2019山东青岛中考数学解析

合集下载

2019年山东省青岛市市北区中考数学一模试卷(解析版)

2019年山东省青岛市市北区中考数学一模试卷(解析版)

2019年山东省青岛市市北区中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.在如图所示的数轴上若A、B两点到原点的距离相等,则点B所表示的数是()A. −3B. −2C. 13D. 62.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. 晴B. 浮尘C. 大雨D. 大雪3.亚洲陆地面积约为4400万平方千米,用科学记数法正确表示44000000的是()A. 44×106B. 0.44×108C. 4.4×103D. 4.4×1074.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A. 李飞或刘亮B. 李飞C. 刘亮D. 无法确定5.下列计算正确的是()A. a3+a2=a5B. a8÷a4=a2C. (2a3)2−a⋅a5=3a6D. (a−2)(a+3)=a2−66.如图,AB是⊙O的直径,点C、D在⊙O上,A是弧DC中点,若∠ABD=15°,则∠BOC的度数为()A. 120∘B. 150∘C. 210∘D. 75∘7.如图,一次函数y=-x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B. 有两个相等的实数C. 没有实数根D. 以上结论都正确8.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,连接AE、CF,则下列结论正确的有()个(1)DE=2(2)∠EAG=45°(3)△EAG的面积是18(4)cos∠FCG=√55A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18.0分)9.计算:√36+√24√3=______.10.如图,一块正方形地面上铺设了黑、白两种颜色的方砖,它们除颜色外完全相同.一个小球在地面上自由滚动,并随机停留在某块方砖上.小球最终停留在黑砖上的概率是______.11.如图,已知线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点D的坐标为______.12.甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的13,设步行速度为x千米/时,则根据题意可以列出方程______.13.如图,在菱形ABCD中,∠BAD=60°,AB的垂直平分线交对角线AC于点F,垂足为E,若AF=1,则菱形ABCD的面积等于______.14.有一个底面为正方形的棱柱(如图1),底面边长为20cm,棱柱高50cm,现沿着它底面的内切圆进行加工,切掉原来的三条侧棱后,形成的几何体如图2所示,其俯视图如图3所示,则该几何体的表面积为______cm2,体积为______cm3.(柱体的体积=底面积x高)三、计算题(本大题共2小题,共16.0分)15.如图,某公园入口处原有三级台阶,每级台阶高为18cm,宽为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,求AC的长度.16. 工人师傅用一块长为2m ,宽为1.2m 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)若长方体底面面积为1.28m 2,求裁掉的正方形边长;(2)若要求制作的长方体的底面长不大于底面宽的3倍,并将容器进行防锈处理,侧面每平方米的费用为50元,底面每平方米的费用为200元,裁掉的正方形边长多大时,总费用最低,最低为多少?四、解答题(本大题共8小题,共62.0分)17. 如图,利用尺规在平面内确定一点O ,使得点O 到△ABC 的两边AB 、AC 的距离相等,并且点O 到B 、C 两点的距离也相等(保留作图痕迹,不写作法).18. (1)解不等式组:{x−32<12(x +1)≥x −1(2)化简:(a 2+12a-1)⋅2aa 2−119. 在不透明的口袋中,装有3个分别标有数字1、2、3的小球,它们除标示的数字外完全相同,小红、小明和小亮用这些道具做摸球游戏.游戏规则如下:由小红随机从口袋中摸出一个小球,记录下数字放回摇匀再由小明随机从口袋中摸出一个小球,记录下数字,放回摇匀.如果两人摸到的小球上数字相同,那么小亮获胜;如果两人摸到的小球上数字不同,那么小球上数字大的一方获胜. (1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果; (2)这个游戏规则对三人公平吗?请说明理由.20. 春华中学为了解九年级学生的身高情况,随机抽测50名学生的身高后,所得部分资料如下(身高单位:cm ,测量时精确到1cm );身高 148 151 154 155 157 158 160 161 162 164 人数 1 1 2 1 2 3 4 3 4 5 身高 165 166 167 168 170 171 173 175 177 179 人数2361423111若将数据分成8组,取组距为4cm ,相应的频率分布表(部分)是: 分 组 频 数 频 率 147.5~151.5 2 0.04 151.5~155.5 3 0.06 155.5~159.5 5 0.10 159.5~163.5 11 0.22 163.5~167.5 ______ ______ 167.5~171.5 ______ ______ 171.5~175.5 4 0.08 175.5~179.5 2 0.04 合 计501.00请回答下列问题:(1)样本数据中,学生身高的众数、中位数各是多少? (2)填写频率分布表中未完成的部分;(3)若该校九年级共有850名学生,请你估计该年级学生身高在172cm 及以上的人数21.在同一平面直角坐标系中,一次函数y1=ax+b与反比例函数y2=kx(k为常数,且k ≠0)的图象交于A、B两点,它们的部分图象如图所示,△BOD的面积是6.(1)求一次函数y1=ax+b与反比例函数y2=kx的表达式;(2)请直接写出不等式y1>y2的解集.22.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点F为AC的中点,连接FD并延长到点E,使FD=DE,连接BF,CE和BE.(1)求证:BE=FC;(2)判断并证明四边形BECF的形状;(3)为△ABC添加一个条件,则四边形BECF是矩形(填空即可,不必说明理由)23.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=√2,设EB=x,则BF=√2-x,∵Rt△AEB≌Rt△BFC∴BF=AE=√2-x在Rt△AEB中,由勾股定理,得x2+(√2-x)2=12解得,x1=x2=√22∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD,______一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD 面积的n倍?(n>2)(仿照上述方法,完成探究过程)24.如图,在菱形ABCD中,对角线AC=6cm,BD=8cm点P从点B出发沿BA方向匀速运动,速度是1cm/s,点Q从点D出发沿DB方向匀速运动,速度是2cm/s,QE∥AB,与BC交于点E,连接PQ.设运动时间为t(s)(0<t≤4).(1)当PQ⊥AB于P时,求t的值;(2)设四边形BPQE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使BQ平分∠PQE?若存在,求t的值;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵A、B两点到原点的距离相等,A为3,则B为3的相反数,即B表示-3.故选:A.到原点距离相等的点所表示的数互为相反数,故可知B点表示的数为3的相反数.本题考查绝对值的意义及相反数的意义,要正确理解到原点距离相等的两个点所表示的数即为相反数.2.【答案】A【解析】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】D【解析】解:用科学记数法正确表示44000000的是4.4×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5-8)2+2×(7-8)2+3×(8-8)2+3×(9-8)2+(10-8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7-8)2+4×(8-8)2+3×(9-8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选:C.根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及方差的计算公式.5.【答案】C【解析】解:A、a2和a3不能合并,故本选项不符合题意;B、a8÷a4=a4,故本选项不符合题意;C、(2a3)2-a•a5=4a6-a6=3a6,故本选项符合题意;D、(a-2)(a+3)=a2+a-6,故本选项不符合题意;故选:C.根据合并同类项,同底数幂的除法,多项式乘以多项式,幂的乘方和积的乘方求出每个式子的值,再得出选项即可.本题考查了合并同类项,同底数幂的除法,多项式乘以多项式,幂的乘方和积的乘方等知识点,能求出每个式子的值是解此题的关键.6.【答案】B【解析】解:∵A是弧DC中点,∠ABD=15°,∴∠AOC=30°,∴∠BOC=150°,故选:B.根据圆周角定理和平角解答即可.此题考查圆周角定理,关键是根据圆周角定理和平角解答.7.【答案】A【解析】解:∵一次函数y=-x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=-x有两个不相等的实数根,ax2+bx+c=-x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.根据二次函数与一元二次方程的关系判断.本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系是解题的关键.8.【答案】B【解析】解:(1)∵将△ABG沿AG对折至△AFG∴AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,,∴Rt△AFE≌Rt△ADE(HL),∴EF=DE,设DE=FE=x,则EC=6-x.∵G为BC中点,BC=6,∴CG=3,GE=3+x,在Rt△ECG中,根据勾股定理,得:(6-x)2+32=(x+3)2,则DE=2;∴(1)正确;(2)∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠EAG=45°;∴(2)正确;(3)∵AF=AB=6,GE=DE+BG=2+3=5,∴S△EAG =AF•GE=×6×5=15;∴(3)错误;(4)过F作FH⊥CG于H,如图所示:则CE=CD-DE=6-2=4,∵△CEG的面积=CG•CE=×3×4=6,∴△CFG的面积=×6=,∴FH•CG=,即FH×3=,解得:FH=,∵GF=BG=3,GH===,∴CH=CG-GH=3-=,CF===,∴cos∠FCG===;∴(4)正确;综上所述:结论正确的有3个;故选:B.(1)由翻折变换的性质证明Rt△AFE≌Rt△ADE,得出EF=DE,设DE=FE=x,则EC=6-x.CG=3,GE=3+x,由勾股定理得出DE=2;(2)由∠BAG=∠FAG,∠DAE=∠FAE,∠BAD=90°,即可得出∠EAG=45°;(3)由S△EAG =AF•GE得出S△EAG=15;(4)过F作FH⊥CG于H,求出FH=,GH=,CH=,CF=,得出cos∠FCG==;综合以上结果即可得出结论.本题考查翻折变换的性质、正方形的性质、全等三角形的判定与性质、直角三角形的性质、勾股定理、三角形面积计算、三角函数等知识,熟练掌握翻折变换的性质与勾股定理是关键.9.【答案】2√3+2√2【解析】解:原式===2+2,故答案为:2+2.先化简二次根式,再分母有理化,继而化简可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.10.【答案】38【解析】解:观察这个图可知:黑色区域(6块)的面积占总面积(16块)的=,则它最终停留在黑色方砖上的概率是,故答案为:.根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.【答案】(4,2)【解析】解:线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B与点D是对应点,则点D的坐标为(8×,4×),即(4,2),故答案为:(4,2).应点的坐标的比等于k或-k解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12.【答案】4.5x-4.53x=12【解析】解:设步行速度为x千米/时,则骑自行车的速度为3x千米/时,依题意,得:-=.故答案为:-=.设步行速度为x千米/时,则骑自行车的速度为3x千米/时,根据时间=路程÷速度结合骑自行车比步行少用半小时,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.13.【答案】3√32【解析】解:连接DB,∵AB的垂直平分线交对角线AC于点F,∴∠AEF=90°,AB=2AE,∵菱形ABCD中,∠BAD=60°,∴∠FAE=30°,∴AE=,∵菱形ABCD中,∠BAD=60°,∴AD=AB,∴△ADB是等边三角形,∴DB=AB=2AE=,∴AC=2AO=,故答案为:连接BD,根据菱形ABCD的性质得出AD=AB,再由∠BAD=60°得出△ADB是等边三角形,利用含30°的直角三角形的性质和菱形的面积解答即可.本题主要考查了菱形的性质,等边三角形的性质和判定等知识点,解此题的关键是证明△ADB 是等边三角形.14.【答案】900π+1200 3750π+5000【解析】解:(1)由图2可知,切割后的几何体是由个圆柱的表面积,2个边长为10cm的正方形,2个边长10cm,50cm的长方形组成;因此表面积为×2×π×50+×2×π×10×10+2×10×10+2×10×50=(900π+1200)cm2;(2)由几何体的组成部分,可知体积是圆柱体积和长方体体积组成,因此体积为×π×10×10×50+10×10×50=(3750π+5000)cm3,故答案为900π+1200,3750π+5000;通过给出图判断切割后的几何体的组成图形,切割后的几何体是由个圆柱的表面积,2个边长为10cm的正方形,2个边长10cm,50cm的长方形组成;然后再利用圆柱和长方体的表面积和体积公式进行求解;本题考查几何体的视图,不规则几何体的表面积和体积的求法;能够通过给出的视图,判断出组合体的组成图形是解题的关键.15.【答案】解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD-AD=270-60=210(cm).∴AC的长度是210cm.答:AC的长度为210cm.【解析】首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,此题考查了解直角三角形的应用:坡度问题,难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.16.【答案】解:(1)设裁掉的正方形的边长为xm,根据题意,得:(2-2x)(1.2-2x)=1.28,解得:x1=0.2或x2=1.4(舍),所以裁掉的正方形边长为0.2m;(2)∵长不大于宽的3倍,∴2-2x≤3(1.2-2x),解得:0<x≤0.4,设总费用为w,根据题意,得:w=50×2x(3.2-4x)+200×(2-2x)(1.2-2x)=400x2-960x+480=400(x-1.2)2-96,∵对称轴x=1.2且开口向上,∴当0<x≤0.4时,w随x的增大而减小,∴当x=0.4时,w取得最小值,最小值为160元,答:裁掉的正方形边长为0.4m时,总费用最低,最低为160元.【解析】(1)设裁掉的正方形的边长为xm,根据底面矩形的面积公式列出一元二次方程,解之可得;(2)先根据长不大于宽的3倍得出x的取值范围,再根据总费用=侧面的总费用+底面的总费用列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的思想解答.17.【答案】解:如图,①作线段BC的垂直平分线MN.②作∠BAC的平分线PA交MN于点O.点O即为所求.根据线段垂直平分线的性质以及角平分线的性质即可解决问题.本题考查作图-复杂作图,线段的垂直平分线性质、角平分线的性质等知识,解题的关键是灵活运用线段垂直平分线的性质以及角平分线的性质解决问题,属于中考常考题型.18.【答案】解:(1){x−32<1①2(x +1)≥x −1②,由不等式①,得x <5, 由不等式②,得x ≥-3,故原不等式组的解集为-3≤x <5; (2)(a 2+12a-1)⋅2aa 2−1=a 2+1−2a2a ⋅2a(a+1)(a−1)=(a−1)2(a+1)(a−1) =a−1a+1. 【解析】(1)根据解不等式组的方法可以解答本题; (2)根据分式的减法和乘法可以化简题目中的式子.本题考查分式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.19.【答案】解:(1)画树状图如下:由树状图知共有9种等可能结果;(2)由树状图知,小红获胜的结果有3种,小明获胜的结果有3中, ∴P (小亮获胜)=39=13,P (小红获胜)=39=13,P (小明获胜)=39=13, ∴游戏对三人公平. 【解析】(1)画树状图列出所有等可能结果;(2)结合树状图,利用概率公式计算出三人获胜的概率,比较大小即可得.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】16 0.32 7 0.14【解析】解:(1)样本数据中,学生身高的众数是167cm 、中位数是=164(cm );(2)补全表格如下: 分 组 频 数 频 率 147.5~151.5 2 0.04 151.5~155.5 3 0.06 155.5~159.5 5 0.10 159.5~163.5 11 0.22 163.5~167.5 16 0.32 167.5~171.5 7 0.14 171.5~175.5 4 0.08 175.5~179.5 2 0.04 合 计501.00(3)估计该年级学生身高在172cm 及以上的人数约为850×(0.08+0.04)=102(人). (1)根据众数的定义以及中位数的定义得出众数、中位数即可; (2)利用图表中不同身高的人数分布情况求出未知的频数和频率即可;(3)利用样本中身高在172cm 及以上的人数估计总体学生身高在172cm 及以上的人数即可. 本题考查了频数分布直方图以及中位数和众数的定义和利用样本估计总体等知识,注意利用频数分布表得出各组人数是解题关键.21.【答案】解:(1)∵B (-1,3)在反比例函数图象上,∴k =3×(-1)=-3,∴反比例函数图的解析式为:y 2=−3x , ∵△BOD 的面积是6, ∴OD =4,D (-4,0),把D (-4,0),B (-1,3)代入y 1=ax +b 得{−a +b =3−4a+b=0,解得{b =4a=1,(2)由图象交点A 、B 两点的坐标可知,当y 1>y 2时,-3<x <-1. 【解析】(1)先根据点B 的坐标求出反比例函数图的解析式;根据反比例函数的几何意义求出点D 的坐标,再运用待定系数法即可求出求一次函数y 1=ax+b 的表达式; (2)观察图象交点A 、B 两点的坐标可知,当y 1>y 2时,x 的取值范围.本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,体现了数形结合的思想. 22.【答案】(1)证明:∵AB =AC ,AD 是△ABC 的角平分线,∴BD =CD ,∵FD =DE ,∠BDE =∠CDF , ∴△BDE ≌△CDF (SAS ), ∴BE =CF ;(2)解:四边形BECF 是平行四边形, 理由:∵BD =CD ,ED =FD , ∴四边形BECF 是平行四边形;(3)当AB =BC 时,四边形BECF 是矩形, ∵AB =BC =AC ,∴BD =CD =12BC ,DF =DE =12AC , ∴BC =EF ,∴四边形BECF 是矩形. 【解析】(1)根据等腰三角形的性质得到BD=CD ,根据启动建设性的性质即可得到结论; (2)根据平行四边形的判定定理即可得到结论;(3)根据等边三角形的性质得到BD=CD=BC ,DF=DE=AC ,于是得到结论.本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的判定和性质,正确的识别图形是解题的关键. 23.【答案】不存在【解析】解:探究二:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为3, 所以EF=FG=GH=HE=,设EB=x ,则BF=-x ,在Rt △AEB 中,由勾股定理,得 x 2+(-x )2=12整理得x 2-x+1=0b 2-4ac=3-4<0,此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的3倍; 探究三:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为4, 所以EF=FG=GH=HE=2,设EB=x ,则BF=2-x , ∵Rt △AEB ≌Rt △BFC ∴BF=AE=2-x在Rt △AEB 中,由勾股定理,得 x 2+(2-x )2=12 整理得2x 2-4x+3=0 b 2-4ac=16-24<0, 此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的3倍, 故答案为:不存在;探究四:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为n , 所以EF=FG=GH=HE=,设EB=x ,则BF=-x ,∵Rt △AEB ≌Rt △BFC∴BF=AE=-x 在Rt △AEB 中,由勾股定理,得 x 2+(-x )2=12整理得2x 2-2x+n-1=0b 2-4ac=8-4n <0, 此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的n 倍. 探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.本题考查的是正方形的性质、全等三角形的判定和性质以及一元二次方程的解法,读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键. 24.【答案】解:(1)如图1,由题意知,BP =t ,QD =2t ,∴BQ =8-2t ,∵四边形ABCD 是菱形,∴AO =12AC =3,BO =12BD =4,AC ⊥BD , 根据勾股定理得,AB =5, 假设存在t ,是PQ ⊥AB , 在Rt △AOB 中,cos ∠ABO =45, 在Rt △BPQ 中,cos ∠PBQ =BPBQ =t8−2t , ∴t8−2t =45, ∴t =3213;(2)如图2,过点Q 作QM ⊥AB 于M ,在Rt △BQM 中,QM =BQ •sin ∠ABQ =(8-2t )•35=245-65t , ∵QE ∥AB ,AB ∥CD , ∴QE ∥CD ,∴∠BQE =∠BDC , ∵∠CBD =∠CBD , ∴∠BEQ ∽△BCD , ∴EQCD =BQBD , ∴EQ5=8−2t 8,∴EQ =5-54t ,∴y =S 四边形BPQE =12(BP +EQ )•QM =12(t +5-54t )(245-65t )=320t 2-185t +12;(3)如图3,假设存在时刻t ,使BQ 平分线∠PQE ,则∠BQP =∠BQE , 过点P 作PN ⊥BQ 于N , ∵QE ∥AB ,∴∠ABQ =∠BQE , ∴∠ABQ =∠BQP , ∴BP =PQ , ∴BN =12BQ =12(8-2t )=4-t , 在Rt △BPN 中,cos ∠PBQ =BN BP =45, ∴4−t t=45,∴t =209. 【解析】(1)先利用勾股定理求出AB=5,再用同角的余角的余弦函数建立方程求解即可得出结论; (2)先利用三角形函数表示出QM ,再判断出△BEQ ∽△BCD ,表示出EQ ,即可得出结论; (3)先判断出BP=PQ ,进而表示出BN ,再用三角函数建立方程求解,即可得出结论. 此题是四边形综合题,主要考查了菱形的性质,相似三角形的性质,锐角三角函数,勾股定理,用方程的思想解决问题是解本题的关键.。

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。

2019年山东省青岛市中考数学试卷-(解析版)

2019年山东省青岛市中考数学试卷-(解析版)

2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a <10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD =90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b 的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C =108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a ﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a ﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图⑦这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.24.(12分)已知:如图,在四边形ABCD 中,AB ∥CD ,∠ACB =90°,AB =10cm ,BC =8cm ,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm /s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ;当一个点停止运动,另一个点也停止运动.过点P 作PE ⊥AB ,交BC 于点E ,过点Q 作QF ∥AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为t (s )(0<t <5),解答下列问题:(1)当t 为何值时,点E 在∠BAC 的平分线上?(2)设四边形PEGO 的面积为S (cm 2),求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【分析】(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE =EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE ﹣S △OEC )构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

山东省青岛市2019年中考数学真题试题(含解析)

山东省青岛市2019年中考数学真题试题(含解析)

山东省青岛市2019年中考数学真题试题(含解析)一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m55.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c (a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1 .【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5 环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54 °.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 4 个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=7 ,n= 1 ,a=17.5% ,b=45% ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 3 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5 化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE =∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.。

2019年山东省中考数学真题分类汇编 专题04 三角形 (解析版)

2019年山东省中考数学真题分类汇编 专题04 三角形 (解析版)

专题04 三角形一、选择题1.(2019山东枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°【答案】C .【解析】解:如图,∵∠ACD =90°、∠F =45°, ∴∠CGF =∠DGB =45°,则∠α=∠D +∠DGB =30°+45°=75°,故选:C .2.(2019山东淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为( )A .2aB .52a C .3a D .72a 【答案】C .【解析】解:∵∠CAD =∠B ,∠ACD =∠BCA ,∴△ACD ∽△BCA , ∴2()ACD BCAS AC SAB =,即14BCA a S =, 解得,△BCA 的面积为4a ,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019山东青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【答案】A.【解析】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.4.(2019山东临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.2【答案】B.【解析】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,∴△ADE ≌△CFE (AAS ), ∴AD =CF =3,∵AB =4,∴DB =AB ﹣AD =4﹣3=1. 故选:B .5.(2019山东枣庄)如图,将△ABC 沿BC 边上的中线AD 平移到△A ′B ′C ′的位置.已知△ABC 的面积为16,阴影部分三角形的面积9.若AA ′=1,则A ′D 等于( )A .2B .3C .4D .32【答案】B .【解析】解:∵S △ABC =16、S △A ′EF =9,且AD 为BC 边的中线, ∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ', ∴A ′E ∥AB , ∴△DA ′E ∽△DAB ,则2()A DE ABDS A D AD S''=,即2992()1816A D A D '=='+,解得A ′D =3或A ′D =﹣37(舍), 故选:B .6.(2019山东泰安)如图,一艘船由A 港沿北偏东65°方向航行km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为( )km .A.B.C.D.【答案】B.【解析】解:根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=,如图,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=,AB=30km,∴AE=BE=2在Rt△CBE中,∵∠ACB=60°,BE=,∴CE=3∴AC=AE+CE=∴A,C两港之间的距离为(km,故选:B.7.(2019山东聊城)如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180°C.OE+OF BC D.S四边形AEOF=12S△ABC【答案】C.【解析】解:连接AO,如图所示.∵△ABC为等腰直角三角形,点O为BC的中点,∴OA=OC,∠AOC=90°,∠BAO=∠ACO=45°.∵∠EOA+∠AOF=∠EOF=90°,∠AOF+∠FOC=∠AOC=90°,∴∠EOA=∠FOC.∴△EOA≌△FOC(ASA),∴EA=FC,∴AE+AF=AF+FC=AC,选项A正确;∵∠B+∠BEO+∠EOB=∠FOC+∠C+∠OFC=180°,∠B+∠C=90°,∠EOB+∠FOC=180°﹣∠EOF=90°,∴∠BEO+∠OFC=180°,选项B正确;∵△EOA≌△FOC,∴S△EOA=S△FOC,∴S四边形AEOF=S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=12S△ABC,选项D正确.故选:C.8.(2019山东淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD =12AC 时,tan α1=34; 如图2,当CD =13AC 时,tan α2=512;如图3,当CD =14AC 时,tan α3=724;……依此类推,当CD =11n +AC (n 为正整数)时,tan αn = .【答案】22122n n n++.【解答】解:观察可知,正切值的分子是3,5,7,9,…,2n +1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n +1,2(21)12n +-,2(21)12n ++中的中间一个.∴tan αn =221(21)12n n ++-=22122n n n++.故答案为:22122n n n++.9.(2019山东滨州)如图,在△OAB 和△OCD 中,OA =OB ,OC =OD ,OA >OC ,∠AOB =∠COD =40°,连接AC ,BD 交于点M ,连接OM .下列结论:①AC =BD ;②∠AMB =40°;③OM 平分∠BOC ;④MO 平分∠BMC .其中正确的个数为( )A .4B .3C .2D .1【答案】B .【解析】解:∵∠AOB =∠COD =40°, ∴∠AOB +∠AOD =∠COD +∠AOD , 即∠AOC =∠BOD , ∴△AOC ≌△BOD (SAS ),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选:B.二、填空题10.(2019山东枣庄)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】9.5.【解析】解:过D作DE⊥AB,∵在D 处测得旗杆顶端A 的仰角为53°, ∴∠ADE =53°,∵BC =DE =6m , ∴AE =DE •tan53°≈6×1.33≈7.98m ,∴AB =AE +BE =AE +CD =7.98+1.5=9.48m ≈9.5m , 故答案为:9.511.(2019山东德州)如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,如果梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为 米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)【答案】1.02.【解析】解:由题意可得: ∵∠ABO =70°,AB =6m ,∴sin70°=6AO AOAB ≈0.94, 解得:AO =5.64(m ),∵∠CDO =50°,DC =6m ,∴sin50°=6CO≈0.77, 解得:CO =4.62(m ),则AC =5.64-4.62=1.02(m ), 答:AC 的长度约为1.02米. 故答案为:1.02.12.(2019山东临沂)如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 .【答案】【解析】解:∵DC ⊥BC ,∴∠BCD =90°, ∵∠ACB =120°,∴∠ACD =30°, 延长CD 到H 使DH =CD , ∵D 为AB 的中点,∴AD =BD , ∴△ADH ≌△BCD (SAS ),∴AH =BC =4,∠H =∠BCD =90°,∵∠ACH =30°,∴CH =,∴CD =,∴△ABC 的面积=2S △BCD =2×12×4×=,故答案为:13.(2019山东枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若AB =2,则CD = ..【解析】解:如图,过点A 作AF ⊥BC 于F , 在Rt △ABC 中,∠B =45°,∴BC AB=,BF=AF=AB,∵两个同样大小的含45°角的三角尺,∴AD=BC=,在Rt△ADF中,根据勾股定理得,DF∴CD=BF+DF﹣BC﹣,.14.(2019山东聊城)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=12BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.【答案】92 a.【解析】解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC.∵DE是中位线,∴CE=2a.在Rt△FEC中,利用勾股定理求出FE=a,∴∠FEC=30°.∴∠A=∠AEM=30°,∴EM=AM.△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB=92 a.故答案为92 a.三、解答题15.(2019山东淄博)已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E =∠C .【答案】见解析【解析】证明:∵∠BAE =∠DAC ∴∠BAE +∠CAE =∠DAC +∠CAE ∴∠CAB =∠EAD ,且AB =AD ,AC =AE ∴△ABC ≌△ADE (SAS ). ∴∠C =∠E .16.(2019山东菏泽)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛B 位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C 处,测得小岛B 位于它的西北方向,求此时航母与小岛的距离BC 的长.【答案】(﹣)海里. 【解析】解:过点C 作CD ⊥AB 于点D ,由题意,得:∠BAD =60°,∠BCD =45°,AC =80, 在Rt △ADB 中,∠BAD =60°,∴tan60°=BDAD,∴AD在Rt△BCD中,∠BCD=45°,∴BD=CD,∴AC=AD+CDBD=80,∴BD=120﹣∴BC BC=﹣,答:BC的距离是()海里.17.(2019山东聊城)某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A 处测得大楼部分楼体CD的顶端C点的仰角为45°,底端D点的仰角为30°,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为63.4°(如图②所示),求大楼部分楼体CD的高度约为多少米?(精确到1米)(参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00 1.41≈1.73)【答案】17米.【解析】解:设楼高CE为x米,∵在Rt△AEC中,∠CAE=45°,∴AE=CE=x,∵AB=20,∴BE=x﹣20,在Rt△CEB中,CE=BE•tan63.4°≈2(x﹣20),∴2(x﹣20)=x,解得:x=40(米),在Rt△DAE中,DE=AE tan30°=40≈17(米),∴CD=CE﹣DE=40﹣3答:大楼部分楼体CD的高度约为17米.18.(2019山东临沂)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【答案】km.【解析】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD=km,即BD的长是km.19.(2019山东潍坊)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD 的长.(结果保留根号)【答案】【解析】解:∵∠AEB=90°,AB=200,坡度为1∴tan∠ABE3=,∴∠ABE=30°,∴AE=12AB=100,∵AC=20,∴CE=80,∵∠CED=90°,斜坡CD的坡度为1:4,∴14CEDE=,即8014ED=,解得,ED=320,∴CD=答:斜坡CD的长是20.(2019山东青岛)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈1732,cos32°≈1720,tan32°≈58,sin42°≈2740,co s42°≈34,tan42°≈9 10)【答案】134米.【解析】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×1720≈68,BF=sin32°•BD=80×1732≈852,∴BE=EF﹣BF=1552,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×910=3065,∴AB=AE+BE=1552+3065≈134m,答:木栈道AB的长度约为134m.21.(2019山东威海)如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=35,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.【答案】不会触碰到汽车货厢顶部,理由见解析.【解析】解:∵BH=0.6米,sinα=35,∴AB=0.613sin5BHα==米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∵EF=FB=AB=1米,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,∴△EFK≌△FBJ≌△ABH,∴EK=FJ=AH,BJ=BH,∴BJ+EK=0.6+0.8=1.4<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.22.(2019山东菏泽)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=,AD=3,求△PDE的面积.【答案】(1)见解析;(2)910. 【解析】解:(1)∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.∴AD =AE ,AB =AC ,∠BAC ﹣∠EAF =∠EAD ﹣∠EAF , 即∠BAE =∠DAC , ∴△ABE ≌△ADC (SAS ), ∴∠ABE =∠ACD ,∵∠ABE +∠AFB =∠ABE +∠CFP =90°, ∴∠CPF =90°, ∴BP ⊥CD ;(2)在△ABE 与△ACD 中,90AE ADEAB CAB AB AC =⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ACD (SAS ), ∴∠ABE =∠ACD ,BE =CD , ∵∠PDB =∠ADC , ∴∠BPD =∠CAB =90°, ∴∠EPD =90°, ∵BC =,AD =3, ∴DE =,AB =6, ∴BD =6﹣3=3,CD=∵△BDP ∽△CDA , ∴BD PD PBCD AD AC ==,36PD PB==, ∴PDPB∴PE =,∴△PDE 的面积=1925510⨯⨯=. 23.(2019山东枣庄)在△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且∠BMN =90°,当∠AMN =30°,AB =2时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且∠EDF =90°,求证:BE =AF ; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且∠BMN =90°,求证:AB +AN AM .【答案】(1;(2)证明见解析;(3)见解析. 【解析】(1)解:∵∠BAC =90°,AB =AC ,AD ⊥BC ,∴AD =BD =DC ,∠ABC =∠ACB =45°,∠BAD =∠CAD =45°,∵AB =2,∴AD =BD =DC ,∵∠AMN =30°,∴∠BMD =180°﹣90°﹣30°=60°, ∴∠MBD =30°,∴BM =2DM ,由勾股定理得,BM 2﹣DM 2=BD 2,即(2DM )2﹣DM 2)2,解得,DM =3,∴AM =AD ﹣DM ﹣3; (2)证明:∵AD ⊥BC ,∠EDF =90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,∴△BME≌△AMN(ASA),∴BE=AN,∴AB+AN=AB+BE=AE AM.。

专题09 二次函数的综合性问题(原卷版)

专题09 二次函数的综合性问题(原卷版)

决胜2020中考数学压轴题全揭秘精品专题09 二次函数综合性问题【典例分析】【考点1】二次函数与经济利润问题【例1】(2019·山东中考真题)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)【变式1-1】(2019·浙江中考真题)某农作物的生长率P 与温度 t(℃)有如下关系:如图 1,当10≤t≤25时可近似用函数11505P t=-刻画;当25≤t≤37时可近似用函数21()0.4160P t h=--+刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率P 满足函数关系:生长率P 0.20.250.30.35提前上市的天数m (天)051015①请运用已学的知识,求m 关于P 的函数表达式;②请用含t的代数式表示m ;(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t(℃)之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【变式1-2】(2019·辽宁中考真题)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y (kg )与销售单价x (元)满足如图所示的函数关系(其中030x <„).(1)直接写出y 与x 之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x 应定为多少元?(3)设每天销售该特产的利润为W 元,若1430x <„,求:销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?【考点2】二次函数与几何图形问题【例2】(2018·福建中考真题)空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD 的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【变式2-1】(2019·湖南中考真题)如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.(1)求此抛物线的解析式;(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB的面积的最大值,并求出此时点P的坐标.【变式2-2】(2018·吉林中考真题)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【考点3】二次函数与抛物线形问题【例3】(2019·山东省青岛第二十六中学中考模拟)如图,斜坡AB长10米,按图中的直角坐标系可用y=3+5表示,点A,B分别在x轴和y轴上.在坡上的A处有喷灌设备,喷出的水柱呈抛物线形落到B处,抛物线可用y=13x2+bx+c表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?【变式3-1】(2019·河北中考模拟)如图,一座拱桥的轮廓是抛物线型,拱高6m,在长度为8m的两支柱OC和AB之间,还安装着三根支柱,相邻两支柱间的距离为5m.(1)建立如图所示的直角坐标系,求拱桥抛物线的函数表达式;(2)求支柱EF的长度.(3)拱桥下面拟铺设行车道,要保证高3m的汽车能够通过(车顶与拱桥的距离不小于0.3m),行车道最宽可以铺设多少米?【变式3-2】(2019·辽宁中考模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.【达标训练】1.(2019·江苏中考真题)如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是( )A .18m 2B .183m 2C .243m 2D .4532m 22.(2019·台湾中考真题)如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式2y =的图形交于B 、C 两点,ABC ∆为正三角形.若A 点坐标为()3,0-,则此抛物线与Y 轴的交点坐标为何?( )A .90,2⎛⎫ ⎪⎝⎭B .270,2⎛⎫ ⎪⎝⎭C .()0,9D .()0,193.(2019·山西中考真题)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-4.(2019·山西中考模拟)如图所示的是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降2m ,则水面宽度增加( )A .()424m +B .42mC .()424m -D .4m5.(2019·江苏中考真题)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB 是以B 为顶点的抛物线一部分.下列说法不正确的是( )A .25min~50min ,王阿姨步行的路程为800mB .线段CD 的函数解析式为324002550s t t =+≤≤()C .5min~20min ,王阿姨步行速度由慢到快D .曲线段AB 的函数解析式为23201200520s t t =--+≤≤()()6.(2018·北京中考真题)跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A.10m B.15m C.20m D.22.5m7.(2018·四川中考真题)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.8.(2019·河北中考模拟)如图是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处双测P处,仰角分别为α、β,且tanα=12,tanβ=32,以O为原点,OA所在直线为x轴建立直角坐标系.P点坐标为_____;若水面上升1m,水面宽为_____m.9.(2019·吉林中考模拟)如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m)10.(2019·湖南中考真题)某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店,A B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?11.(2019·内蒙古中考真题)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.12.(2019·辽宁中考真题)某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的60%.在销售过程中发现,这种儿童玩具每天的销售量y (件)与销售单价x (元)满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.(1)求y 与x 之间的函数关系式.(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?13.(2019·云南中考真题)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示: (1)求y 与x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润的最大值.14.(2019·四川中考真题)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)某天这种芒果售价为28元/千克.求当天该芒果的销售量(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?15.(2019·湖北中考真题)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式182p x=+,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)24 (10)市场需求量q(百千克)1210 (4)已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.①当每天的半成品食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为______元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为______元/千克.16.(2019·四川中考真题)随着5G技术的发展,人们对各类5G产品的使用充满期待.某公司计划在某地区销售第一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可用1122p x=+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?17.(2019·辽宁中考真题)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?18.(2019·辽宁中考真题)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?19.(2019·贵州中考真题)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?20.(2019·湖北中考真题)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足315(115)75(1530)x x m x x +≤≤⎧=⎨-+<≤⎩(x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图所示: 如果李大爷的草莓在上市销售期间每天的维护费用为80元.(1)求销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求日销售利润y 的最大值及相应的x .21.(2019·四川中考真题)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m 最大,最大利润是多少元? 22.(2019·湖北中考真题)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg .设第x 天的销售价格为y (元/kg ),销售量为()m kg .该超市根据以往的销售经验得出以下的销售规律:①当130x 剟时,y=40;当3150x 剟时,y 与x 满足一次函数关系,且当36x =时,37y =;44x =时,33y =.②m 与x 的关系为550m x =+.(1)当3150x 剟时,y 与x 的关系式为 ; (2)x 为多少时,当天的销售利润W (元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W (元)随x 的增大而增大,则需要在当天销售价格的基础上涨a 元/kg ,求a 的最小值.23.(2019·辽宁中考真题)某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量y (kg )与时间第t 天之间的函数关系式为2100y t =+(180t 剟,t 为整数),销售单价p (元/kg )与时间第t 天之间满足一次函数关系如下表:(1)直接写出销售单价p (元/kg )与时间第t 天之间的函数关系式.(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?24.(2018·内蒙古中考真题)如图,(图1,图2),四边形ABCD 是边长为4的正方形,点E 在线段BC 上,∠AEF=90°,且EF 交正方形外角平分线CP 于点F ,交BC 的延长线于点N, FN ⊥BC . (1)若点E 是BC 的中点(如图1),AE 与EF 相等吗?(2)点E 在BC 间运动时(如图2),设BE=x ,△ECF 的面积为y .①求y 与x 的函数关系式;②当x 取何值时,y 有最大值,并求出这个最大值.25.(2019·浙江中考真题)有一块形状如图的五边形余料ABCDE ,6AB AE ==,5BC =,90A B ∠=∠=︒,135C ∠=︒,90E ∠>︒.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.26.(2019·四川中考模拟)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?27.(2019·湖北中考真题)若二次函数2(0)y ax bx c a =++≠图象的顶点在一次函数(0)y kx t k =+≠的图象上,则称2(0)y ax bx c a =++≠为(0)y kx t k =+≠的伴随函数,如:21y x =+是1y x =+的伴随函数.(1)若24y x =-是y x p =-+的伴随函数,求直线y x p =-+与两坐标轴围成的三角形的面积;(2)若函数()30y mx m =-≠的伴随函数22y x x n =++与x 轴两个交点间的距离为4,求m ,n 的值.。

2019年全国各地中考数学压轴题汇编:选择、填空(一)(山东专版)(解析卷)

2019年全国各地中考数学压轴题汇编(山东专版)选择、填空(一)参考答案与试题解析一.选择题(共12小题)1.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.2.(2019•淄博)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019•青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.4.(2019•枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.解:∵S△ABC=16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE=S△A′EF=,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=3或A′D=﹣(舍),故选:B.5.(2019•潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.6.(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.16解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.7.(2019•枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1B.C.D.2解:∵等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1,故选:A.8.(2019•济宁)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.18解:作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(﹣2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数y=的图象经过点D,∴k=15.故选:C.9.(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.10.(2019•德州)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x+1(x<0)解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.11.(2019•济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.12.(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.二.填空题(共13小题)13.(2019•青岛)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠F AD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.14.(2019•枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=36度.解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.15.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块.解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:1616.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.17.(2019•枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.(2019•济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是x<﹣3或x>1.解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方,∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.故答案为:x<﹣3或x>1.19.(2019•潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.20.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.21.(2019•德州)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为.解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r﹣1,OA=r,在Rt△OAE中,32+(r﹣1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5﹣OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.22.(2019•枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为2018.解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.23.(2019•潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为(n,).(n为正整数)解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,24.(2019•德州)如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为(﹣1)n+1().(用含n的式子表示)解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=﹣,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,﹣),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1﹣(舍),x2=1+,∴EF====2(﹣1)=2﹣2,A2D2===,即A2的纵坐标为﹣;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△F A3D3中,∠F A3D3=30°,∴FD3=,∵OD3=2+2﹣2+=x,解得:x1=(舍),x2=+;∴GF===2(﹣)=2﹣2,A3D3===(﹣),即A3的纵坐标为(﹣);…∴A n(n为正整数)的纵坐标为:(﹣1)n+1();故答案为:(﹣1)n+1();25.(2019•淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn ==.故答案为:.。

2019年最新山东省青岛市中考数学二模试卷及答案解析

山东省青岛市中考数学二模试卷(解析版)一、选择题1.﹣5的绝对值为()A. ﹣5 B. 5C. ﹣D.2.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C.D.3.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A. 相离B. 相切 C. 相交 D. 重合4.已知空气的单位体积质量为1.24×10﹣3克/厘米3, 1.24×10﹣3用小数表示为()A. 0.000124B. 0.0124C. ﹣0.00124 D. 0.001245.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人)1 3 4 1分数(分)80 85 90 95众数和中位数分别是()A. 90,90B. 90,85 C. 90,87.5 D. 85,856.如图所示,左边的正方形与右边的扇形面积相等,扇形的半径和正方形的边长都是2cm,则此扇形的弧长为()cm.A. 4B. 4πC. 8D. 8﹣π7.函数y= 与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C.D.8.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC 分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若= ,则S△EDH=13S△CFH.A. 1个B. 2个 C. 3个 D. 4个二、填空题9.计算:()﹣1﹣(﹣)0=________.10.儿童节期间,游乐场里有一种游戏的规则是:在一个装有6个红球和若干白球(每个球除颜色外,其它都相同)的袋中,随机摸一个球,摸到一个红球就得欢动世界通票一张,已知参加这种游戏的有300人,游乐场为此游戏发放欢动世界通票60张,请你通过计算估计袋中白球的数量是________个.11.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=________度.12.受季节变化影响,某品牌衬衣经过两次降价,由每件256元降至169元,则平均每次降价的百分率x所满足的方程为________.13.如图,把△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为________.14.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________.三、作图题15.用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知:△ABC中,∠C=90°求作:矩形CDEF,使点D,E,F分别在边CB,BA,AC上.四、解答题16.综合题化简及计算(1)化简:﹣(2)关于x的一元二次方程kx2﹣2x+3=0有两个不相等的实数根.求:k的取值范围.17.为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)直接写出表中a=________,b=________;(2)请补全右面相应的频数分布直方图;(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)18.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈ )20.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?21.如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当△ABE满足什么条件时,四边形BCED是菱形?证明你的结论.22.汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x(元)3000 3200 3500 4000y(辆)100 96 90 80(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求按照表格呈现的规律,每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:租出的车辆数(辆)________ 未租出的车辆数(辆)________租出每辆车的月收益(元)________ 所有未租出的车辆每月的维护费(元)________(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请说明理由.23.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,则BN=________;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)如图3,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,四边形AMDC,四边形MNFE和四边形NBHG均是正方形,点P在边EF上,试探究S△ACN,S△APB,S△MBH 的数量关系.S△ACN=________;S△MBH=________;S△APB=________;S△ACN,S△APB,S△MBH的数量关系是________.24.如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.(1)若当t的值为m时,PP′恰好经过点A,求m的值.(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.答案解析部分一、<b >选择题</b>1.【答案】B【考点】绝对值【解析】【解答】解:﹣5的绝对值为5,故B符合题意.故答案为:B.【分析】根据绝对值的性质来判断.正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.2.【答案】A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形但不是中心对称图形,A符合题意;B、是轴对称图形,也是中心对称图形,B不符合题意;C、不是轴对称图形,是中心对称图形,C不符合题意;D、不是轴对称图形,是中心对称图形,D不符合题意.故答案为:A.【分析】根据轴对称图形和中心对称图形的定义来判断.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.【答案】C【考点】直线与圆的位置关系【解析】【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故C符合题意.故答案为:C.【分析】根据直线与圆的位置关系的判定方法判断.圆的半径为r,圆心到直线的距离为a,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.4.【答案】D【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故D符合题意.故答案为:D.【分析】根据科学记数法的表示方法可得到答案.将科学记数法的表示的数a×10-n,“还原”成通常表示的数,就是把a 的小数点向右移动n位.5.【答案】A【考点】中位数、众数【解析】【解答】在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;故答案为:A.【分析】依据表格可知得分为90分的人数最多,从而可找出这组数据的众数,将这组数据按照从小到大的顺序排列,中间一个数据就是这组数据的中位数.6.【答案】A【考点】正方形的性质,弧长的计算,扇形面积的计算【解析】【解答】解:设扇形的圆心角为n.由题意=4,∴n= ,∴扇形的弧长为= =4cm,故A符合题意.故答案为:A.【分析】先根据扇形的面积公式求出扇形的圆心角,然后再用弧长公式来求.扇形的面积S=,弧长l=.7.【答案】D【考点】反比例函数的图象,二次函数的图象【解析】【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,A不符合题意.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,B不符合题意;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,C不符合题意;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,D符合题意;故答案为:D.【分析】根据反比例函数的图象得到k的符号,再与二次函数的图象比较,判断是否一致. 8.【答案】D【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH= ∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③由②知:△EHF≌△DHC,故③正确;④∵= ,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则CF=2x,∴DF=2FC=4x,∴DM=5x,DH= x,CD=6x,则S△CFH= ×HM×CF= •x•2x=x2,S△EDH= ×DH2= × =13x2,∴则S△EDH=13S△CFH,故④正确;其中结论正确的有:①②③④,4个;故D符合题意.故答案为:D.【分析】①易得△CFG为等腰直角三角形,从而求得结果;②利用SAS证明△EHF≌△DHC,进而可得∠AEH+∠ADH=∠AEF+∠ADF=180°;③由②可知;④利用SAS证明△EGH≌△DFH,次那个人得到△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则CF=2x,从而表示出△CFH、△EDH的面积,可得结论.二、<b >填空题</b>9.【答案】2【考点】实数的运算,零指数幂,负整数指数幂【解析】【解答】解:()﹣1﹣(﹣)0=3﹣1=2故答案为:2.【分析】根据负指数幂的性质、零指数幂的性质化简,再计算可求得结果.10.【答案】24【考点】利用频率估计概率【解析】【解答】解:设袋中共有m个红球,则摸到红球的概率P(红球)= ,∴≈ .解得m≈24,故答案为:24.【分析】:设袋中共有m个红球,根据规律公式得到关于m的方程,解方程求得m的值,即可得到答案.11.【答案】25【考点】切线的性质【解析】【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案为25【分析】利用余角的性质和切线的性质定理、圆周角定理,可算出∠AOC,再得出∠ABD=25°.12.【答案】256(1﹣x)2=169【考点】一元二次方程的应用【解析】【解答】解:由题意可列方程是:256×(1﹣x)2=169.故答案为:256(1﹣x)2=169.【分析】可利用连续两次降价的公式,基数(1-降低率)2=最终量,可列出方程.13.【答案】(﹣a﹣2,﹣b)【考点】关于原点对称的点的坐标【解析】【解答】解:由图可知,△ABC关于点(﹣1,0)对称变换得到△A′B′C′,∵△ABC上的点P的坐标为(a,b),∴它的对应点P′的坐标为(﹣a﹣2,﹣b).故答案为:(﹣a﹣2,﹣b).【分析】分析图可知,△ABC关于点(﹣1,0)成中心对称变换得到△A′B′C′,可利用图形的全等形,符号加以变化,可得出答案.14.【答案】26;66【考点】几何体的表面积,由三视图判断几何体【解析】【解答】解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,其小正方块分布情况如下:那么共有7+2+1=10个几何体组成.若搭成一个大长方体,共需3×4×3=36个小立方体,所以还需36﹣10=26个小立方体,最终搭成的长方体的表面积是3×4×2+3×3×2+3×4×2=66故答案为:26,66.【分析】可从俯视图入手,每摞小正方体个数结合主视图、左视图求出10个,求出共需小立方体36个,作差可求出还需26个.三、<b >作图题</b><b ></b>15.【答案】解:在BC上任意取一点D,作DM⊥BC交AB于E,作EN⊥AC垂足为F,则矩形CDEF即为所求.【考点】矩形的性质,作图—复杂作图【解析】【分析】利用“过直线上一点做已知直线垂线和直线外一点作已知直线垂线”基本作图,可做出矩形.四、<b >解答题</b>16.【答案】(1)解:原式= +==(2)解:根据题意得k≠0且△=(﹣2)2﹣4k•3>0,解得k<且k≠0【考点】分式的加减法,根的判别式【解析】【分析】(1)分式化简的基本方法有通分、约分,分子分母出现多项式时看能否分解因式,便于约分;(2)一元二次方程有两个不相等实数根的条件包括k0,>0.17.【答案】(1)16;0.28(2)补全相应的频数分布直方图如下:(3)48%(4)解:由频数分布直方图可知,50人主要分布在60~90分,90~100分人数较少,故应着重培养高分段学生【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)本次调查的总人数为2÷0.04=50(人),∴a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)本次大赛的优秀率为0.32+0.16=0.48=48%,故答案为:48%;【分析】部分百分比=总数,具体量=样本容量相应百分比;(3)第四、五两组的频率之和即为优秀率.18.【答案】(1)解:∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)= =(2)解:∵P(红色)= ,P(黄色)= ,P(绿色)= = ,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.【考点】概率公式【解析】【分析】(1)利用几何概型公式,关注的面积(红黄绿)除以整个圆形,即可得出概率;(2)利用加权平均数意义算出转转盘的平均获奖数为40元,大于30元,得出选择转转盘对顾客更合算.19.【答案】(1)解:过点A作AD⊥BE于D,设山AD的高度为(x)m,在Rt△ABD中,∵∠ADB=90°,tan31°= ,∴BD= ≈ = x,在Rt△ACD中,∵∠ADC=90°,tan39°= ,∴CD= ≈ = x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米(2)解:在Rt△ACD中,∠ADC=90°,sin39°= ,∴AC= = ≈282.9(m).答:索道AC长约为282.9米.【考点】解直角三角形的应用【解析】【分析】(1)通过作垂线构造直角三角形,把已知角放到直角三角形中,设出未知数x,用x代数式表示出BD、CD,利用线段之差列出方程;(2)在Rt△ACD中利用sin39°,由AD求出AC.20.【答案】(1)解:设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),可得:,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,则购买一个乙种足球需70元(2)解:设这所学校再次购买y个乙种足球,可得:50×(1+10%)×(50﹣y)+70×(1﹣10%)y≤2900,解得:y≤18.75,由题意可得,最多可购买18个乙种足球,答:这所学校最多可购买18个乙种足球【考点】分式方程的应用,一元一次不等式的应用【解析】【分析】(1)由“购买甲种足球数量是购买乙种足球数量的2倍”可构建分式方程,得出答案;(2)由“此次购买甲、乙两种足球的总费用不超过2900元”可构建不等式50×(1+10%)×(50﹣y)+70×(1﹣10%)y≤2900,求出x 的整数解即可. 21.【答案】(1)证明:∵在平行四边形ABCD中,AD=BC,AD∥BC,∴∠EDO=∠BCO,∠DEO=∠CBO,∵DE=AD,∴DE=BC,在△BOC和△EOD中∵,∴△BOC≌△EOD(ASA)(2)证明:结论:当∠ABE=90°时,BE⊥CD,四边形BCED是菱形.∵DE=BC,DE∥BC,∴四边形BCED是平行四边形,∴EO=OB,∵DE=AD,∴OD∥AB,∴∠EOD=∠ABE,∴当∠ABE=90°时,BE⊥CD,四边形BCED是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)由平行四边形的对边平行且相等,可推出内错角相等,结合条件,利用“角边角”推出全等;(2)条件型探索题可由结论入手,由结论结合已知条件,推出结论,这个结论反过来可作为条件,即若四边形BCED是菱形,则DE=BD,又DE=AD,则BD=AE,可得出∠ABE=90°.22.【答案】(1)解:由表格数据可知y与x是一次函数关系,设其解析式为y=kx+b.由题:,解之得:,∴y与x间的函数关系是y=﹣x+160(2)﹣x+160;x﹣60;x﹣150;x﹣3000(3)解:设租赁公司获得的月收益为W元,依题意可得:W=(﹣+160)(x﹣150)﹣(x﹣3000)=(﹣x2+163x﹣24000)﹣(x﹣3000)=﹣x2+162x﹣21000=﹣(x﹣4050)2+307050当x=4050时,Wmax=307050,即:当每辆车的月租金为4050元时,公司获得最大月收益307050元【考点】二次函数的应用【解析】【解答】解:(2)如下表:租出的车辆数﹣x+160 未租出的车辆数x﹣60租出的车每辆的月收益x﹣150 所有未租出的车辆每月的维护费x﹣3000故答案为:﹣x+160,x﹣60,x﹣150,x﹣3000.【分析】(1)只要(函数变化量与自变量变化值)是常数,y与x就成一次函数关系;(3)最值问题需利用函数思想解决,月收益=租出车辆数(租金-维护费)-未出租车辆维护费,构建函数,配成顶点式,求出最值.23.【答案】(1)或(2)证明∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点(3)•AM2+ MN•AM;•BN2+ •MN•BN;MN2+ •MN•AM+ •MN•BN;S△=S△ACN+S△MBHAPB【考点】勾股定理的应用,相似三角形的性质【解析】【解答】解:(1)分两种情况:①当MN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN= = = ;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN= = = ;综上所述:BN的长为或.⑶∵四边形AMDC,四边形MNFE和四边形NBHG均是正方形,∴S△ACN= (AM+MN)•AC= (AM+MN)•AM= •AM2+ MN•AM,S△MBH= •(MN+BN)•BH= •(MN+BN)•BN= •BN2+ •MN•BN,S△PAB= •(AM+NM+BN)•FN= •(AM+MN+BN)•MN= MN2+ •MN•AM+ •MN•BN,∴S△APB=S△ACN+S△MBH,故答案为S△APB=S△ACN+S△MBH.【分析】(1)须分类讨论:当MN为最大线段时;当BN为最大线段时;即已知的两条线段中较长的线段MN可能为斜边或所求的BN也可能为斜边;(2)由已知“FG是中位线”得BD=2FM,DE=2MN,EC=2NG,由D,E是线段BC的勾股分割点,且EC>DE>BD得出EC2=DE2+DB2,再分别代换为2NG、2MN、2FM,约去系数4,即可得出结论;(3)由三角形面积公式,分别表示出S△ACN、S△MBH、S△PAB,观察3个式子中,出现的AM2、BN2、MN2,可得S△APB=S△ACN+S△MBH.24.【答案】(1)解:如图1中,作AM⊥BC于M.∵AB=AC=25,AM⊥BC,∴BM=MC=20,在Rt△ABM中,AM= = =15,当PP′恰好经过点A,∵cos∠C= = ,∴= ,∴t= .∴m= s(2)解:如图2中,设PP′交AC于N.当<t≤4时,由△PCN∽△ACM,可得PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,∵CQ=5t,∴NQ=CN﹣CQ=32﹣13t,∴y= •PP′•NQ= (48﹣12t)•(32﹣13t)=78t2﹣504t+768(<t≤4)(3)解:存在.理由如下:如图3中,作QE⊥BC于E.∵PQ平分∠CPP′,QE⊥PC,QN⊥PP′,∴QN=QE,∵sin∠C= = ,∴t=2,∴t=2时,PQ平分角∠P′PC【考点】相似三角形的判定与性质,锐角三角函数的定义【解析】【分析】(1)由∠C的余弦定义既在Rt△APC,又可在Rt△ACM中列出比例式,二者相等,构建方程,求出m;(2)由△PCN∽△ACM,可表示出PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,代入面积公式,即可得y= •PP′•NQ=78t2﹣504t+768;(3)利用∠C的正弦有两种表示的比例式,二者相等,可列出方程,求出t.。

2019年山东省青岛市李沧区中考数学一模试卷 解析版

2019年山东省青岛市李沧区中考数学一模试卷一、选择题(本题满分24分,共有8题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,每小题选对得分:不选、远错或选出的标号超过一个的不得分.1.(3分)|﹣5|的相反数是()A.﹣5B.5C.D.﹣2.(3分)为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动.现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.3.(3分)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个4.(3分)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,225.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.6.(3分)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8B.6.3(1+x)=8C.6.3(1+x)2=8D.6.3+6.3(1+x)+6.3(1+x)2=87.(3分)如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D的度数是()A.50°B.55°C.60°D.65°8.(3分)在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:()0+﹣tan60°=.10.(3分)2019年3月5日,第十三届全国人民代表大会第二次会议在北京人民大会堂开幕,国务院总理李克强作政府工作报告指出,回顾2018年工作,三大攻坚战开局良好,精准脱贫有力推进,农村贫困人口减少1386万,易地扶贫搬迁280万人,1386万用科学记数法可表示为.11.(3分)如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为.12.(3分)如图,在同一平面直角坐标系中,函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是.13.(3分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则△EFG的面积为.14.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、作图题(本题满分4分,用圆规、直尺作图,不写作法,但要保留作图痕迹.)15.(4分)如图,已知∠AOB及边OB上一点P求作⊙M,使⊙M与边OA、OB相切,且其中一个切点为点P四、解答题(本题满分74分,共有9道小题)16.(8分)(1)解不等式组:(2)化简:(1﹣)÷17.(6分)某中学学生会发同学们就餐时剩余饭菜较多,浪费重,于是准备在校内倡导“光盘行动”让同学们珍惜粮食,为了让同学私理解这次话动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有人(2)补全条形统计图,并在图上标明相应的数据(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校4800名学生一餐浪费的食物可供多少人食用一餐.18.(6分)某商场为了吸引顾客,设立一个可自由转动的转盘,(如图,3个数字所在的扇形面积相等)并规定,顾客每购满100元商品,可转动两次转盘,转盘停止后,看指针指向的数.(如果指针指向分界线,则重新转动转盘,直到指针指向数为止)获奖方法是:①指针两次都指向3,顾客可获得90元购物券,②指针只有一次指向3,顾客可得36元购物券,③指针两次都不指向3,顾客只能获得18元购物券;若顾客不愿转动转盘,则可直接获得30元购物券(1)试用树状图或列表法给出两次转动转盘指针所有可能指向的结果;(2)请分别求顾客获得90元,36元,18元购物券的概率;(3)你认为转动转盘和直接获得购物券哪种方式更合算?试说明理由.19.(6分)若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,扶梯AB的坡度i为1:.改造后的斜坡式动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tan l5°≈0.27)20.(8分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?21.(8分)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?请证明你的结论22.(10分)为了有力推进精准贫改策,某街道实施产业扶贫,帮助贫困户承包了荒山种植某品种葡萄,到了收获季节,已知该葡萄的成本价为8元/千克,投入市场销售时,调查市场行情,发现该葡萄销售不会亏本,且每天售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种葡萄定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘葡萄4500千克,该品种葡萄的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批葡萄?请说明理由.23.(10分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式,由于0.=0.777…,设x=0.777…,①得10x=7.777…,②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【类比应用】(1)0.=,4.=;(2)将0.化为分数形式,写出推导过程;【迁移提升】(3)0.=,2.0=;(注:0.2=0.225225…,2.0=2.01818…)【拓展发现】(4)①试比较0.与1的大小:0.1(填“>”“<”或“=”)②若已知0.1428=,则2.8571=.24.(12分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,当1<t<2时,求S与t之同的函数关系式;(4)是否存在某一时刻t,使线段PQ的垂直平分线经过△ABC一边中点,如果存在请求出t的值,如果不存在请说明理由.2019年山东省青岛市李沧区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,每小题选对得分:不选、远错或选出的标号超过一个的不得分.1.(3分)|﹣5|的相反数是()A.﹣5B.5C.D.﹣【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.2.(3分)为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动.现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、是轴对称图形.故选:B.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.4.(3分)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,22【分析】此题根据中位数,平均数的定义解答.【解答】解:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.故选:B.【点评】此题考查了折线统计图,用到的知识点是平均数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数是所有数的和除以所有数的个数.5.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选:B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=.6.(3分)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8B.6.3(1+x)=8C.6.3(1+x)2=8D.6.3+6.3(1+x)+6.3(1+x)2=8【分析】利用五月份完成投递的快递总件数=三月份完成投递的快递总件数×(1+x)2,进而得出等式求出答案.【解答】解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意,得:6.3(1+x)2=8,故选:C.【点评】此题主要考查了一元二次方程的应用,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.7.(3分)如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D的度数是()A.50°B.55°C.60°D.65°【分析】连接BC,由弦切角定理得∠ACE=∠ABC,再由切线的性质求得∠DBC,最后由切线长定理求得∠D的度数.【解答】解:连接BC,∵DB、DE分别切⊙O于点B、C,∴BD=DC,∵∠ACE=25°,∴∠ABC=25°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DBC =∠DCB =90°﹣25°=65°,∴∠D =50°.故选:A .【点评】本题考查了切线的性质、圆周角定理、弦切角定理等知识,综合性强,难度较大.8.(3分)在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )A .B .C .D .【分析】本题可先由二次函数y =ax 2+bx +c 图象得到字母系数的正负,再与一次函数y =ax +b 的图象相比较看是否一致.【解答】解:A 、由抛物线可知,a <0,x =﹣<0,得b <0,由直线可知,a <0,b<0,故本选项正确;B 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误;C 、由抛物线可知,a >0,x =﹣>0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误.故选:A .【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:()0+﹣tan60°= 1+ . 【分析】本题涉及零指数幂、二次根式化简、特殊角三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+2﹣=1+故答案为1+.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角三角函数等考点的运算.10.(3分)2019年3月5日,第十三届全国人民代表大会第二次会议在北京人民大会堂开幕,国务院总理李克强作政府工作报告指出,回顾2018年工作,三大攻坚战开局良好,精准脱贫有力推进,农村贫困人口减少1386万,易地扶贫搬迁280万人,1386万用科学记数法可表示为 1.386×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1386万=1.386×106.故答案为:1.386×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.11.(3分)如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为2.【分析】只要证明△PBC是等腰直角三角形即可解决问题;【解答】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=PC=2,故答案为2.【点评】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.12.(3分)如图,在同一平面直角坐标系中,函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是﹣3<x<0,x>2.【分析】通过对函数图象特征的了解:函数图象在上面的y值总比函数图象在下面的y 值大;反之,就越小;【解答】解:∵函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点∴以﹣3和2为大小的分界点,﹣3<x<0,x>2是y1函数图象都在y2函数图象的上方,∴y1>y2故答案为:﹣3<x<0,x>2.【点评】这题主要考查反比例函数与一次函数的图象特征;解题思路:确定图象的交点,利用当x的值,函数图象上方的y值比函数图象下方的y值大;13.(3分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则△EFG的面积为 .【分析】作EH ⊥BD 于H ,根据折叠的性质得到EG =EA ,根据菱形的性质、等边三角形的判定定理得到△ABD 为等边三角形,得到AB =BD ,设BE =x 根据勾股定理列出方程,求出AE ,AF 即可解决问题..【解答】解:作EH ⊥BD 于H ,由折叠的性质可知,EG =EA ,由题意得,BD =DG +BG =8,∵四边形ABCD 是菱形,∴AD =AB ,∠ABD =∠CBD =∠ABC =60°,∴△ABD 为等边三角形,∴AB =BD =8,设BE =x ,则EG =AE =8﹣x ,在Rt △EHB 中,BH =x ,EH =x ,在Rt △EHG 中,EG 2=EH 2+GH 2,即(8﹣x )2=(x )2+(6﹣x )2,解得,x =,即BE =,∴AE =同法可得AF =,∴S △EFG =S △EFA =•AE •AF =.故答案为.【点评】本题考查的是翻转变换的性质、菱形的性质、勾股定理、解直角三角形,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.14.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为(2n﹣1,0).【分析】依据直线l为y=x,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点A n的坐标为(2n﹣1,0).【解答】解:∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.【点评】本题主要考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、作图题(本题满分4分,用圆规、直尺作图,不写作法,但要保留作图痕迹.)15.(4分)如图,已知∠AOB及边OB上一点P求作⊙M,使⊙M与边OA、OB相切,且其中一个切点为点P【分析】根据切线的判定和性质先作∠AOB平分线,再过点P作OB的垂线,确定点M,据此作图可得.【解答】作法:如图,1、作∠AOB的平分线OE,2、过点P作射线OB的垂线PD,3、PD与OE的交点即为点M,4、以点M为圆心、MP为半径作圆,则⊙M即为所求.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆的切线的判定与性质及角平分线的性质.四、解答题(本题满分74分,共有9道小题)16.(8分)(1)解不等式组:(2)化简:(1﹣)÷【分析】(1)根据解不等式组的方法可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】解:(1),由不等式①,得x>3,由不等式②,得x>1,故原不等式组的解集是x>3;(2)(1﹣)÷===.【点评】本题考查分式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的解答方法.17.(6分)某中学学生会发同学们就餐时剩余饭菜较多,浪费重,于是准备在校内倡导“光盘行动”让同学们珍惜粮食,为了让同学私理解这次话动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有1000人(2)补全条形统计图,并在图上标明相应的数据(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校4800名学生一餐浪费的食物可供多少人食用一餐.【分析】(1)用“不剩”的人数除以“不剩”的人数所占的百分比,可得调查的人数;(2)用抽查的总人数减去其他三类的人数,得到饭菜“剩少量”同学的人数,即可把条形统计图补充完整;(3)根据这次被调查的所有学生一餐浪费的食物可以供50人用一餐,再根据全校的总人数是4800名,列式计算即可.【解答】解:(1)这次被调查的同学共有600÷60%=1000(人),故答案为:1000;(2)剩少量人数为1000﹣(600+150+50)=200(人),补全图形如下:(3)4800×=240(人),答:该校4800名学生一餐浪费的食物可供240人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.18.(6分)某商场为了吸引顾客,设立一个可自由转动的转盘,(如图,3个数字所在的扇形面积相等)并规定,顾客每购满100元商品,可转动两次转盘,转盘停止后,看指针指向的数.(如果指针指向分界线,则重新转动转盘,直到指针指向数为止)获奖方法是:①指针两次都指向3,顾客可获得90元购物券,②指针只有一次指向3,顾客可得36元购物券,③指针两次都不指向3,顾客只能获得18元购物券;若顾客不愿转动转盘,则可直接获得30元购物券(1)试用树状图或列表法给出两次转动转盘指针所有可能指向的结果;(2)请分别求顾客获得90元,36元,18元购物券的概率;(3)你认为转动转盘和直接获得购物券哪种方式更合算?试说明理由.【分析】(1)用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案;(2)由(1)的图表,根据题意分析可得顾客获得90元、36元、18元购物券的情况数目,根据概率公式可得答案;(3)算出每转动两次转盘所获得购物券金额的平均数,与直接获得购物券比较可得答案.【解答】解:(1)如下表:(2)P(获得90元)=,P(获得36元)=,P(获得18元)=;(3)转动转盘合算,每转动两次转盘所获得购物券金额的平均数为:×90+×36+×18=34>30,所以转动转盘合算.【点评】本题考查了列表法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,扶梯AB的坡度i为1:.改造后的斜坡式动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tan l5°≈0.27)【分析】根据AB的坡度和AB的长,先计算出AD,再利用坡角∠ACB在直角△ACD中的边角关系,利用锐角三角函数求出AC即可.【解答】解:∵扶梯AB的坡度i为1:,∴AD:DB=1:即DB=AD.在Rt△ADB中,∵AD2+DB2=AB2,∴AD2+3AD2=102解得AD=±5.因为﹣5不合题意,所以AD=5.在Rt△ACD中,sin∠ACD=,∴AC=≈≈19.2(m)答:改造后的自动扶梯AC的长约为19.2m.【点评】本题考查了坡度、坡角及解直角三角形.理解坡度是解决本题的关键.坡度=铅直高度:水平宽度.20.(8分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.当x=120时,x+30=150.答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥.∵a是整数,∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.21.(8分)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?请证明你的结论【分析】(1)只要证明AE=CF,∠C=∠EAD,BC=AD,即可根据SAS证明△ADE≌△CDF;(2)根据已知条件证明BE=DF,BE∥DF,从而得出四边形BEDF是平行四边形,再证明DE=BE,根据邻边相等的平行四边形是菱形,从而得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠C,AD=CB,AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,CF=CD,∴AE=CF.在△ADE和△CBF中,∴△ADE≌△CBF(SAS).(2)四边形BEDF是菱形,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形BEDF是平行四边形,∵四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中,∵E为AB的中点,∴AE=BE=DE,∴平行四边形BEDF是菱形.【点评】本题考查平行四边形的判定和性质、全等三角形的判定、矩形的性质、菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,灵活应用所学知识解决问题,属于中考常考题型.22.(10分)为了有力推进精准贫改策,某街道实施产业扶贫,帮助贫困户承包了荒山种植某品种葡萄,到了收获季节,已知该葡萄的成本价为8元/千克,投入市场销售时,调查市场行情,发现该葡萄销售不会亏本,且每天售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种葡萄定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘葡萄4500千克,该品种葡萄的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批葡萄?请说明理由.【分析】(1)利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”列出函数解析式,并配方成顶点式即可得出最大值;(3)求出在(2)中情况下,即x=19时的销售量,据此求得40天的总销售量,比较即可得出答案.【解答】解:(1)设y与x的函数关系式为y=kx+b,将(10,200)、(15,150)代入,得:,解得:,∴y与x的函数关系式为y=﹣10x+300(8≤x≤30);(2)设每天销售获得的利润为w,则w=(x﹣8)y=(x﹣8)(﹣10x+300)=﹣10(x﹣19)2+1210,∵8≤x≤30,∴当x=19时,w取得最大值,最大值为1210;。

山东各2019年中考数学分类解析-专项8:平面几何基础

山东各2019年中考数学分类解析-专项8:平面几何基础专题8:平面几何基础一、选择题1. 〔2018山东滨州3分〕借助一副三角尺,你能画出下面哪个度数的角【】A、65°B、75°C、85°D、95°【答案】B。

【考点】角的计算。

【分析】利用一副三角板可以画出75°角,用45°和30°的组合即可。

应选B。

2. 〔2018山东滨州3分〕一个三角形三个内角的度数之比为2:3:7,这个三角形一定是【】A、等腰三角形B、直角三角形C、锐角三角形D、钝角三角形【答案】D。

【考点】三角形内角和定理,比例的计算。

【分析】按比例计算出各角的度数即可作出判断:三角形的三个角依次为180°×22+3+7=30°,180°×32+3+7=45°,180°×72+3+7=105°,所以这个三角形是钝角三角形。

应选D。

3. 〔2018山东德州3分〕不一定在三角形内部的线段是【】A、三角形的角平分线B、三角形的中线C、三角形的高D、三角形的中位线【答案】C。

【考点】三角形的角平分线、中线、高和中位线。

【分析】因为在三角形中,它的中线、角平分线和中位线一定在三角形的内部,而钝角三角形的高在三角形的外部。

应选C。

4. 〔2018山东东营3分〕以下图形中,是中心对称图形的是【】A、 B、 C、 D、【答案】B。

【考点】中心称对形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕圆心旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年山东省青岛市初中毕业、升学考试学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019山东省青岛市,1,3分) -3的相反数是 【答案】D【解析】本题考查相反数的概念,数a 的相反数为-a ,所以-3的相反数3,故选D 。

【知识点】相反数的概念 2.(2019山东省青岛市,2,3分)下列四个图形中,既是轴对称图形,又是中心对称圄彤的是A .B .C .D .【答案】D 【解析】本题考查轴对称图形与中心对称图形的概念,轴对称图形是指沿图形内某直线折叠直线两旁的部分能完全重合的图形,能确定出对称轴的图形为轴对称图形,判断轴对称图形的关键是寻找对称轴,除了直接观察判断外,还可采用折叠法判断,看该图形按照某条直线折叠后直线两旁的部分能否重合即可. 另要注意有的轴对称图形只有一条对称轴,有的轴对称图形有多条对称轴.中心对称图形是指绕图形内某点旋转180°后能与自身完全重合的图形。

能确定出对称中心的图形为中心对称图形。

A 、C 只是轴对称图形,B 只是中心对称图形,D 既是轴对称图形,又是中心对称图形,故选D 。

【知识点】轴对称图形 中心对称图形3.(2019山东省青岛市,3,3分) 2019年1月3日,我国”媳娥四号”月球探测器在月球首醋凭着陆,实现人类有史以来首次登陆月球背面.已知月球与地球之间的平均距离约为384000km ,把384000km 用科学计数法可以表示为A .438.410km ⨯B .53.8410km ⨯C .60.38410km ⨯D .63.8410km ⨯【答案】B【解析】本题考查用科学记数法表示较大的数,384000=3.84×105,故选B 。

【知识点】科学记数法4.(2019山东省青岛市,4,3分)计算223(2)(3)m m m m --+gg 的结果是( ) A . 8m 5 B . -8m 5 C . 8 m 5D . -4m 5+ 12m 5【答案】A【解析】本题考查整式的乘法运算,根据运算法则进行计算,原式=4m 2·(-m 3+3m 3)= 4m 2·2m 3=8m 5,故选A 。

【知识点】整式乘法 5.(2019山东省青岛市,5,3分) 如圈, 结段AB 经过⊙O 的圆心,AC BD 分别与⊙O 相切于点D .若AC = BD= 4,∠A=45°,则圆弧CD 的长度为A.πB. 2πC. 2πD.4π【答案】B【解析】连接CO,DO,因为AC,BD分别与⊙O相切于C,D,所以∠ACO=∠DBO=90°,所以∠AOC=∠A=45°,所以CO=AC=4,因为AC=BD,CO=DO,所以△ACO≌△BDO,所以∠DOB=∠AOC=45°,所以∠DOC=180°-∠DOB-∠AOC=180°-45°-45°=90°,»CD=904180π⨯=2π,故选B。

【知识点】切线的性质全等三角形的判定和性质弧长的计算6.(2019山东省青岛市,6,3分)如图,将结段AB先向右平移5个单位,再将所得线段绕原点按颐时针方向旋转90°,得到钱段A′B′,则点B的对应点B′的坐标是xy–5–4–3–2–112345–5–4–3–2–112345OABA.(-4,1)B.(-1,2)C.(4,-1)D.(1,-2) 【答案】D【解析】本题考查图形变换,根据题意画出图形xy–5–4–3–2–112345–5–4–3–2–112345A'B'OABAB,可知点B的对应点B′的坐标是(1,-2),故选D。

【知识点】平移旋转网格作图7.(2019山东省青岛市,7,3分)如图,BD是△ABC的角平分钱,AE⊥BD,垂足为F. 若∠ABC=35°,∠C=50°,则∠CDE的度数为A.35︒B.40︒C.45︒D.50︒【答案】C【解析】本题考查角平分线的性质,因为BD平分∠ABC,AE⊥BD,所以△ABF≌△EBF,所以BD是线段AE的垂直平分线,所以AD=ED,所以∠BAD=∠BED=180°-35°-50°=95°, 所以∠CDE=180°-∠C=95°-50°=45°,故选C。

【知识点】三角形角平分线线段垂直平分线全等三角形三角形外角的性质8.(2019山东省青岛市,8,3分)已知反比例函数y=abx的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是A.B.C.D.【答案】C【思路分析】先判断a,b的符号,再根据一次函数与二次函数的特征确定一次函数与二次函数所经过的象限或点.【解题过程】观察反比例函数可知a,b同号,若a,b同为正,则-22a->0,所以二次函数y=ax2-2x开口向上,与x轴交于原点,对称轴在x轴正半轴,一次函数经过第一、二、三象限;若a,b同为负,则-22a-<0,所以二次函数y=ax2-2x开口向上,与x轴交于原点,开口向下,对称轴在x轴负半轴,一次函数经过第二、三、四象限,根据以上规则判定只有C正确,故选C.【知识点】一次函数的图象和性质二次函数的图象和性质分类讨论二、填空题:本大题共6小题,每小题3分,共18分.9.(2019山东省青岛市,9,3分)计算: 248(3)2+-︒= .【答案】1【解析】本题考查二次根式的化简,原式=434+-1=23+2-1=23+1.【知识点】二次根式的化简零指数幂10.(2019山东省青岛市,10,3分)若关于x的一元二欠方程2x2-x+m=0有两个相等的实数根,则m的值为 .【答案】1 8【解析】本题考查一元二次方程根的判别式,因为一元二次方程有两个相等的实数根,所以△=(-1)2-4×2m=1-8m=0,解得m=18.【知识点】一元二次方程根的判别式11.(2019山东省青岛市,11,3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环【答案】8.5【解析】根据条形图读出各次成绩,计算平均数,因为(6+7+8×2+9×4+10×2)÷10=8.5,所以该队员的平均成绩是8.5环.【知识点】统计平均数12.(2019山东省青岛市,12,3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF 的度数是 .【答案】54【解析】连接OB,CO,因为ABCDE为正五边形,AF为外接圆直径,所以∠BOA=360°÷5=72°,所以弧BF为180°-72°=108°,所以∠BDF=54°.【知识点】正五边形的性质圆周角圆心角13.(2019山东省青岛市,13,3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在统段AE上的点G处,折痕为AF. 若AD=4cm,则CF的长是为cm。

【答案】【解析】由勾股定理得AE=25,根据题意得GE=2-45,设BF=xcm,则FC=(4-x)cm,所以(25-4)2+x2=22+(4-x)2,解得x=25-2,所以CF=6-25.【知识点】正方形的性质轴对称勾股定理14.(2019山东省青岛市,14,3分)如圈,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块。

【答案】【思路分析】移动后要保证视图与原来相同且要保证形状物体形状能保持正常.【解题过程】若要保持该几何体的形状需要保留层9个正方体,在此基础上若要保证其他视图相同,可以移去四个角上的上面的两个正方体,再可以移去最中间的两个正方体, 新几何体的府视图如下:,所以最多可以取走10个小正方体,故答案为10.【知识点】正方体三视图最值分类讨论15.(2019山东省青岛市,15,4分)已知:∠α,直线l及l上两点A, B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC= 90° , ∠BAC=∠α.【思路分析】过点B在直线AB上方作CB⊥AB于B,在直线AB上方作∠CAB=∠α,此射线与射线BC交于点C.【解题过程】如国所示:则Rt△ABC即为所求。

【知识点】尺规作图16.(2019山东省青岛市,16(1),4分)化简:m nm-÷(22m nm+-2n)【思路分析】根据分式的运算法则化简分式.【解题过程】解:原式=m nm-·2()mm n-=1m n-【知识点】分式化简(2019山东省青岛市,16(2),4分)解不等式组16155318xx⎧-≤-<⎪⎨⎪⎩,并写出它的正整数解。

【思路分析】解不等式组确定不等式组的解集,在解集中确定正整数解.【解题过程】解不等式①得≥-1,解不等式②得x<3,所以不等式组的解集是-1≤x<3,其中的正整数解为1,2.【知识点】不等式组的解法正整数解17.(2019山东省青岛市,17,6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1, 2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由。

【思路分析】画树状图确定两次摸出的数字的所有情况数,计算两次数字之差,确定数字之差小于2的情况数,计算概率,根据概率确定游戏是否公平.【解题过程】根据题意画树状图如下:两者之差绝对值第二次摸球第一次摸球10123210123210143214321432112344321根据树状图分析,两次摸球之差的绝对值有16种情况,其中两次数字差的绝对值小于2的有10种情况,所以两次数字差的绝对值小于2的概率是1016=58,所以小明获胜的概率是58,小明获胜的概率是38,∵58>38,∴这个游戏对两人不公平.【知识点】概率的计算 游戏公平性判定 18.(2019山东省青岛市,18,6分) 为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生, 调查了他们平均每天的睡眠时间(单位:h ),统计结果如下:9 , 8 , 10.5 , 7 , 9 , 8 , 10 , 9.5 , 8 , 9 , 9.5 , 7.5 , 9.5 , 9 , 8.5 , 7.5 , 10 , 9.5 , 8 , 9 , 7 , 9.5 , 8.5 , 9 , 7 , 9 , 9 , 7.5 , 8.5 , 8.5 , 9 , 8 , 7.5 , 9.5 , 10 , 9.5 , 8.5 , 9 , 8 , 9. 在对这些数据整理后, 绘制了如下的统计图表:组别 睡眠时间分组人数(频数)1 78t <„ m2 89t <„ 113 910t <„ n41011t <„4请根据以上信息,解答下列问题: (1)m =,n =,a =,b = ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h ,请估计该校学生中睡眠时间符合要求的人数. 【思路分析】(1)通过数数法确定m ,n 的值,根据频数与数据总数的比确定a ,b 的值; (2)根据各组频数确定中位数的范围; (3)根据样本数据估计总体. 【解题过程】(1)由题可知,睡眠时间7≤t <8有7,7.5,7.5,7,7,7.5,7.5共7个,睡眠时间9≤t <10的共有18个,所以m =7,n =18;a =740×100%=17.5%,b =1840×100%=45% (2)由题意知调查对象共40人,将睡眠时间按从小到大的顺序排列,第一组有7人,第二组11人,因此中位数落在第三组内(3)油题意得:800×18440+=440(名) 答:估计该校学生中睡眠时间符合要求的有440名。

相关文档
最新文档