项目号\项目号+填写日期+“线 号统计”。原则上每一电柜线号统计设定为一打印页,以方便每个电柜线号的包装。 9. 按照设备配套明细表或施工用图样(布置图、装配图等)进行领料配套。所有电器设备应有制造 厂产品合格证。 10. 所有产品合格证及说明书必须保存完整,以作为竣工资料的必须文件。 11.《电缆总清册》把现场每一根电缆的规格,编号,起始点等相关信息编制成表。通过此表现场人 员可以知道总的电缆排放数量,每个柜的电缆引出数量等电缆排放总体工作量. 12.《总接线手册》中把系统中每一根电缆连线的相关信息集中的编制再一起,通过此表可以知道总 的接线工作量,并可以通过表中的线号栏把所有所需的线号预先打印出来,就免去拿着整套图纸前后找线号的麻烦。备注栏中可以随时记录安装过程中的其他情况,这些信息对日设备的维护修理,和转场后的再次安装有着非常重要的作用。 三、标记篇 (一)对柜内元件标签粘贴的原则是:在元件和其附近的底板上粘贴。这样无论在运行状态,检修状态甚至元件被卸下时,都一样能够起到标示作用 (二)中文标签尺寸模板:对于单行字的标签实用30*12 对于双行字的使用30*15。操作台等此类面板元件较多的箱体上在此类元件背面贴上与正面铭牌一致的中文标签和标号将提高维修时的 查找效率在每个线槽盖板的端口处贴上标签会给维护后柜内复原带来方便 1. 柜内元件标签均为黄色。 2. 元件标签按照材料清单统计并保存,文件保存路径为:...项目号\项目号+日期+“元件标签”。 3. 线槽贴标签以英文大写SWIS BT 字体打印 4. 柜内中文标签均用隶书。 5. 柜内中文标签标准尺寸为30mm*12mm。 6. 端子标签尺寸为35mm*7mm。 7. 标牌应正确、清晰,易于识别,安装牢固。

中频炉原理及特点

中频炉电源原理及特点 (1)IGBT中频电源是一种采用串联谐振式的中频感应熔炼炉,它的逆变器件为一种新型IGBT模块(绝缘栅双极型晶体管,德国生产),它主要用于熔炼普通碳素钢、合金钢、铸钢、有色金属。它具有熔化速度快、节能、高次谐波污染低等优点。 (2)IGBT中频电源为一种恒功率输出电源,加少量料即可达到满功率输出,并且始终保持不变,所以熔化速度快;因逆变部分采用串联谐振,且逆变电压高,所有IGBT中频比普通可控硅中频节能;IGBT中频采用调频调功,整流部分采用全桥整流,电感和电容滤波,且一直工作在500V,所以IGBT中频产生高次谐波小,对电网产生污染工低。 (3)节能型IGBT晶体管中频电源比传统可控硅中频电源可节能15%-25%,节能的主要原因有以下几下方面: A、逆变电压高,电流小,线路损耗小,此部分可节能15%左右,节能型IGBT晶体管中频电源逆变电压为2800V,而传统可控硅中频电源逆变电压仅为750V,电流小了近4倍,线路损耗大大降低。 B、功率因数高,功率因数始终大于0.98,无功损耗小,此部分比可控硅中频电源节能3%-5%。由于节能型IGBT晶体管中频电源采用了半可控整流方式,整流部分不调可控硅导通角,所以整个工作过程功率因数始终大于0.98,无功率损耗小。 C、炉品热损失小,由于节能型IGBT晶体管中频电源比同等功率可控硅中频电源一炉可快15分钟左右,15分钟的时间内炉口损失的热量可占整个过程的3%,所以此部分比可控硅中频可节能3%左右。 (4)高次谐波干扰:高次谐波主要来自整流部分调压时可控硅产生的毛刺电压,会严重污染电网,导致其他设备无法正常工作,而节能型IGBT晶体管中频电源的整流部分采用半可控整流方式,直流电压始终工作在最高,不调导通角,所以它不会产生高次谐波,不会污染电网、变压器,开关不发热,不会干扰工厂内其他电子设备运行。 (5)恒功率输出:可控硅中频电源采用调压调功,而节能型IGBT晶体管中频电源采用调频调功,它不受炉料多少和炉衬厚薄的影响,在整个熔炼过程中保持恒

相关文档
最新文档