人教版九年级上册 第22章 《二次函数》单元测试题(word版)

合集下载

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

人教版九年级数学上册第22章《二次函数》单元测试题含答案

人教版九年级数学上册第22章《二次函数》单元测试题含答案

人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。

人教版九年级数学上册第二十二章《二次函数》单元测试题(含答案)

人教版九年级数学上册第二十二章《二次函数》单元测试题(含答案)

人教版九年级数学上册第二十二章《二次函数》单元测试题(含答案)一、单选题1.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣6(t ﹣2)2+7,则小球距离地面的最大高度是( ) A .2米B .5米C .6米D .7米2.已知抛物线y=x 2+x-1经过点P(m ,5),则代数式m 2+m+2016的值为( ) A .2021 B .2022 C .2023 D .20243.如图,二次函数2y ax bx c =++(0)a ≠图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为(1,0)-.则下面的四个结论:①0abc >;②22()a c b +<;③240b ac ->;④当0y <时,1x <-或2x >.其中正确的有( )个.A .1B .2C .3D .44.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .5.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:x1- 02 3 4y54-3-下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若()()12, , 2, 3A x B x 是抛物线上两点,则12x x <;⑥0abc >. 其中正确的个数是( )A .2B .3C .4D .56.抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示,则下列结论:①3a -c <0;② abc <0; ③点19(,)2y -,25(,)2y -,31(,)2y -是该抛物线上的点,则123y y y <<; ④4a -2b ≥at 2+bt (t 为实数);正确的个数有()个A.1B.2C.3D.47.函数y=mx2+2x﹣3m(m为常数)的图象与x轴的交点有()A.0个B.1个C.2个D.1个或2个8.抛物线y=2(x﹣3)2+2的顶点坐标是()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)9.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.ac<0 B.a+b+c<0 C.b2﹣4ac<0 D.b=8a10.已知函数6yx=的图象与()20,0y ax bx a b=+><的图象交于点Q,点Q的纵坐标为1,则关于x的方程26ax bxx+-=的解为()A.1B.2C.3D.611.二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2.其中正确的结论是( )A.①②B.①③C.②④D.③④12.函数y =ax 2+bx 与y =ax+b(ab ≠0)的图象大致是( )A .B .C .D .第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.二次函数y =ax 2+bx +c (a ≠0)的图象如图,若|ax 2+bx +c |=k 有两个不相等的实数根,则k 的取值范围是____.14.抛物线3)2(2+--=x y 的顶点坐标是 . 15.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.16.如图,已知正方形OBCD 的三个顶点坐标分别为B(1,0),C(1,1), D(0,1). 若抛物线2=-与正方形OBCD的边共有3个公共点,则h的取值范围是___________.()y x h17.二次函数y=ax2+bx+c的部分对应值如下表.利用二次函数的图象可知,当函数值y<0时,x的取值范围是_____.18.如图所示,在同一坐标系中,作出,,的图象,比较、、大小是______.三、解答题19.如图,已知直线过点和,是轴正半轴上的动点,的垂直平分线交于点,交轴于点.(1)直接写出直线的解析式;(2)当时,设,的面积为,求S关于t的函数关系式;并求出S的最大值;(3)当点Q在线段AB上(Q与A、B不重合)时,直线过点A且与x轴平行,问在上是否存在点C,使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.20.如图,在平面直角坐标系中,已知抛物线2142y x x ﹣﹣与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求直线BC 的解析式.(2)点P 是线段BC 下方抛物线上的一个动点.①求四边形PBAC 面积的最大值,并求四边形PBAC 面积的最大时P 点的坐标; ②如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形是平行四边形.求点Q 的坐标.21.已知二次函数y =ax 2+bx+c (a ≠0)的图象过点(1,﹣2)和(﹣1,0)和(0,﹣32). (1)求此二次函数的解析式;(2)按照列表、描点、连线的步骤,在如图所示的平面直角坐标系内画出该函数的图象(要求至少5点).22.如图,抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于C 点. (1)求该抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标;(3)作直线BC,若点Q是直线BC下方抛物线上的一动点,三角形QBC面积是否有最大值,若有,请求出此时Q点的坐标;若没有,请说明理由.23.如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B 的左边),点B的横坐标是1.(1) 求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3) 如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标. 24.在平面直角坐标系中,已知抛物线212y x bx c =-++(b 、c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为()0,1-,C 的坐标为()4,3,直角顶点B 在第四象限.(1)如图,若该抛物线经过A 、B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . ①若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M 、P 、Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标; ②取BC 的中点N ,连接NP ,BQ ,求PQMP BQ+的最大值.25.已知抛物线y =x 2+bx ﹣3经过点A (1,0),顶点为点M . (1)求抛物线的表达式及顶点M 的坐标; (2)求∠OAM 的正弦值. 26.如图①,已知抛物线与轴交于A 和B 两点(点A 在点B 的左侧),与y轴相交于点C .顶点为D . (1)求出点A,B,D 的坐标(2)如图①,若线段OB 在x 轴上移动,点O,B 移动后的对应点为O´,B´.首尾顺次连接点O´、B´、D 、C 构成四边形O´B´DC,当四边形O´B´DC 的周长有最小值时,在第四象限的抛物线上找一点P,使得△PO´C 的面积最大,求出此时点P 的坐标: (3)如图②,若点M 是抛物线上一点,点N 在y 轴上,连接CM 、MN.是否存在一点N,使△CMN为等腰直角三角形,若存在,直接写出点N 的坐标;若不存在,说明理由.27.在平面直角坐标系中,直线y =﹣12x+2与x 轴交于点B ,与y 轴交于点C ,二次函数y =﹣12x 2+bx+c 的图象经过B ,C 两点,且与x 轴的负半轴交于点A . (1)求二次函数的表达式;(2)如图1,点D 是抛物线第四象限上的一动点,连接DC ,DB ,当S △DCB =S △ABC 时,求点D 坐标;(3)如图2,在(2)的条件下,点Q 在CA 的延长线上,连接DQ ,AD ,过点Q 作QP ∥y 轴,交抛物线于P ,若∠AQD =∠ACO+∠ADC ,请求出PQ 的长.参考答案1.D 2.B .3.A4.D5.B6.C7.D8.B9.D10.D11.C12.A 13.k =0或k >2. 14.)3,2( 15.12 16.0<h<1 17.﹣1<x <3.18. 19.(1);(2),当时,S 有最大值;(3)在上存在点,使得是以为直角顶点的等腰直角三角形.20.(1)12y =x 2﹣x ﹣4,4y x =-;(2)①16;②点Q 的坐标为(2,0)或(6,0) 21.(1) 21322y x x =--(2)见解析.22.(1)y=x 2-2x-3;(2)P 点的坐标为( 0,15)或( 0,7);(3)点Q (32, - 154 ).23.(1)顶点P 的为(-2,-5),a =59(2)抛物线C 3的表达式为 y=-59(x-4)2+5 (3)当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形. 24.(1)21212y x x =-+-;(2)①1(4,1)M -,2(2,7)M --,3(15,25)M +-+,4(15,25)M ---;②PQ NP BQ +的最大值为105.25.(1)M 的坐标为(﹣1,﹣4);(2).26.(1)A (﹣2,0),B (4,0),D (1,﹣);(2)P (,﹣);(3)当△CMN 是以MN为直角边的等腰直角三角形时,点N 的坐标为(0,)、(0,)、(0,﹣)或(0,﹣).27.(1)213222y x x =-++;(2)(5,3)D -;(3)6。

人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】

人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】

人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。

人教版初中数学九年级上册第22章 二次函数单元测试题(含答案)

人教版初中数学九年级上册第22章 二次函数单元测试题(含答案)

人教版初中数学九年级上册第22章 <二次函数>单元测试题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共30分)1.下列函数中,y 关于x 的二次函数是( ) A.21y x =+ B. 21y x x =+()C.22y x= D.2y x =- 2.如图是二次函数2y ax bx c =++的部分图象,由图象可知该二次函数的对称轴是( ) A .直线x=-1B .直线x=5C .直线x=2D .直线x=03.如图是二次函数224y x x =-++的图象,使4y ≤成立的x 的取值范围是( ) A .0≤x ≤2 B .x ≤0C .x ≥2D .x ≤0或x ≥24.抛物线y=3x 2﹣3向右平移3个单位长度,得到新抛物线的表达式为( ) A .y=3(x ﹣3)2﹣3 B .y=3x 2C .y=3(x+3)2﹣3D .y=3x 2﹣65.若函数y=x 2﹣2x+b 的图象与坐标轴有三个交点,则b 的取值范围是( ) A .b <1且b ≠0 B .b >1 C .0<b <1 D .b <16.在同一平面直角坐标系中,函数2y kx k =+和函数242y kx x =-++(k 是常数,且k ≠0)的图象可能是( )A. B. C. D.7.二次函数c bx x y ++-=2的图象如图所示:若点A (11,y x ),B (22,y x )在此函数图象上,且121<<x x ,则1y 与2y 的大小关系是()A.21y y ≤B.21y y <C.21y y ≥D.21y y >8.如图,抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a ﹣b=0;②c <0;③﹣3a+c >0;④4a ﹣2b >at 2+bt (t 为实数);⑤点(﹣,y 1),(﹣,y 2),(﹣,y 3)是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个9.如图,抛物线2y ax bx c =++(0a ≠)过点(1,0)和点(0,-2),且顶点在第三象限,设P =a -b +c ,则P 的取值范围是( )A .-4<P <0B .-4<P <-2C .-2<P <0D .-1<P <010.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为()A .(2,2)B .(2,2)C .(2,2)D .(2,2)二、填空题(每小题3分,共24分)11.请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式y =__________12.二次函数y=x 2+4x-3中,当x=-1时,y 的值是______.13.若函数y =mx 2+2x +1的图象与x 轴只有一个公共点,则常数m 的值是14.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB =36m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7m ,则DE 的长为_____m .15.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A (m ,n ),B (m +6,n ),则n =______ 16.有意义,则双曲线y =21k x-与抛物线y =x 2+2x +2-2k 的交点在第 象限.17.已知二次函数y=x 2﹣2mx (m 为常数),当﹣1≤x ≤2时,函数值y 的最小值为﹣2,则m 的值是18.如图示二次函数y=ax 2+bx+c 的对称轴在y 轴的右侧,其图象与x 轴交于点A (﹣1,0)与点C (x 2,0),且与y 轴交于点B (0,﹣2),小强得到以下结论:①0<a <2;②﹣1<b <0;③c=﹣1;④当|a|=|b|时x 2>﹣1;以上结论中正确结论的序号为 .三、解答题(共66分)19.(8分)已知二次函数2(0)y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标; (2)求出该函数图象与x 轴的交点坐标.20.如图,已知二次函数y=ax 2+bx+c 的图象过A(2,0),B(0,-1)和C(4,5)三点. (1)求二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D,求点D 的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.21.(8分)在平面直角坐标系xOy 中,已知抛物线y=x 2-2mx+m 2-9. (1)求证:无论m 为何值,该抛物线与x 轴总有两个交点;(2)该抛物线与x 轴交于A,B 两点,点A 在点B 的左侧,且OA<OB,与y 轴的交点坐标为(0,-5),求此抛物线的解析式.22.(8分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点上正方1m 的P 处发出一球,羽毛球飞行的高度y (m)与水平距离x (m)之间满足函数表达式y =a (x -4)2+h .已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当a =-241时,①求h 的值.②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到点O 的水平距离为7m ,离地面的高度为512m 的Q 处时,乙扣球成功,求a 的值.23.(8分)在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积.24.(8分)已知二次函数22y x x m =-++.(1)如果二次函数的图象与x 轴有两个交点,求m 的取值范围; (2)如图,二次函数的图象过点A (3,0),与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.25.(8分)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y (万件)与销售价格x (元/件)的关系如图所示,其中AB 为反比例函数图像的一部分,BC 为一次函数图像的一部分.设公司销售这种电子产品的年利润为z (万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损记作下一年的成本)(1)请求出y (万件)与x (元/件)之间的函数关系式.(2)求出第一年这种电子产品的年利润z (万元)与x (元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润z (万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x (元)定在8元以上(x >8),当第二年的年利润不低于103万元时,请结合年利润z (万元)与销售价格x (元/件)的函数示意图,求销售价格x (元/件)的取值范围.元/件()26.(10分)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,且OA =4,OC =3.若抛物线经过O ,A 两点,且顶点在BC 边上,对称轴交BE 于点F ,点D ,E 的坐标分别为(3,0),(0,1) (1)求抛物线的解析式;(2)猜想△EDB 的形状并加以证明;(3)点M 在对称轴右侧的抛物线上,点N 在x 轴上,请问是否存在以点A ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.参考答案1.B2.C3.D4.A 解:y=3x 2﹣3向右平移3个单位长度,得到新抛物线的表达式为y=3(x ﹣3)2﹣3,故选:A .5.解:∵函数y=x 2﹣2x+b 的图象与坐标轴有三个交点, ∴,解得b <1且b ≠0.故选:A .6.D7.B 解析:由图象可知抛物线的对称轴为直线x =1.∵点A (11,y x ),B (22,y x )在抛物线上,且121<<x x , ∴点A ,B 都在对称轴的左侧.∵抛物线c bx x y ++-=2的开口向下,在对称轴左侧,y 随x 增大而增大, ∴21y y <.8.解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a ﹣b=0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y 轴的交点在y 轴的负半轴,即c <0,故②正确;∵由②知,x=﹣1时y >0,且b=4a ,即a ﹣b+c=a ﹣4a+c=﹣3a+c >0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a ﹣2b+c ≥at 2+bt+c ,即4a ﹣2b ≥at 2+bt (t 为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y 1<y 3<y 2,故⑤错误;故选:B .9.A 解析: ∵抛物线y =ax 2+bx +c (a ≠0)过点(1,0)和点(0,-2),∴a +b +c =0.∵c =-2,∴a +b =2.∴b =2- a .∴P =a -b +c = a -(2- a )-2=2a -4. ∵抛物线开口向上,∴ a >0.① ∵抛物线的顶点在第三象限,∴-2ba<0. ∴-22aa<0. ∴-(2-a )<0. ∴a <2.②由①②得0<a <2. ∴-4<2a -4<0. 即-4<P <0.故选A .10.C 解析:将A (-2,4)代入y=ax 2解得a=1,∴抛物线的解析式为y=x 2.∵A (-2,4),∴OB=2,AB=4.又∵旋转前后的图形为全等形,∴OD=OB=2,CD=AB=4,∴D 点坐标为(0,2).∵CD ∥x轴,∴P 点的纵坐标与D 点纵坐标相同,即P 点的纵坐标为2.∵点P 在抛物线y=x 2上,∴2=x 2解得x=±2.又∵点P 在第一象限,所以x=2,∴P 点的坐标为(2,2),故选C.11.答案不惟一,如x 2+1 12. -613.1或0解析:分两种情况:(1)当m =0时,题目中的函数即为一次函数y =2x +1,该函数的图象与x 轴只有一个公共点;(2)当m ≠0时,由抛物线y =mx 2+2x +1与x 轴只有一个公共点,得△=22-4×m ×1=0,解得m =1.综上所述,常数m 的值是1或0. 14.4815.9解析:抛物线y =x 2+bx +c 与x 轴只有一个交点,则关于x 的方程x 2+bx +c=0有两个相等的实数根,△=b 2-4ac=0,a=1,b 2-4c=0,c=24b ,因此方程抛物线解析式为y =x 2+bx +24b =(x +2b )2,抛物线经过点A(m ,n),B(m +6,n),由于这两点的纵坐标相同,因此抛物线的对称轴是直线x=m +3,由于抛物线对称轴是x=-2b,则b=-2m -6,所以抛物线为y=(x -m -3)2,把点A(m ,n)坐标代入解析式,则n=9.16.一、∴2-2k >0,k <1.y =x 2+2x +2-2k =(x +1)2+1-2k ,则其顶点坐标为(-1,1-2k ).当x =-1时,y =21k x-=1-2k ,故抛物线的顶点一定在双曲线y =21k x-上.又抛物线的对称轴为直线x =-1,由k <1,知1-2k >0,或1-2k <0(由双曲线解析式可知1-2k ≠0,同理,2k -1>0,或2k -1<0,即双曲线可在任意象限内),故抛物线的顶点可在第二象限与第三象限,又抛物线开口向上,有:当抛物线的顶点在第二象限时,它们的交点只能在第二象限;当抛物线的顶点在第三象限时,它们的交点在第三象限与第一象限.综上可知,双曲线y =21k x-与抛物线y =x 2+2x +2-2k 的交点可在第一、二、三象限.17.解:y=x 2﹣2mx=(x ﹣m )2﹣m 2,①若m <﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=﹣; ②若m >2,当x=2时,y=4﹣4m=﹣2,解得:m=<2(舍);③若﹣1≤m ≤2,当x=m 时,y=﹣m 2=﹣2,解得:m=或m=﹣<﹣1(舍),∴m 的值为﹣或18.解:由A (﹣1,0),B (0,﹣2),得b=a ﹣2,∵开口向上,∴a >0;∵对称轴在y 轴右侧,∴﹣>0,∴﹣>0,∴a ﹣2<0,∴a <2;∴0<a <2;∴①正确;∵抛物线与y 轴交于点B (0,﹣2),∴c=﹣2,故③错误;∵抛物线图象与x 轴交于点A (﹣1,0),∴a ﹣b ﹣2=0,无法得到0<a <2;②﹣1<b <0,故①②错误;∵|a|=|b|,二次函数y=ax 2+bx+c 的对称轴在y 轴的右侧,∴二次函数y=ax 2+bx+c 的对称轴为y=,∴x 2=2>﹣1,故④正确.故答案为:①④. 19.解:(1) 由题意,得c = -3.将点(2, 5),(-1,-4)代入,得4235,3 4.a b a b +-=⎧⎨--=-⎩解得1,2.a b =⎧⎨=⎩∴223y x x =+- . 顶点坐标为(-1,-4).(2) (-3,0),(1,0).20.解:(1)∵二次函数y=ax 2+bx+c 的图象过A(2,0),B(0,-1)和C(4,5)三点,∴∴a=,b=-,c=-1,∴二次函数的解析式为y=x 2-x-1;(2)当y=0时,得x 2-x-1=0,解得x 1=2,x 2=-1,∴点D 坐标为(-1,0).(3)图象如图,当一次函数的值大于二次函数的值时,x 的取值范围是-1<x<4.21. (1)证明:令y=0,则x 2-2mx+m 2-9=0,∵Δ=(-2m)2-4m 2+36>0,∴无论m 为何值时方程x 2-2mx+m 2-9=0总有两个不相等的实数根,∵抛物线y=x 2-2mx+m 2-9的开口向上,顶点在x 轴的下方, ∴该抛物线与x 轴总有两个交点.(2)解:∵抛物线y=x 2-2mx+m 2-9与y 轴交点坐标为(0,-5),∴-5=m 2-9.解得m=±2.当m=-2,y=0时,x 2+4x-5=0 解得x 1=-5,x 2=1,∵抛物线y=x 2-2mx+m 2-9与x 轴交于A,B 两点(点A 在点B 的左侧,且OA<OB), ∴m=-2不符合题意,舍去.∴m=2.∴抛物线的解析式为y=x 2-4x-5.22.解:(1)①把(0,1),a =-241代入y =a (x -4)2+h ,得1=-241×16+h ,解得h =35. ②把x =5代入y =-241(x -4)2+35,得y =-241(5-4)2+35=1.625.∵1.625>1.55,∴此球能过网.(2)把点(0,1),(7,512)代入y =a (x -4)2+h ,得⎪⎩⎪⎨⎧=+=+.5129,116h a h a 解得⎪⎪⎩⎪⎪⎨⎧=-=.521,51h a ∴a =-51. 23.解:(1)由题意得42264222a b a b -++⎩+⎧⎨==,解得121a b ⎧=⎪⎨⎪=-⎩,∴抛物线解析式为2122y x x =-+. (2)∵2122y x x =-+=213(1)22x -+,∴顶点坐标为(1,32) ∵直线BC 为y=-x+4,∴对称轴与BC 的交点H 的坐标为(1,3), ∴13133132222BDC BDH DHC S S S ∆∆∆=+=⨯⨯+⨯⨯=. 24.解:(1)∵二次函数的图象与x 轴有两个交点,∴△=22+4m >0. ∴m >-1.(2)∵二次函数的图象过点A (3,0), ∴0=-9+6+m. ∴m=3,∴二次函数的解析式为:y=-x 2+2x+3, 令x=0,则y=3, ∴B (0,3),设直线AB 的解析式为:y=kx+b ,∴303k b b +=⎧⎨=⎩,解得:13k b =-⎧⎨=⎩,∴直线AB 的解析式为:3y x =+﹣,∵抛物线223y x x =++﹣,的对称轴为:x=1, ∴把x=1代入y=-x+3得y=2, ∴P (1,2).25.解:(1)当48x 剟时,设ky x=,将A (4,40)代入得k =4×40=160. ∴y 与x 之间的函数关系式为:160y x=.当8<x ≤28时,设y =kx +b ,将B (8,20),C (28,0)代入得,820,280.k b k b +=⎧⎨+=⎩解之得:1,28.k b =-⎧⎨=⎩ ∴y 与x 之间的函数关系式为y =-x +28. ∴综上所述得:()()1604882828x y x x x ⎧⎪=⎨⎪-+⎩<剟…. (2)当48x 剟时,z =(x -4)·y -160=(x -4)·160x -160=640x-. ∵z 随着x 的增大而增大,∴当x =8时,z max =6408-=-80. 当8<x ≤28时,z =(x -4)·y -160 =(x -4)·(-x +28)-160=-x 2+32x-272=-(x -16) 2-16.∴当x =16时,z max =-16.∵-16>-80,∴当每件的销售价格定为16元时,第一年的年利润的最大值为-16万元.(3)∵第一年的年利润为-16万元.∴16万元应作为第二年的成本.又∵x >8,∴第二年的年利润z =(x -4)(-x +28)-16=-x 2+32x -128,令z =103,则-x 2+32x -128=103.解得:x 1=11,x 2=21.在平面直角坐标系中,画出z 与x 的函数示意图,观察示意图可知: z ≥103时,11≤x ≤21.∴当11≤x ≤21时,第二年的年利润z 不低于103万元.26.解:(1)由题意可知矩形OABC 中,OC =3,OA =4,∴A(4,0),C(0,3),B(4,3)∴点O ,A 在怕抛物线上且关于直线x =2成轴对称,直线x =2交CB 于点H ,H(2,3)是抛物线的顶点,设抛物线解析式为)0(3)2(2≠+-=a x a y ,当x =4时,y =0,∴4a+3=0,∴a =43- ∴抛物线的解析式为3)2(432+--=x y (2)△EDB 为等腰直角三角形,证明如下:∵D ,E 两点坐标分别为(3,0)和(0,1)∴OE =AD =1 ,OD =AB =3又∵∠EOD =∠DAB =90°,在△EOD 和△DAB 中⎪⎩⎪⎨⎧=∠=∠=AB OD DAB EOD OD OE∴△EOD ≌△DAB(SAS)∴∠EDO =∠DBAED =DB∵∠BDA+∠DBA =90°,∴∠EDO+∠BDA =90°∴∠EDB =90°,∴△EDB 为等腰直角三角形(3)存在.理由如下:设BE 所在直线的函数解析式为y =kx+b(k ≠0)∴⎩⎨⎧=+=b b k 143,∴⎪⎩⎪⎨⎧==121b k ,∴y =121+x 当x =2时,y =2,∴F 点的坐标为(2,2)①过F 作FM ∥x 轴交直线x =2右侧抛物线于点M 1,点N 在x 轴上得到平行四边形FN 1AM 1和平行四边形FAN 2M 1,形把y =2代入3)2(432+--=x y ,得:3)2(4322+--=x ,解得:3326±=x ,∵x>2,∴3326+=x ,∴M 1的坐标为(3326+,2) ②在直线x =2上作点F 关于x 轴对称的点F 1(2,-2) 过点F 1作F 1M 2∥x 轴交直线x =2右侧抛物线于点M 2得到平行四边形N 3M 2AF ,把y =-2代入3)2(432+--=x y ,得:3)2(4322+--=-x ,解得:31526±=x ,∵x>2,∴31526+=x ,∴M 2的坐标为(31526+,-2) 综上,符合条件的M 的坐标为:(3326+,2),(31526+,-2)。

人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案

人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案

人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若二次函数图象的顶点坐标为2,1,且过点()0,3,则该二次函数的解析式为( ) A .()21122x y --= B .()221y x =+- C .()221y x =-- D .()221y x =---2.平面直角坐标系中,抛物线y =12(x +2)(x ﹣5)经变换后得抛物线y =12(x +5)(x ﹣2),则这个变换可以是( )A .向左平移7个单位B .向右平移7个单位C .向左平移3个单位D .向右平移3个单位 3.已知二次函数()2213y x =--,则下列说法正确的是( ) A .y 有最小值0,有最大值-3 B .y 有最小值-3,无最大值 C .y 有最小值-1,有最大值-3 D .y 有最小值-3,有最大值0 4.二次函数()2y x k h =++的图象与x 轴的交点的横坐标分别为-1和3,则()22y x k h =+++的图象与x 轴的交点的横坐标分别为( )A .-3和1B .1和5C .-3和5D .3和5 5.若二次函数2y a x bx c =++的图象经过不同的六点()1,A n -、()5,1B n -和()6,1C n +、()14,D y 和()22,E y 、()32,F y 则1y 、2y 和3y 的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y << 6.已知二次函数()24119y x =--上的两点()()1122,,,P x y Q x y 满足123x x =+,则下列结论中正确的是( ) A .若112x <-,则121y y >>- B .若1112x -<<,则210y y >> C .若112x <-,则120y y >> D .若1112x -<<,则210y y >> 7.已知抛物线()2<0y ax bx c a =++的对称轴为=1x -,与x 轴的一个交点为()2,0.若关于x 的一元二次方程()20ax bx c p p ++=>有整数根,则P 的值有多少个?( )A .1B .2C .3D .48.如图,直线y=x 与抛物线y=x 2﹣x ﹣3交于A 、B 两点,点P 是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x 于点Q ,设点P 的横坐标为m ,则线段PQ 的长度随m 的增大而减小时m 的取值范围是( )﹣1或1<m <3 9.小明周末外出游玩时看到某公园有一圆形喷水池,如图1,简单测量得到如下数据:圆形喷水池直径为20m ,水池中心O 处立着一个圆柱形实心石柱OM ,在圆形喷水池的四周安装了一圈喷头,喷射出的水柱呈拋物线型,水柱在距水池中心4m 处到达最大高度为6m ,从各方向喷出的水柱在石柱顶部的中心点M 处101110.如图,在ABC 中90,3cm,6cm B AB BC ∠=︒==,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ 的面积S 随出发时间t 的函数图象大致是( )A .B . C. D .二、填空题11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.已知实数x 、y 满足x 2﹣2x +4y =5,则x +2y 的最大值为 .13.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是 元时,王大伯获得利润最大.14.已知抛物线224y mx mx c =-+ 与x 轴交于点()1,0A -、()2,0B x 两点,则B 点的横坐标2x = .15.已知抛物线的函数关系式:()22212y x a x a a =+-+-(其中x 是自变量).(1)若点()1,3P 在此抛物线上,则a 的值为 .(2)设此抛物线与x 轴交于点()1,0A x 和()2,0B x ,若122x x <<,且抛物线的顶点在直线34x =的右侧,则a 的取值范围为 .16.设二次函数2y ax bx c =++(,a b c ,是常数,0a ≠),如表列出了x ,y 的部分对应值. x … 5- 3- 1 2 3 …y … 2.79- m 2.79- 0n … 则不等式20ax bx c ++<的解集是 .17.二次函数2y ax bx c =++的部分图象如图所示,对称轴为1x =,图象过点A ,且930a b c ++=,以下结论:⊥420a b c -+<;⊥关于x 的不等式220ax ax c -+->的解集为:13x -<<;⊥3c a >-;⊥()21(1)0m a m b -+-≥(m 为任意实数);⊥若点()1,B m y ,()22,C m y -在此函数图象上,则12y y =.其中错误的结论是 .三、解答题设该超市在第x 天销售这种商品获得的利润为y 元.(1)求y 关于x 的函数关系式;(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?21.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0和()03-,三点.(1)求二次函数的解析式;(2)方程2++=有两个实数根,m的取值范围为__________.ax bx c m(3)不等式23++>-的解集为__________;ax bx c x22.一次足球训练中,小明从球门正前方12m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为8m时,球达到最高点,此时球离地面4m.已知球门高OB为2.58m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.56m处?参考答案:1.C2.C3.B4.A5.D6.B。

人教版九年级上册 第22章 《二次函数》单元测试题(word版)

人教版九年级上册  第22章 《二次函数》单元测试题(word版)

2020-2021学年九年级《二次函数》单元测试题班级: 姓名: 分数:一、选择题(本大题共10小题,共30分) 1.抛物线2(+23y x =--)的顶点坐标是( ).A. (2,3)B. (2,-3)C. (-2,3)D. (-2,-3) 2.关于二次函数的图象,下列说法正确的是A. 开口向下B. 最低点是A(2,0)C. 对称轴是直线x=2D. 对称轴的右侧部分y 随x 的增大而增大 3.在同一平面直角坐标系内,将函数的图象向右平移3个单位,再向下平移1个单位得到图象的顶点坐标是A.(—3,2)B. (3,2)C. (3,0)D. (—3,0)4.将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是A. y=(x —35)(400—5x )B. y=(x —35)(600—10x )C. y=(x+5)(200—5x )D. y=(x+5)(200—10x )5.把二次函数y=—(x+1)2—3的图象沿着x 轴翻折后,得到的二次函数有A. 最大值y=3B. 最大值y=—3C. 最小值y=3D. 最小值y=—36.抛物线y=3x 2,y=—2x 2+1在同一直角坐标系内,则它们A. 都关于y 轴对称B. 开口方向相同C. 都经过原点D. 互相可以通过平移得到 7.设A (—2,y 1),,是抛物线y=—(x+1)2上的三点,,,的大小关系为A. B.C.D.8.如图,抛物线与直线相交于O ,两点,则不等式ax 2+bx —kx <0的解集是A. 0<X <3B. 2<X <3C. 或D. 或9.已知关于x 的二次函数y=—(x —m )2+2,当时,y 随x 的增大而减小,则实数m 的取值范围是 A. m ≤0 B. 0<m ≤1 C. m ≤1 D. m ≥110.如图,二次函数的图象经过点A (—1,0)、点、点,若点是抛物线上任意一点,有下列结论:①二次函数的最小值为—4a ;②若—1≤X 2≤4; ,则0≤y 2≤5a ;③若,则;④一元二次方程的两个根为—1和31.其中正确结论的个数是A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18分)11.二次函数y=—2(x —1)2+5的图象的对称轴为______ ,顶点坐标为______ .12.已知一抛物线的形状与抛物线相同,顶点在(1,—2),则抛物线的解析式为______.13.若二次函数y=mx 2+(x —2)x+m 的顶点在x 轴上,则m=______. 14.下图是某座抛物线形的廊桥示意图,已知抛物线的函数表达式为y=—401x 2+10,为保护廊桥的安全,在该廊桥上与水面AB 之间的距离为8米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米15.如图,两条抛物线y 1=—21x 2+1, y 2=—21x 2—1,与分别经过点(—2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为________.16.抛物线的对称轴是直线X=—1,且过点(1,0),顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab >0且;②4a —2b+c >0;;④c=3a —3b ;⑤直线与抛物线两个交点的横坐标分别为,,则++=—5.其中结论正确是 .三、计算题(本大题共8小题,共72分) 2214-=-+++()().mmy m x m x m 17.(6分)若函数.当m 为何值时,该函数为二次函数?写出该函数图像的开口方向、对称轴及顶点坐标.18.(8分)已知二次函数y=x 2+2x —3.用配方法求y=x 2+2x —3的顶点坐标;在平面直角坐标系xOy 中,画出该函数的图象.19.(8分)某幢建筑物,从10米高的窗户A用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M离墙1米,离地面403米,求水流落地点B离墙的距离.20.(9分)已知二次函数y=—x2+2x+m.如果二次函数的图象与x轴有两个交点,求m的取值范围;如图,二次函数的图象过点,交y轴于点B,点D是顶点,求△ABD的面积.在的条件下,若直线AB的解析式为y =kx+b,则满足kx+b>-x2+2x+m的x的取值范围是.21.(9分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x m,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?22.(10分)如图,抛物线经过点A(4,0)、B(—2,0)C(0,—4).求抛物线的解析式;在抛物线AC段上是否存在点M,使△ACM的面积为3,若存在,请求出点M的坐标,若不存在,说明理由.23.(10分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=——x+60(30≤x≤60)设这种双肩包每天的销售利润为w元.求w与x之间的函数关系式;这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?24.(12分)如图,在平面直角坐标系中,已知抛物线过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,—3),动点P在抛物线上.______,______,点B的坐标为______;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.。

九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)

九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)

九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数中,是二次函数的是( )A .y =−8xB .y =8xC .y =8x 2D .y =8x −4 2.二次函数y=x 2的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.若抛物线y =ax 2经过点P(−√7,4),则该抛物线一定还经过点( )A .(4,−√7)B .(√7,4)C .(−4,√7)D .(−√7,−4)4.已知二次函数表达式为y =−(x +2)2−1,则下列结论中正确的是( )A .对称轴为直线x =2B .最大值是-1C .顶点坐标为(2,−1)D .图象开口向上5.二次函数y =x 2+bx+3满足当x <﹣2时,y 随x 的增大而减小,当x >﹣2时,y 随x 的增大而增大,则x =1时,y 的值等于( )A .﹣8B .0C .3D .86.点A(−2,y 1),B(4,y 2),C(6,y 3)均在二次函数y =x 2−2x −3的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 1=y 2>y 3C .y >1y 2>y 3D .y >3y 1=y 2 7.二次函数y =ax 2−bx −5与x 轴交于(1,0)、(-3,0),则关于x 的方程ax 2−bx =5的解为( )A .1,3B .1,-5C .-1,3D .1,-38.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,则下列描述正确的是( )A.小球抛出3秒后,速度越来越快B.小球在空中经过的路程是40mC.小球抛出3秒时速度达到最大D.小球的高度h= 30m时,t=1.5s二、填空题9.若二次函数y=ax2的图象开口向上,则a的取值范围是.10.已知抛物线y=−x2+4x+m,若顶点在x轴上,则m=.11.当−2≤x≤1时,二次函数y=(x+m)2+m2+1有最大值4,则实数m的值为.12.二次函数y=−x2+bx+c的部分图像如图所示,由图像可知,方程−x2+bx+c=0的解为.13.某商场经营一种文具,进价为20元/件,当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.那么该文具定价为元时每天的最大销售利润最大.三、解答题14.如图,若二次函数y=x2−x−2的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点.(1)求A、B两点的坐标:(2)若P(m,−2)为二次函数y=x2−x−2图象上一点,求m的值.15.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为6m,桥洞的跨度为12m,如图建立直角坐标系.(1)求这条抛物线的函数表达式.(2)求离对称轴2m处,桥洞离水面的高是多少m?16.如图,抛物线y1=ax2−2x+c与x轴交于A(−1,0)和B(3,0)两点.(1)求此抛物线的解析式;(2)过点A的直线y2=mx+n与抛物线在第一象限交于点D,若点D的纵坐标为5,请直接写出当y2<y1时,x的取值范围是.17.新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?18.如图,抛物线y=−x2+bx+c与x轴交于A、B两点,与y轴交于C点,点A的坐标为(3,0),点C的坐标为(0,3).(1)求b与c的值;(2)求函数的最大值;时,利用函数图象写出m的取值范围.(3)M(m,n)是抛物线上的任意一点,当n≥7419.如图,抛物线y=x2+bx+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式及顶点坐标;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)抛物线上是否存在点P使得S△PAB=6?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.C2.A3.B4.B5.D6.D7.D8.A9.a >010.-411.1−√22或−12+√5212.x 1=5 x 2=−113.3514.(1)解:当y=0时,即x 2−x −2=0解得:x 1=-1,x 2=2∴A 点坐标和B 点坐标为 A(−1,0),B(2,0) ;(2)解:把x=m,y=-2代入 y =x 2−x −2 即m 2−m −2=-2,解得:m 1=0,m 2=1.15.(1)解:由题意可得,抛物线顶点坐标为(6,6)设抛物线解析式为y =a(x −6)2+6∵抛物线过点(0,0)∴0=a(0−6)2+6解得a =−16∴这条抛物线所对应的函数表达式为y =−16(x −6)2+6=−16x 2+2x(2)解:由题意可知该抛物线的对称轴为x =6,则对称轴右边2m 处为x =8 将x =8代入y =−16x 2+2x可得y =−16×82+2×8,解得y =163答:离对称轴2m 处,桥洞离水面的高是163m .16.(1)解:把A(−1,0)和B(3,0)代入y 1=ax 2−2x +c得{a +2+c =09a −6+c =0∴{a =1c =−3∴y 1=x 2−2x −3;(2)x >4或x <-117.(1)解:由题意可知:y =(140−x −100)(20+2x)=−2x 2+60x +800∴y 与x 的函数关系式为y =−2x 2+60x +800.(2)解:令−2x 2+60x +800=1200解得x 1=10∴140−x 1=130答:要书店每天盈利1200元,每套书销售定价应定为130元或120元.(3)解:y =−2x 2+60x +800=−2(x −15)2+1250∵−2<0∴当x =15时,y 有最大值1250,此时140−x =140−15=125答:当每套书销售定价为125元时,书店每天可获最大利润。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年九年级《二次函数》单元测试题
班级: 姓名: 分数:
一、选择题(本大题共10小题,共30分)
1.抛物线2
(+23y x =--)的顶点坐标是( ).
A. (2,3)
B. (2,-3)
C. (-2,3)
D. (-2,-3)
2.关于二次函数y =(x +2)2的图象,下列说法正确的是
A. 开口向下
B. 最低点是A(2,0)
C. 对称轴是直线x=2
D. 对称轴的右侧部分y 随x 的增大而增大
3.在同一平面直角坐标系内,将函数y =x 2+1的图象向右平移3个单位,再向下平移1个单位得到图象的顶点坐标是
A.(—3,2)
B. (3,2)
C. (3,0)
D. (—3,0)
4.将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是
A. y=(x —35)(400—5x )
B. y=(x —35)(600—10x )
C. y=(x+5)(200—5x )
D. y=(x+5)(200—10x )
5.把二次函数y=—(x+1)2—3的图象沿着x 轴翻折后,得到的二次函数有
A. 最大值y=3
B. 最大值y=—3
C. 最小值y=3
D. 最小值y=—3
6.抛物线y=3x 2,y=—2x 2+1在同一直角坐标系内,则它们
A. 都关于y 轴对称
B. 开口方向相同
C. 都经过原点
D. 互相可以通过平移得到
7.设A (—2,y 1),B(1,y 2),C(2,y 3)是抛物线y=—(x+1)2上的三点,y 1,y 2,y 3的大小关系为
A. y 1>y 2>y 3
B. y 1>y 3>y 2
C. y 3>y 2>y 1
D. y 3>y 1>y 2
8.如图,抛物线y =ax 2+bx 与直线y =kx 相交于O ,A(3,2)两点,则不等式ax 2+bx —kx <0的解集是
A. 0<X <3
B. 2<X <3
C. x <0或x >3
D. x <2或x >3
9.已知关于x 的二次函数y=—(x —m )2+2,当x >1时,y 随x 的增大而减小,则实
数m 的取值范围是
A. m ≤0
B. 0<m ≤1
C. m ≤1
D. m ≥1
10.如图,二次函数y =ax 2+bx +c 的图象经过点A (—1,0)、点B(3,0)、点C(4,y 1),
若点D(x 2,y 2)是抛物线上任意一点,有下列结论:
①二次函数y =ax 2+bx +c 的最小值为—4a ;②若—1≤X 2≤4; ,则0≤y 2≤5a ;
③若y 2>y 1,则x 2>4;④一元二次方程cx 2+bx +a =0的两个根为—1和
31.其中正确结论的个数是
A. 1
B. 2
C. 3
D. 4
二、填空题(本大题共6小题,共18分)
11.二次函数y=—2(x —1)2+5的图象的对称轴为______ ,顶点坐标为______ .
12.已知一抛物线的形状与抛物线y =-12x 2相同,顶点在(1,—2),则抛物线的解析式为______.
13.若二次函数y=mx 2+(x —2)x+m 的顶点在x 轴上,则m=______.
14.下图是某座抛物线形的廊桥示意图,已知抛物线的函数表达式为y=—401
x 2+10,为保护廊桥的安全,在该廊桥上与水面AB 之间的距离为8米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.
15.如图,两条抛物线y 1=—
21x 2+1, y 2=—21x 2—1,与分别经过点(—2,0),(2,0)且平行于y 轴的两条平行线围成的阴影部分的面积为________.
16.抛物线y =ax 2+bx +c 的对称轴是直线X=—1,且过点(1,0),顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab >0且c <0;②4a —2b+c >0;;④c=3a —3b ;⑤直线y =2x +2与抛物线y =ax 2+bx +c 两个交点的横坐标分别为x 1,x 2,则x 1+x 2+x 1x 2=—5.其中结论正确是 .
三、计算题(本大题共8小题,共72分)
2214-=-+++()().m m y m x m x m 17.(6分)若函数.
(1)当m 为何值时,该函数为二次函数?
(2)写出该函数图像的开口方向、对称轴及顶点坐标.
18.(8分)已知二次函数y=x 2+2x —3.
(1)用配方法求y=x 2+2x —3的顶点坐标;
(2)在平面直角坐标系xOy 中,画出该函数的图象.
19.(8分)某幢建筑物,从10米高的窗户A 用水管向外喷水,喷出的水流呈抛物线状(如图),若
抛物线最高点M 离墙1米,离地面403米,求水流落地点B 离墙的距离.
20.(9分)已知二次函数y=—x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),交y轴于点B,点D是顶点,求△ABD的面积.
(3)在(2)的条件下,若直线AB的解析式为y =kx+b,则满足kx+b>-x2+2x+m
的x的取值范围是.
21.(9分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔
有一道篱笆的长方形花圃,设花圃的宽AB为x m,面积为Sm2.
(1)求S与x的函数关系式及x值的取值范围;
(2)要围成面积为45m2的花圃,AB的长是多少米?
(3)当AB的长是多少米时,围成的花圃的面积最大?
22.(10分)如图,抛物线经过点A(4,0)、B(—2,0)C(0,—4).
(1)求抛物线的解析式;
(2)在抛物线AC段上是否存在点M,使△ACM的面积为3,
若存在,请求出点M的坐标,若不存在,说明理由.
23.(10分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=——x+60(30≤x≤60)设这种双肩包每天的销售利润为w元.
求w与x之间的函数关系式;
这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
24.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,—3),动点P在抛物线上.
(1)b=______,c=______,点B的坐标为______;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.。

相关文档
最新文档