2019年山东青岛中考数学试题(解析版)

合集下载

2019年山东省青岛市市北区中考数学一模试卷(解析版)

2019年山东省青岛市市北区中考数学一模试卷(解析版)

2019年山东省青岛市市北区中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.在如图所示的数轴上若A、B两点到原点的距离相等,则点B所表示的数是()A. −3B. −2C. 13D. 62.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. 晴B. 浮尘C. 大雨D. 大雪3.亚洲陆地面积约为4400万平方千米,用科学记数法正确表示44000000的是()A. 44×106B. 0.44×108C. 4.4×103D. 4.4×1074.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A. 李飞或刘亮B. 李飞C. 刘亮D. 无法确定5.下列计算正确的是()A. a3+a2=a5B. a8÷a4=a2C. (2a3)2−a⋅a5=3a6D. (a−2)(a+3)=a2−66.如图,AB是⊙O的直径,点C、D在⊙O上,A是弧DC中点,若∠ABD=15°,则∠BOC的度数为()A. 120∘B. 150∘C. 210∘D. 75∘7.如图,一次函数y=-x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B. 有两个相等的实数C. 没有实数根D. 以上结论都正确8.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,连接AE、CF,则下列结论正确的有()个(1)DE=2(2)∠EAG=45°(3)△EAG的面积是18(4)cos∠FCG=√55A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18.0分)9.计算:√36+√24√3=______.10.如图,一块正方形地面上铺设了黑、白两种颜色的方砖,它们除颜色外完全相同.一个小球在地面上自由滚动,并随机停留在某块方砖上.小球最终停留在黑砖上的概率是______.11.如图,已知线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点D的坐标为______.12.甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的13,设步行速度为x千米/时,则根据题意可以列出方程______.13.如图,在菱形ABCD中,∠BAD=60°,AB的垂直平分线交对角线AC于点F,垂足为E,若AF=1,则菱形ABCD的面积等于______.14.有一个底面为正方形的棱柱(如图1),底面边长为20cm,棱柱高50cm,现沿着它底面的内切圆进行加工,切掉原来的三条侧棱后,形成的几何体如图2所示,其俯视图如图3所示,则该几何体的表面积为______cm2,体积为______cm3.(柱体的体积=底面积x高)三、计算题(本大题共2小题,共16.0分)15.如图,某公园入口处原有三级台阶,每级台阶高为18cm,宽为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,求AC的长度.16. 工人师傅用一块长为2m ,宽为1.2m 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)若长方体底面面积为1.28m 2,求裁掉的正方形边长;(2)若要求制作的长方体的底面长不大于底面宽的3倍,并将容器进行防锈处理,侧面每平方米的费用为50元,底面每平方米的费用为200元,裁掉的正方形边长多大时,总费用最低,最低为多少?四、解答题(本大题共8小题,共62.0分)17. 如图,利用尺规在平面内确定一点O ,使得点O 到△ABC 的两边AB 、AC 的距离相等,并且点O 到B 、C 两点的距离也相等(保留作图痕迹,不写作法).18. (1)解不等式组:{x−32<12(x +1)≥x −1(2)化简:(a 2+12a-1)⋅2aa 2−119. 在不透明的口袋中,装有3个分别标有数字1、2、3的小球,它们除标示的数字外完全相同,小红、小明和小亮用这些道具做摸球游戏.游戏规则如下:由小红随机从口袋中摸出一个小球,记录下数字放回摇匀再由小明随机从口袋中摸出一个小球,记录下数字,放回摇匀.如果两人摸到的小球上数字相同,那么小亮获胜;如果两人摸到的小球上数字不同,那么小球上数字大的一方获胜. (1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果; (2)这个游戏规则对三人公平吗?请说明理由.20. 春华中学为了解九年级学生的身高情况,随机抽测50名学生的身高后,所得部分资料如下(身高单位:cm ,测量时精确到1cm );身高 148 151 154 155 157 158 160 161 162 164 人数 1 1 2 1 2 3 4 3 4 5 身高 165 166 167 168 170 171 173 175 177 179 人数2361423111若将数据分成8组,取组距为4cm ,相应的频率分布表(部分)是: 分 组 频 数 频 率 147.5~151.5 2 0.04 151.5~155.5 3 0.06 155.5~159.5 5 0.10 159.5~163.5 11 0.22 163.5~167.5 ______ ______ 167.5~171.5 ______ ______ 171.5~175.5 4 0.08 175.5~179.5 2 0.04 合 计501.00请回答下列问题:(1)样本数据中,学生身高的众数、中位数各是多少? (2)填写频率分布表中未完成的部分;(3)若该校九年级共有850名学生,请你估计该年级学生身高在172cm 及以上的人数21.在同一平面直角坐标系中,一次函数y1=ax+b与反比例函数y2=kx(k为常数,且k ≠0)的图象交于A、B两点,它们的部分图象如图所示,△BOD的面积是6.(1)求一次函数y1=ax+b与反比例函数y2=kx的表达式;(2)请直接写出不等式y1>y2的解集.22.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点F为AC的中点,连接FD并延长到点E,使FD=DE,连接BF,CE和BE.(1)求证:BE=FC;(2)判断并证明四边形BECF的形状;(3)为△ABC添加一个条件,则四边形BECF是矩形(填空即可,不必说明理由)23.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=√2,设EB=x,则BF=√2-x,∵Rt△AEB≌Rt△BFC∴BF=AE=√2-x在Rt△AEB中,由勾股定理,得x2+(√2-x)2=12解得,x1=x2=√22∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD,______一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD 面积的n倍?(n>2)(仿照上述方法,完成探究过程)24.如图,在菱形ABCD中,对角线AC=6cm,BD=8cm点P从点B出发沿BA方向匀速运动,速度是1cm/s,点Q从点D出发沿DB方向匀速运动,速度是2cm/s,QE∥AB,与BC交于点E,连接PQ.设运动时间为t(s)(0<t≤4).(1)当PQ⊥AB于P时,求t的值;(2)设四边形BPQE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使BQ平分∠PQE?若存在,求t的值;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵A、B两点到原点的距离相等,A为3,则B为3的相反数,即B表示-3.故选:A.到原点距离相等的点所表示的数互为相反数,故可知B点表示的数为3的相反数.本题考查绝对值的意义及相反数的意义,要正确理解到原点距离相等的两个点所表示的数即为相反数.2.【答案】A【解析】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】D【解析】解:用科学记数法正确表示44000000的是4.4×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5-8)2+2×(7-8)2+3×(8-8)2+3×(9-8)2+(10-8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7-8)2+4×(8-8)2+3×(9-8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选:C.根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及方差的计算公式.5.【答案】C【解析】解:A、a2和a3不能合并,故本选项不符合题意;B、a8÷a4=a4,故本选项不符合题意;C、(2a3)2-a•a5=4a6-a6=3a6,故本选项符合题意;D、(a-2)(a+3)=a2+a-6,故本选项不符合题意;故选:C.根据合并同类项,同底数幂的除法,多项式乘以多项式,幂的乘方和积的乘方求出每个式子的值,再得出选项即可.本题考查了合并同类项,同底数幂的除法,多项式乘以多项式,幂的乘方和积的乘方等知识点,能求出每个式子的值是解此题的关键.6.【答案】B【解析】解:∵A是弧DC中点,∠ABD=15°,∴∠AOC=30°,∴∠BOC=150°,故选:B.根据圆周角定理和平角解答即可.此题考查圆周角定理,关键是根据圆周角定理和平角解答.7.【答案】A【解析】解:∵一次函数y=-x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=-x有两个不相等的实数根,ax2+bx+c=-x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.根据二次函数与一元二次方程的关系判断.本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系是解题的关键.8.【答案】B【解析】解:(1)∵将△ABG沿AG对折至△AFG∴AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,,∴Rt△AFE≌Rt△ADE(HL),∴EF=DE,设DE=FE=x,则EC=6-x.∵G为BC中点,BC=6,∴CG=3,GE=3+x,在Rt△ECG中,根据勾股定理,得:(6-x)2+32=(x+3)2,则DE=2;∴(1)正确;(2)∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠EAG=45°;∴(2)正确;(3)∵AF=AB=6,GE=DE+BG=2+3=5,∴S△EAG =AF•GE=×6×5=15;∴(3)错误;(4)过F作FH⊥CG于H,如图所示:则CE=CD-DE=6-2=4,∵△CEG的面积=CG•CE=×3×4=6,∴△CFG的面积=×6=,∴FH•CG=,即FH×3=,解得:FH=,∵GF=BG=3,GH===,∴CH=CG-GH=3-=,CF===,∴cos∠FCG===;∴(4)正确;综上所述:结论正确的有3个;故选:B.(1)由翻折变换的性质证明Rt△AFE≌Rt△ADE,得出EF=DE,设DE=FE=x,则EC=6-x.CG=3,GE=3+x,由勾股定理得出DE=2;(2)由∠BAG=∠FAG,∠DAE=∠FAE,∠BAD=90°,即可得出∠EAG=45°;(3)由S△EAG =AF•GE得出S△EAG=15;(4)过F作FH⊥CG于H,求出FH=,GH=,CH=,CF=,得出cos∠FCG==;综合以上结果即可得出结论.本题考查翻折变换的性质、正方形的性质、全等三角形的判定与性质、直角三角形的性质、勾股定理、三角形面积计算、三角函数等知识,熟练掌握翻折变换的性质与勾股定理是关键.9.【答案】2√3+2√2【解析】解:原式===2+2,故答案为:2+2.先化简二次根式,再分母有理化,继而化简可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.10.【答案】38【解析】解:观察这个图可知:黑色区域(6块)的面积占总面积(16块)的=,则它最终停留在黑色方砖上的概率是,故答案为:.根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.【答案】(4,2)【解析】解:线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B与点D是对应点,则点D的坐标为(8×,4×),即(4,2),故答案为:(4,2).应点的坐标的比等于k或-k解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12.【答案】4.5x-4.53x=12【解析】解:设步行速度为x千米/时,则骑自行车的速度为3x千米/时,依题意,得:-=.故答案为:-=.设步行速度为x千米/时,则骑自行车的速度为3x千米/时,根据时间=路程÷速度结合骑自行车比步行少用半小时,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.13.【答案】3√32【解析】解:连接DB,∵AB的垂直平分线交对角线AC于点F,∴∠AEF=90°,AB=2AE,∵菱形ABCD中,∠BAD=60°,∴∠FAE=30°,∴AE=,∵菱形ABCD中,∠BAD=60°,∴AD=AB,∴△ADB是等边三角形,∴DB=AB=2AE=,∴AC=2AO=,故答案为:连接BD,根据菱形ABCD的性质得出AD=AB,再由∠BAD=60°得出△ADB是等边三角形,利用含30°的直角三角形的性质和菱形的面积解答即可.本题主要考查了菱形的性质,等边三角形的性质和判定等知识点,解此题的关键是证明△ADB 是等边三角形.14.【答案】900π+1200 3750π+5000【解析】解:(1)由图2可知,切割后的几何体是由个圆柱的表面积,2个边长为10cm的正方形,2个边长10cm,50cm的长方形组成;因此表面积为×2×π×50+×2×π×10×10+2×10×10+2×10×50=(900π+1200)cm2;(2)由几何体的组成部分,可知体积是圆柱体积和长方体体积组成,因此体积为×π×10×10×50+10×10×50=(3750π+5000)cm3,故答案为900π+1200,3750π+5000;通过给出图判断切割后的几何体的组成图形,切割后的几何体是由个圆柱的表面积,2个边长为10cm的正方形,2个边长10cm,50cm的长方形组成;然后再利用圆柱和长方体的表面积和体积公式进行求解;本题考查几何体的视图,不规则几何体的表面积和体积的求法;能够通过给出的视图,判断出组合体的组成图形是解题的关键.15.【答案】解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD-AD=270-60=210(cm).∴AC的长度是210cm.答:AC的长度为210cm.【解析】首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,此题考查了解直角三角形的应用:坡度问题,难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.16.【答案】解:(1)设裁掉的正方形的边长为xm,根据题意,得:(2-2x)(1.2-2x)=1.28,解得:x1=0.2或x2=1.4(舍),所以裁掉的正方形边长为0.2m;(2)∵长不大于宽的3倍,∴2-2x≤3(1.2-2x),解得:0<x≤0.4,设总费用为w,根据题意,得:w=50×2x(3.2-4x)+200×(2-2x)(1.2-2x)=400x2-960x+480=400(x-1.2)2-96,∵对称轴x=1.2且开口向上,∴当0<x≤0.4时,w随x的增大而减小,∴当x=0.4时,w取得最小值,最小值为160元,答:裁掉的正方形边长为0.4m时,总费用最低,最低为160元.【解析】(1)设裁掉的正方形的边长为xm,根据底面矩形的面积公式列出一元二次方程,解之可得;(2)先根据长不大于宽的3倍得出x的取值范围,再根据总费用=侧面的总费用+底面的总费用列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的思想解答.17.【答案】解:如图,①作线段BC的垂直平分线MN.②作∠BAC的平分线PA交MN于点O.点O即为所求.根据线段垂直平分线的性质以及角平分线的性质即可解决问题.本题考查作图-复杂作图,线段的垂直平分线性质、角平分线的性质等知识,解题的关键是灵活运用线段垂直平分线的性质以及角平分线的性质解决问题,属于中考常考题型.18.【答案】解:(1){x−32<1①2(x +1)≥x −1②,由不等式①,得x <5, 由不等式②,得x ≥-3,故原不等式组的解集为-3≤x <5; (2)(a 2+12a-1)⋅2aa 2−1=a 2+1−2a2a ⋅2a(a+1)(a−1)=(a−1)2(a+1)(a−1) =a−1a+1. 【解析】(1)根据解不等式组的方法可以解答本题; (2)根据分式的减法和乘法可以化简题目中的式子.本题考查分式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.19.【答案】解:(1)画树状图如下:由树状图知共有9种等可能结果;(2)由树状图知,小红获胜的结果有3种,小明获胜的结果有3中, ∴P (小亮获胜)=39=13,P (小红获胜)=39=13,P (小明获胜)=39=13, ∴游戏对三人公平. 【解析】(1)画树状图列出所有等可能结果;(2)结合树状图,利用概率公式计算出三人获胜的概率,比较大小即可得.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】16 0.32 7 0.14【解析】解:(1)样本数据中,学生身高的众数是167cm 、中位数是=164(cm );(2)补全表格如下: 分 组 频 数 频 率 147.5~151.5 2 0.04 151.5~155.5 3 0.06 155.5~159.5 5 0.10 159.5~163.5 11 0.22 163.5~167.5 16 0.32 167.5~171.5 7 0.14 171.5~175.5 4 0.08 175.5~179.5 2 0.04 合 计501.00(3)估计该年级学生身高在172cm 及以上的人数约为850×(0.08+0.04)=102(人). (1)根据众数的定义以及中位数的定义得出众数、中位数即可; (2)利用图表中不同身高的人数分布情况求出未知的频数和频率即可;(3)利用样本中身高在172cm 及以上的人数估计总体学生身高在172cm 及以上的人数即可. 本题考查了频数分布直方图以及中位数和众数的定义和利用样本估计总体等知识,注意利用频数分布表得出各组人数是解题关键.21.【答案】解:(1)∵B (-1,3)在反比例函数图象上,∴k =3×(-1)=-3,∴反比例函数图的解析式为:y 2=−3x , ∵△BOD 的面积是6, ∴OD =4,D (-4,0),把D (-4,0),B (-1,3)代入y 1=ax +b 得{−a +b =3−4a+b=0,解得{b =4a=1,(2)由图象交点A 、B 两点的坐标可知,当y 1>y 2时,-3<x <-1. 【解析】(1)先根据点B 的坐标求出反比例函数图的解析式;根据反比例函数的几何意义求出点D 的坐标,再运用待定系数法即可求出求一次函数y 1=ax+b 的表达式; (2)观察图象交点A 、B 两点的坐标可知,当y 1>y 2时,x 的取值范围.本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,体现了数形结合的思想. 22.【答案】(1)证明:∵AB =AC ,AD 是△ABC 的角平分线,∴BD =CD ,∵FD =DE ,∠BDE =∠CDF , ∴△BDE ≌△CDF (SAS ), ∴BE =CF ;(2)解:四边形BECF 是平行四边形, 理由:∵BD =CD ,ED =FD , ∴四边形BECF 是平行四边形;(3)当AB =BC 时,四边形BECF 是矩形, ∵AB =BC =AC ,∴BD =CD =12BC ,DF =DE =12AC , ∴BC =EF ,∴四边形BECF 是矩形. 【解析】(1)根据等腰三角形的性质得到BD=CD ,根据启动建设性的性质即可得到结论; (2)根据平行四边形的判定定理即可得到结论;(3)根据等边三角形的性质得到BD=CD=BC ,DF=DE=AC ,于是得到结论.本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的判定和性质,正确的识别图形是解题的关键. 23.【答案】不存在【解析】解:探究二:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为3, 所以EF=FG=GH=HE=,设EB=x ,则BF=-x ,在Rt △AEB 中,由勾股定理,得 x 2+(-x )2=12整理得x 2-x+1=0b 2-4ac=3-4<0,此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的3倍; 探究三:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为4, 所以EF=FG=GH=HE=2,设EB=x ,则BF=2-x , ∵Rt △AEB ≌Rt △BFC ∴BF=AE=2-x在Rt △AEB 中,由勾股定理,得 x 2+(2-x )2=12 整理得2x 2-4x+3=0 b 2-4ac=16-24<0, 此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的3倍, 故答案为:不存在;探究四:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为n , 所以EF=FG=GH=HE=,设EB=x ,则BF=-x ,∵Rt △AEB ≌Rt △BFC∴BF=AE=-x 在Rt △AEB 中,由勾股定理,得 x 2+(-x )2=12整理得2x 2-2x+n-1=0b 2-4ac=8-4n <0, 此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的n 倍. 探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.本题考查的是正方形的性质、全等三角形的判定和性质以及一元二次方程的解法,读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键. 24.【答案】解:(1)如图1,由题意知,BP =t ,QD =2t ,∴BQ =8-2t ,∵四边形ABCD 是菱形,∴AO =12AC =3,BO =12BD =4,AC ⊥BD , 根据勾股定理得,AB =5, 假设存在t ,是PQ ⊥AB , 在Rt △AOB 中,cos ∠ABO =45, 在Rt △BPQ 中,cos ∠PBQ =BPBQ =t8−2t , ∴t8−2t =45, ∴t =3213;(2)如图2,过点Q 作QM ⊥AB 于M ,在Rt △BQM 中,QM =BQ •sin ∠ABQ =(8-2t )•35=245-65t , ∵QE ∥AB ,AB ∥CD , ∴QE ∥CD ,∴∠BQE =∠BDC , ∵∠CBD =∠CBD , ∴∠BEQ ∽△BCD , ∴EQCD =BQBD , ∴EQ5=8−2t 8,∴EQ =5-54t ,∴y =S 四边形BPQE =12(BP +EQ )•QM =12(t +5-54t )(245-65t )=320t 2-185t +12;(3)如图3,假设存在时刻t ,使BQ 平分线∠PQE ,则∠BQP =∠BQE , 过点P 作PN ⊥BQ 于N , ∵QE ∥AB ,∴∠ABQ =∠BQE , ∴∠ABQ =∠BQP , ∴BP =PQ , ∴BN =12BQ =12(8-2t )=4-t , 在Rt △BPN 中,cos ∠PBQ =BN BP =45, ∴4−t t=45,∴t =209. 【解析】(1)先利用勾股定理求出AB=5,再用同角的余角的余弦函数建立方程求解即可得出结论; (2)先利用三角形函数表示出QM ,再判断出△BEQ ∽△BCD ,表示出EQ ,即可得出结论; (3)先判断出BP=PQ ,进而表示出BN ,再用三角函数建立方程求解,即可得出结论. 此题是四边形综合题,主要考查了菱形的性质,相似三角形的性质,锐角三角函数,勾股定理,用方程的思想解决问题是解本题的关键.。

2019年山东青岛中考数学含答案解析

2019年山东青岛中考数学含答案解析

2019年山东省青岛市初中毕业、升学考试学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019山东省青岛市,1,3分) -3的相反数是 【答案】D【解析】本题考查相反数的概念,数a 的相反数为-a ,所以-3的相反数3,故选D 。

【知识点】相反数的概念 2.(2019山东省青岛市,2,3分)下列四个图形中,既是轴对称图形,又是中心对称圄彤的是A .B .C .D .【答案】D 【解析】本题考查轴对称图形与中心对称图形的概念,轴对称图形是指沿图形内某直线折叠直线两旁的部分能完全重合的图形,能确定出对称轴的图形为轴对称图形,判断轴对称图形的关键是寻找对称轴,除了直接观察判断外,还可采用折叠法判断,看该图形按照某条直线折叠后直线两旁的部分能否重合即可. 另要注意有的轴对称图形只有一条对称轴,有的轴对称图形有多条对称轴.中心对称图形是指绕图形内某点旋转180°后能与自身完全重合的图形。

能确定出对称中心的图形为中心对称图形。

A 、C 只是轴对称图形,B 只是中心对称图形,D 既是轴对称图形,又是中心对称图形,故选D 。

【知识点】轴对称图形 中心对称图形3.(2019山东省青岛市,3,3分) 2019年1月3日,我国”媳娥四号”月球探测器在月球首醋凭着陆,实现人类有史以来首次登陆月球背面.已知月球与地球之间的平均距离约为384000km ,把384000km 用科学计数法可以表示为A .438.410km ⨯B .53.8410km ⨯C .60.38410km ⨯D .63.8410km ⨯【答案】B【解析】本题考查用科学记数法表示较大的数,384000=3.84×105,故选B 。

【知识点】科学记数法4.(2019山东省青岛市,4,3分)计算223(2)(3)m m m m --+gg 的结果是( ) A . 8m 5 B . -8m 5 C . 8 m 5D . -4m 5+ 12m 5【答案】A【解析】本题考查整式的乘法运算,根据运算法则进行计算,原式=4m 2·(-m 3+3m 3)= 4m 2·2m 3=8m 5,故选A 。

2019年山东省青岛市中考数学试卷-(解析版)

2019年山东省青岛市中考数学试卷-(解析版)

2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a <10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD =90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b 的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C =108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a ﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a ﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图⑦这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.24.(12分)已知:如图,在四边形ABCD 中,AB ∥CD ,∠ACB =90°,AB =10cm ,BC =8cm ,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm /s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ;当一个点停止运动,另一个点也停止运动.过点P 作PE ⊥AB ,交BC 于点E ,过点Q 作QF ∥AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为t (s )(0<t <5),解答下列问题:(1)当t 为何值时,点E 在∠BAC 的平分线上?(2)设四边形PEGO 的面积为S (cm 2),求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【分析】(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE =EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE ﹣S △OEC )构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

山东省青岛市2019年中考数学真题试题(含解析)

山东省青岛市2019年中考数学真题试题(含解析)

山东省青岛市2019年中考数学真题试题(含解析)一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m55.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c (a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1 .【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5 环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54 °.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 4 个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=7 ,n= 1 ,a=17.5% ,b=45% ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 3 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5 化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE =∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.。

2019年山东省中考数学真题分类汇编 专题04 三角形 (解析版)

2019年山东省中考数学真题分类汇编 专题04 三角形 (解析版)

专题04 三角形一、选择题1.(2019山东枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°【答案】C .【解析】解:如图,∵∠ACD =90°、∠F =45°, ∴∠CGF =∠DGB =45°,则∠α=∠D +∠DGB =30°+45°=75°,故选:C .2.(2019山东淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为( )A .2aB .52a C .3a D .72a 【答案】C .【解析】解:∵∠CAD =∠B ,∠ACD =∠BCA ,∴△ACD ∽△BCA , ∴2()ACD BCAS AC SAB =,即14BCA a S =, 解得,△BCA 的面积为4a ,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019山东青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【答案】A.【解析】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.4.(2019山东临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.2【答案】B.【解析】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,∴△ADE ≌△CFE (AAS ), ∴AD =CF =3,∵AB =4,∴DB =AB ﹣AD =4﹣3=1. 故选:B .5.(2019山东枣庄)如图,将△ABC 沿BC 边上的中线AD 平移到△A ′B ′C ′的位置.已知△ABC 的面积为16,阴影部分三角形的面积9.若AA ′=1,则A ′D 等于( )A .2B .3C .4D .32【答案】B .【解析】解:∵S △ABC =16、S △A ′EF =9,且AD 为BC 边的中线, ∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ', ∴A ′E ∥AB , ∴△DA ′E ∽△DAB ,则2()A DE ABDS A D AD S''=,即2992()1816A D A D '=='+,解得A ′D =3或A ′D =﹣37(舍), 故选:B .6.(2019山东泰安)如图,一艘船由A 港沿北偏东65°方向航行km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为( )km .A.B.C.D.【答案】B.【解析】解:根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=,如图,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=,AB=30km,∴AE=BE=2在Rt△CBE中,∵∠ACB=60°,BE=,∴CE=3∴AC=AE+CE=∴A,C两港之间的距离为(km,故选:B.7.(2019山东聊城)如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180°C.OE+OF BC D.S四边形AEOF=12S△ABC【答案】C.【解析】解:连接AO,如图所示.∵△ABC为等腰直角三角形,点O为BC的中点,∴OA=OC,∠AOC=90°,∠BAO=∠ACO=45°.∵∠EOA+∠AOF=∠EOF=90°,∠AOF+∠FOC=∠AOC=90°,∴∠EOA=∠FOC.∴△EOA≌△FOC(ASA),∴EA=FC,∴AE+AF=AF+FC=AC,选项A正确;∵∠B+∠BEO+∠EOB=∠FOC+∠C+∠OFC=180°,∠B+∠C=90°,∠EOB+∠FOC=180°﹣∠EOF=90°,∴∠BEO+∠OFC=180°,选项B正确;∵△EOA≌△FOC,∴S△EOA=S△FOC,∴S四边形AEOF=S△EOA+S△AOF=S△FOC+S△AOF=S△AOC=12S△ABC,选项D正确.故选:C.8.(2019山东淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD =12AC 时,tan α1=34; 如图2,当CD =13AC 时,tan α2=512;如图3,当CD =14AC 时,tan α3=724;……依此类推,当CD =11n +AC (n 为正整数)时,tan αn = .【答案】22122n n n++.【解答】解:观察可知,正切值的分子是3,5,7,9,…,2n +1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n +1,2(21)12n +-,2(21)12n ++中的中间一个.∴tan αn =221(21)12n n ++-=22122n n n++.故答案为:22122n n n++.9.(2019山东滨州)如图,在△OAB 和△OCD 中,OA =OB ,OC =OD ,OA >OC ,∠AOB =∠COD =40°,连接AC ,BD 交于点M ,连接OM .下列结论:①AC =BD ;②∠AMB =40°;③OM 平分∠BOC ;④MO 平分∠BMC .其中正确的个数为( )A .4B .3C .2D .1【答案】B .【解析】解:∵∠AOB =∠COD =40°, ∴∠AOB +∠AOD =∠COD +∠AOD , 即∠AOC =∠BOD , ∴△AOC ≌△BOD (SAS ),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选:B.二、填空题10.(2019山东枣庄)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】9.5.【解析】解:过D作DE⊥AB,∵在D 处测得旗杆顶端A 的仰角为53°, ∴∠ADE =53°,∵BC =DE =6m , ∴AE =DE •tan53°≈6×1.33≈7.98m ,∴AB =AE +BE =AE +CD =7.98+1.5=9.48m ≈9.5m , 故答案为:9.511.(2019山东德州)如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,如果梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为 米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)【答案】1.02.【解析】解:由题意可得: ∵∠ABO =70°,AB =6m ,∴sin70°=6AO AOAB ≈0.94, 解得:AO =5.64(m ),∵∠CDO =50°,DC =6m ,∴sin50°=6CO≈0.77, 解得:CO =4.62(m ),则AC =5.64-4.62=1.02(m ), 答:AC 的长度约为1.02米. 故答案为:1.02.12.(2019山东临沂)如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则△ABC 的面积是 .【答案】【解析】解:∵DC ⊥BC ,∴∠BCD =90°, ∵∠ACB =120°,∴∠ACD =30°, 延长CD 到H 使DH =CD , ∵D 为AB 的中点,∴AD =BD , ∴△ADH ≌△BCD (SAS ),∴AH =BC =4,∠H =∠BCD =90°,∵∠ACH =30°,∴CH =,∴CD =,∴△ABC 的面积=2S △BCD =2×12×4×=,故答案为:13.(2019山东枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若AB =2,则CD = ..【解析】解:如图,过点A 作AF ⊥BC 于F , 在Rt △ABC 中,∠B =45°,∴BC AB=,BF=AF=AB,∵两个同样大小的含45°角的三角尺,∴AD=BC=,在Rt△ADF中,根据勾股定理得,DF∴CD=BF+DF﹣BC﹣,.14.(2019山东聊城)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=12BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.【答案】92 a.【解析】解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC.∵DE是中位线,∴CE=2a.在Rt△FEC中,利用勾股定理求出FE=a,∴∠FEC=30°.∴∠A=∠AEM=30°,∴EM=AM.△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB=92 a.故答案为92 a.三、解答题15.(2019山东淄博)已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E =∠C .【答案】见解析【解析】证明:∵∠BAE =∠DAC ∴∠BAE +∠CAE =∠DAC +∠CAE ∴∠CAB =∠EAD ,且AB =AD ,AC =AE ∴△ABC ≌△ADE (SAS ). ∴∠C =∠E .16.(2019山东菏泽)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛B 位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C 处,测得小岛B 位于它的西北方向,求此时航母与小岛的距离BC 的长.【答案】(﹣)海里. 【解析】解:过点C 作CD ⊥AB 于点D ,由题意,得:∠BAD =60°,∠BCD =45°,AC =80, 在Rt △ADB 中,∠BAD =60°,∴tan60°=BDAD,∴AD在Rt△BCD中,∠BCD=45°,∴BD=CD,∴AC=AD+CDBD=80,∴BD=120﹣∴BC BC=﹣,答:BC的距离是()海里.17.(2019山东聊城)某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A 处测得大楼部分楼体CD的顶端C点的仰角为45°,底端D点的仰角为30°,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为63.4°(如图②所示),求大楼部分楼体CD的高度约为多少米?(精确到1米)(参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00 1.41≈1.73)【答案】17米.【解析】解:设楼高CE为x米,∵在Rt△AEC中,∠CAE=45°,∴AE=CE=x,∵AB=20,∴BE=x﹣20,在Rt△CEB中,CE=BE•tan63.4°≈2(x﹣20),∴2(x﹣20)=x,解得:x=40(米),在Rt△DAE中,DE=AE tan30°=40≈17(米),∴CD=CE﹣DE=40﹣3答:大楼部分楼体CD的高度约为17米.18.(2019山东临沂)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【答案】km.【解析】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD=km,即BD的长是km.19.(2019山东潍坊)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD 的长.(结果保留根号)【答案】【解析】解:∵∠AEB=90°,AB=200,坡度为1∴tan∠ABE3=,∴∠ABE=30°,∴AE=12AB=100,∵AC=20,∴CE=80,∵∠CED=90°,斜坡CD的坡度为1:4,∴14CEDE=,即8014ED=,解得,ED=320,∴CD=答:斜坡CD的长是20.(2019山东青岛)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈1732,cos32°≈1720,tan32°≈58,sin42°≈2740,co s42°≈34,tan42°≈9 10)【答案】134米.【解析】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×1720≈68,BF=sin32°•BD=80×1732≈852,∴BE=EF﹣BF=1552,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×910=3065,∴AB=AE+BE=1552+3065≈134m,答:木栈道AB的长度约为134m.21.(2019山东威海)如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=35,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.【答案】不会触碰到汽车货厢顶部,理由见解析.【解析】解:∵BH=0.6米,sinα=35,∴AB=0.613sin5BHα==米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∵EF=FB=AB=1米,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,∴△EFK≌△FBJ≌△ABH,∴EK=FJ=AH,BJ=BH,∴BJ+EK=0.6+0.8=1.4<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.22.(2019山东菏泽)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=,AD=3,求△PDE的面积.【答案】(1)见解析;(2)910. 【解析】解:(1)∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°.∴AD =AE ,AB =AC ,∠BAC ﹣∠EAF =∠EAD ﹣∠EAF , 即∠BAE =∠DAC , ∴△ABE ≌△ADC (SAS ), ∴∠ABE =∠ACD ,∵∠ABE +∠AFB =∠ABE +∠CFP =90°, ∴∠CPF =90°, ∴BP ⊥CD ;(2)在△ABE 与△ACD 中,90AE ADEAB CAB AB AC =⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ACD (SAS ), ∴∠ABE =∠ACD ,BE =CD , ∵∠PDB =∠ADC , ∴∠BPD =∠CAB =90°, ∴∠EPD =90°, ∵BC =,AD =3, ∴DE =,AB =6, ∴BD =6﹣3=3,CD=∵△BDP ∽△CDA , ∴BD PD PBCD AD AC ==,36PD PB==, ∴PDPB∴PE =,∴△PDE 的面积=1925510⨯⨯=. 23.(2019山东枣庄)在△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且∠BMN =90°,当∠AMN =30°,AB =2时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且∠EDF =90°,求证:BE =AF ; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且∠BMN =90°,求证:AB +AN AM .【答案】(1;(2)证明见解析;(3)见解析. 【解析】(1)解:∵∠BAC =90°,AB =AC ,AD ⊥BC ,∴AD =BD =DC ,∠ABC =∠ACB =45°,∠BAD =∠CAD =45°,∵AB =2,∴AD =BD =DC ,∵∠AMN =30°,∴∠BMD =180°﹣90°﹣30°=60°, ∴∠MBD =30°,∴BM =2DM ,由勾股定理得,BM 2﹣DM 2=BD 2,即(2DM )2﹣DM 2)2,解得,DM =3,∴AM =AD ﹣DM ﹣3; (2)证明:∵AD ⊥BC ,∠EDF =90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,∴△BME≌△AMN(ASA),∴BE=AN,∴AB+AN=AB+BE=AE AM.。

2019年全国各地中考数学压轴题汇编:选择、填空(一)(山东专版)(解析卷)

2019年全国各地中考数学压轴题汇编:选择、填空(一)(山东专版)(解析卷)

2019年全国各地中考数学压轴题汇编(山东专版)选择、填空(一)参考答案与试题解析一.选择题(共12小题)1.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.2.(2019•淄博)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019•青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.4.(2019•枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.解:∵S△ABC=16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE=S△A′EF=,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=3或A′D=﹣(舍),故选:B.5.(2019•潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.6.(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.16解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.7.(2019•枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1B.C.D.2解:∵等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1,故选:A.8.(2019•济宁)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.18解:作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(﹣2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数y=的图象经过点D,∴k=15.故选:C.9.(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.10.(2019•德州)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x+1(x<0)解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.11.(2019•济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.12.(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.二.填空题(共13小题)13.(2019•青岛)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠F AD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.14.(2019•枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=36度.解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.15.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块.解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:1616.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.17.(2019•枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.(2019•济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是x<﹣3或x>1.解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方,∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.故答案为:x<﹣3或x>1.19.(2019•潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.20.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.21.(2019•德州)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为.解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r﹣1,OA=r,在Rt△OAE中,32+(r﹣1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5﹣OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.22.(2019•枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为2018.解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.23.(2019•潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为(n,).(n为正整数)解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,24.(2019•德州)如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为(﹣1)n+1().(用含n的式子表示)解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=﹣,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,﹣),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1﹣(舍),x2=1+,∴EF====2(﹣1)=2﹣2,A2D2===,即A2的纵坐标为﹣;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△F A3D3中,∠F A3D3=30°,∴FD3=,∵OD3=2+2﹣2+=x,解得:x1=(舍),x2=+;∴GF===2(﹣)=2﹣2,A3D3===(﹣),即A3的纵坐标为(﹣);…∴A n(n为正整数)的纵坐标为:(﹣1)n+1();故答案为:(﹣1)n+1();25.(2019•淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn ==.故答案为:.。

2019年中考数学试题汇编 二元一次方程组解答题部分(解析版)

2019年中考数学试题汇编  二元一次方程组解答题部分(解析版)

1.(2019年山东省烟台市)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.2.(2019年福建省)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2019年海南省)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.4.(2019年吉林省)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(2)(填写序号).(1)bc+d=a;(2)ac+d=b;(3)ac﹣d=b.【分析】问题解决设竹签有x根,山楂有y个,由题意得出方程组:,解方程组即可;反思归纳由每根竹签串c个山楂,还剩余d个山楂,得出ac+d=b即可.【解答】问题解决解:设竹签有x根,山楂有y个,由题意得:,解得:,答:竹签有20根,山楂有104个;反思归纳解:∵每根竹签串c个山楂,还剩余d个山楂,则ac+d=b,故答案为:(2).【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.5.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,求解即可;【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点评】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.6.(2019年山西省)解方程组:【分析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.【解答】解:(2)①+②得,4x=﹣8,∴x=﹣2,把x=﹣2代入①得,﹣6﹣2y=﹣8,∴y=1,∴.【点评】本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.7.(2019年广西河池市)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【分析】(1)设跳绳的单价为x元/条,毽子的单件为y元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.【解答】解:(1)设跳绳的单价为x元/条,毽子的单件为y元/个,可得:,解得:,答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x折销售,可得:(100×16+100×4)×=1800,解得:x=9,答:该店的商品按原价的9折销售.【点评】本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.8.(2019年广东省广州市)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2019年湖南省益阳市)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.求去年每千克小龙虾的养殖成本与售价;【分析】设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;【点评】本题考查了二元一次方程组的应用;根据题意列出方程组或不等式是解题的关键.10(2019年山东省淄博市)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润【分析】设A,B两种产品的销售件数分别为x件、y件;由题意列出方程组,解方程组即可.【解答】解:设A,B两种产品的销售件数分别为x件、y件;由题意得:,解得:;答:A,B两种产品的销售件数分别为160件、180件.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.11(2019年浙江省丽水市)解方程组【分析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;【解答】解:,将①化简得:﹣x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴;【点评】本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.12(2019年江苏省盐城市)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【分析】(1)直接利用1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克得出方程求出答案;(2)利用分类讨论得出方程的解即可.【解答】解:(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)∵现有A型球、B型球的质量共17千克,∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),综上所述:A型球、B型球各有3只、2只.【点评】此题主要考查了二元一次方程组的应用,正确分类讨论是解题关键.13(2019年湖南省怀化市)解二元一次方组:【分析】直接利用加减消元法进而解方程组即可.【解答】解:,①+②得:2x=8,解得:x=4,则4﹣3y=1,解得:y=1,故方程组的解为:.【点评】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.14(2019年山东省潍坊市)己知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.【分析】先用加减法求得x﹣y的值(用含k的式子表示),然后再列不等式求解即可.【解答】解:①﹣②得:x﹣y=5﹣k,∵x>y,∴x﹣y>0.∴5﹣k>0.解得:k<5.【点评】本题主要考查的是二元一次方程组的解,求得x﹣y的值(用含k的式子表示)是解题的关键.15(2019年浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.16(2019年甘肃省武威市、陇南市)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【分析】根据对话分别利用总钱数得出等式求出答案.【解答】解:设中性笔和笔记本的单价分别是x元、y元,根据题意可得:,解得:,答:中性笔和笔记本的单价分别是2元、6元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.17(2019年山东省枣庄市)对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出所求.【解答】解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=﹣3,则x+y=﹣1.【点评】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.。

2019年最新山东省青岛市中考数学二模试卷及答案解析

2019年最新山东省青岛市中考数学二模试卷及答案解析

山东省青岛市中考数学二模试卷(解析版)一、选择题1.﹣5的绝对值为()A. ﹣5 B. 5C. ﹣D.2.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C.D.3.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A. 相离B. 相切 C. 相交 D. 重合4.已知空气的单位体积质量为1.24×10﹣3克/厘米3, 1.24×10﹣3用小数表示为()A. 0.000124B. 0.0124C. ﹣0.00124 D. 0.001245.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人)1 3 4 1分数(分)80 85 90 95众数和中位数分别是()A. 90,90B. 90,85 C. 90,87.5 D. 85,856.如图所示,左边的正方形与右边的扇形面积相等,扇形的半径和正方形的边长都是2cm,则此扇形的弧长为()cm.A. 4B. 4πC. 8D. 8﹣π7.函数y= 与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C.D.8.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC 分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若= ,则S△EDH=13S△CFH.A. 1个B. 2个 C. 3个 D. 4个二、填空题9.计算:()﹣1﹣(﹣)0=________.10.儿童节期间,游乐场里有一种游戏的规则是:在一个装有6个红球和若干白球(每个球除颜色外,其它都相同)的袋中,随机摸一个球,摸到一个红球就得欢动世界通票一张,已知参加这种游戏的有300人,游乐场为此游戏发放欢动世界通票60张,请你通过计算估计袋中白球的数量是________个.11.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=________度.12.受季节变化影响,某品牌衬衣经过两次降价,由每件256元降至169元,则平均每次降价的百分率x所满足的方程为________.13.如图,把△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为________.14.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________.三、作图题15.用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知:△ABC中,∠C=90°求作:矩形CDEF,使点D,E,F分别在边CB,BA,AC上.四、解答题16.综合题化简及计算(1)化简:﹣(2)关于x的一元二次方程kx2﹣2x+3=0有两个不相等的实数根.求:k的取值范围.17.为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)直接写出表中a=________,b=________;(2)请补全右面相应的频数分布直方图;(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)18.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈ )20.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?21.如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当△ABE满足什么条件时,四边形BCED是菱形?证明你的结论.22.汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x(元)3000 3200 3500 4000y(辆)100 96 90 80(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求按照表格呈现的规律,每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:租出的车辆数(辆)________ 未租出的车辆数(辆)________租出每辆车的月收益(元)________ 所有未租出的车辆每月的维护费(元)________(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请说明理由.23.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,则BN=________;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)如图3,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,四边形AMDC,四边形MNFE和四边形NBHG均是正方形,点P在边EF上,试探究S△ACN,S△APB,S△MBH 的数量关系.S△ACN=________;S△MBH=________;S△APB=________;S△ACN,S△APB,S△MBH的数量关系是________.24.如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.(1)若当t的值为m时,PP′恰好经过点A,求m的值.(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.答案解析部分一、<b >选择题</b>1.【答案】B【考点】绝对值【解析】【解答】解:﹣5的绝对值为5,故B符合题意.故答案为:B.【分析】根据绝对值的性质来判断.正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.2.【答案】A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形但不是中心对称图形,A符合题意;B、是轴对称图形,也是中心对称图形,B不符合题意;C、不是轴对称图形,是中心对称图形,C不符合题意;D、不是轴对称图形,是中心对称图形,D不符合题意.故答案为:A.【分析】根据轴对称图形和中心对称图形的定义来判断.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.【答案】C【考点】直线与圆的位置关系【解析】【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故C符合题意.故答案为:C.【分析】根据直线与圆的位置关系的判定方法判断.圆的半径为r,圆心到直线的距离为a,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.4.【答案】D【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故D符合题意.故答案为:D.【分析】根据科学记数法的表示方法可得到答案.将科学记数法的表示的数a×10-n,“还原”成通常表示的数,就是把a 的小数点向右移动n位.5.【答案】A【考点】中位数、众数【解析】【解答】在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;故答案为:A.【分析】依据表格可知得分为90分的人数最多,从而可找出这组数据的众数,将这组数据按照从小到大的顺序排列,中间一个数据就是这组数据的中位数.6.【答案】A【考点】正方形的性质,弧长的计算,扇形面积的计算【解析】【解答】解:设扇形的圆心角为n.由题意=4,∴n= ,∴扇形的弧长为= =4cm,故A符合题意.故答案为:A.【分析】先根据扇形的面积公式求出扇形的圆心角,然后再用弧长公式来求.扇形的面积S=,弧长l=.7.【答案】D【考点】反比例函数的图象,二次函数的图象【解析】【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,A不符合题意.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,B不符合题意;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,C不符合题意;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,D符合题意;故答案为:D.【分析】根据反比例函数的图象得到k的符号,再与二次函数的图象比较,判断是否一致. 8.【答案】D【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH= ∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③由②知:△EHF≌△DHC,故③正确;④∵= ,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则CF=2x,∴DF=2FC=4x,∴DM=5x,DH= x,CD=6x,则S△CFH= ×HM×CF= •x•2x=x2,S△EDH= ×DH2= × =13x2,∴则S△EDH=13S△CFH,故④正确;其中结论正确的有:①②③④,4个;故D符合题意.故答案为:D.【分析】①易得△CFG为等腰直角三角形,从而求得结果;②利用SAS证明△EHF≌△DHC,进而可得∠AEH+∠ADH=∠AEF+∠ADF=180°;③由②可知;④利用SAS证明△EGH≌△DFH,次那个人得到△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则CF=2x,从而表示出△CFH、△EDH的面积,可得结论.二、<b >填空题</b>9.【答案】2【考点】实数的运算,零指数幂,负整数指数幂【解析】【解答】解:()﹣1﹣(﹣)0=3﹣1=2故答案为:2.【分析】根据负指数幂的性质、零指数幂的性质化简,再计算可求得结果.10.【答案】24【考点】利用频率估计概率【解析】【解答】解:设袋中共有m个红球,则摸到红球的概率P(红球)= ,∴≈ .解得m≈24,故答案为:24.【分析】:设袋中共有m个红球,根据规律公式得到关于m的方程,解方程求得m的值,即可得到答案.11.【答案】25【考点】切线的性质【解析】【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案为25【分析】利用余角的性质和切线的性质定理、圆周角定理,可算出∠AOC,再得出∠ABD=25°.12.【答案】256(1﹣x)2=169【考点】一元二次方程的应用【解析】【解答】解:由题意可列方程是:256×(1﹣x)2=169.故答案为:256(1﹣x)2=169.【分析】可利用连续两次降价的公式,基数(1-降低率)2=最终量,可列出方程.13.【答案】(﹣a﹣2,﹣b)【考点】关于原点对称的点的坐标【解析】【解答】解:由图可知,△ABC关于点(﹣1,0)对称变换得到△A′B′C′,∵△ABC上的点P的坐标为(a,b),∴它的对应点P′的坐标为(﹣a﹣2,﹣b).故答案为:(﹣a﹣2,﹣b).【分析】分析图可知,△ABC关于点(﹣1,0)成中心对称变换得到△A′B′C′,可利用图形的全等形,符号加以变化,可得出答案.14.【答案】26;66【考点】几何体的表面积,由三视图判断几何体【解析】【解答】解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,其小正方块分布情况如下:那么共有7+2+1=10个几何体组成.若搭成一个大长方体,共需3×4×3=36个小立方体,所以还需36﹣10=26个小立方体,最终搭成的长方体的表面积是3×4×2+3×3×2+3×4×2=66故答案为:26,66.【分析】可从俯视图入手,每摞小正方体个数结合主视图、左视图求出10个,求出共需小立方体36个,作差可求出还需26个.三、<b >作图题</b><b ></b>15.【答案】解:在BC上任意取一点D,作DM⊥BC交AB于E,作EN⊥AC垂足为F,则矩形CDEF即为所求.【考点】矩形的性质,作图—复杂作图【解析】【分析】利用“过直线上一点做已知直线垂线和直线外一点作已知直线垂线”基本作图,可做出矩形.四、<b >解答题</b>16.【答案】(1)解:原式= +==(2)解:根据题意得k≠0且△=(﹣2)2﹣4k•3>0,解得k<且k≠0【考点】分式的加减法,根的判别式【解析】【分析】(1)分式化简的基本方法有通分、约分,分子分母出现多项式时看能否分解因式,便于约分;(2)一元二次方程有两个不相等实数根的条件包括k0,>0.17.【答案】(1)16;0.28(2)补全相应的频数分布直方图如下:(3)48%(4)解:由频数分布直方图可知,50人主要分布在60~90分,90~100分人数较少,故应着重培养高分段学生【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)本次调查的总人数为2÷0.04=50(人),∴a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)本次大赛的优秀率为0.32+0.16=0.48=48%,故答案为:48%;【分析】部分百分比=总数,具体量=样本容量相应百分比;(3)第四、五两组的频率之和即为优秀率.18.【答案】(1)解:∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)= =(2)解:∵P(红色)= ,P(黄色)= ,P(绿色)= = ,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.【考点】概率公式【解析】【分析】(1)利用几何概型公式,关注的面积(红黄绿)除以整个圆形,即可得出概率;(2)利用加权平均数意义算出转转盘的平均获奖数为40元,大于30元,得出选择转转盘对顾客更合算.19.【答案】(1)解:过点A作AD⊥BE于D,设山AD的高度为(x)m,在Rt△ABD中,∵∠ADB=90°,tan31°= ,∴BD= ≈ = x,在Rt△ACD中,∵∠ADC=90°,tan39°= ,∴CD= ≈ = x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米(2)解:在Rt△ACD中,∠ADC=90°,sin39°= ,∴AC= = ≈282.9(m).答:索道AC长约为282.9米.【考点】解直角三角形的应用【解析】【分析】(1)通过作垂线构造直角三角形,把已知角放到直角三角形中,设出未知数x,用x代数式表示出BD、CD,利用线段之差列出方程;(2)在Rt△ACD中利用sin39°,由AD求出AC.20.【答案】(1)解:设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),可得:,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,则购买一个乙种足球需70元(2)解:设这所学校再次购买y个乙种足球,可得:50×(1+10%)×(50﹣y)+70×(1﹣10%)y≤2900,解得:y≤18.75,由题意可得,最多可购买18个乙种足球,答:这所学校最多可购买18个乙种足球【考点】分式方程的应用,一元一次不等式的应用【解析】【分析】(1)由“购买甲种足球数量是购买乙种足球数量的2倍”可构建分式方程,得出答案;(2)由“此次购买甲、乙两种足球的总费用不超过2900元”可构建不等式50×(1+10%)×(50﹣y)+70×(1﹣10%)y≤2900,求出x 的整数解即可. 21.【答案】(1)证明:∵在平行四边形ABCD中,AD=BC,AD∥BC,∴∠EDO=∠BCO,∠DEO=∠CBO,∵DE=AD,∴DE=BC,在△BOC和△EOD中∵,∴△BOC≌△EOD(ASA)(2)证明:结论:当∠ABE=90°时,BE⊥CD,四边形BCED是菱形.∵DE=BC,DE∥BC,∴四边形BCED是平行四边形,∴EO=OB,∵DE=AD,∴OD∥AB,∴∠EOD=∠ABE,∴当∠ABE=90°时,BE⊥CD,四边形BCED是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)由平行四边形的对边平行且相等,可推出内错角相等,结合条件,利用“角边角”推出全等;(2)条件型探索题可由结论入手,由结论结合已知条件,推出结论,这个结论反过来可作为条件,即若四边形BCED是菱形,则DE=BD,又DE=AD,则BD=AE,可得出∠ABE=90°.22.【答案】(1)解:由表格数据可知y与x是一次函数关系,设其解析式为y=kx+b.由题:,解之得:,∴y与x间的函数关系是y=﹣x+160(2)﹣x+160;x﹣60;x﹣150;x﹣3000(3)解:设租赁公司获得的月收益为W元,依题意可得:W=(﹣+160)(x﹣150)﹣(x﹣3000)=(﹣x2+163x﹣24000)﹣(x﹣3000)=﹣x2+162x﹣21000=﹣(x﹣4050)2+307050当x=4050时,Wmax=307050,即:当每辆车的月租金为4050元时,公司获得最大月收益307050元【考点】二次函数的应用【解析】【解答】解:(2)如下表:租出的车辆数﹣x+160 未租出的车辆数x﹣60租出的车每辆的月收益x﹣150 所有未租出的车辆每月的维护费x﹣3000故答案为:﹣x+160,x﹣60,x﹣150,x﹣3000.【分析】(1)只要(函数变化量与自变量变化值)是常数,y与x就成一次函数关系;(3)最值问题需利用函数思想解决,月收益=租出车辆数(租金-维护费)-未出租车辆维护费,构建函数,配成顶点式,求出最值.23.【答案】(1)或(2)证明∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点(3)•AM2+ MN•AM;•BN2+ •MN•BN;MN2+ •MN•AM+ •MN•BN;S△=S△ACN+S△MBHAPB【考点】勾股定理的应用,相似三角形的性质【解析】【解答】解:(1)分两种情况:①当MN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN= = = ;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN= = = ;综上所述:BN的长为或.⑶∵四边形AMDC,四边形MNFE和四边形NBHG均是正方形,∴S△ACN= (AM+MN)•AC= (AM+MN)•AM= •AM2+ MN•AM,S△MBH= •(MN+BN)•BH= •(MN+BN)•BN= •BN2+ •MN•BN,S△PAB= •(AM+NM+BN)•FN= •(AM+MN+BN)•MN= MN2+ •MN•AM+ •MN•BN,∴S△APB=S△ACN+S△MBH,故答案为S△APB=S△ACN+S△MBH.【分析】(1)须分类讨论:当MN为最大线段时;当BN为最大线段时;即已知的两条线段中较长的线段MN可能为斜边或所求的BN也可能为斜边;(2)由已知“FG是中位线”得BD=2FM,DE=2MN,EC=2NG,由D,E是线段BC的勾股分割点,且EC>DE>BD得出EC2=DE2+DB2,再分别代换为2NG、2MN、2FM,约去系数4,即可得出结论;(3)由三角形面积公式,分别表示出S△ACN、S△MBH、S△PAB,观察3个式子中,出现的AM2、BN2、MN2,可得S△APB=S△ACN+S△MBH.24.【答案】(1)解:如图1中,作AM⊥BC于M.∵AB=AC=25,AM⊥BC,∴BM=MC=20,在Rt△ABM中,AM= = =15,当PP′恰好经过点A,∵cos∠C= = ,∴= ,∴t= .∴m= s(2)解:如图2中,设PP′交AC于N.当<t≤4时,由△PCN∽△ACM,可得PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,∵CQ=5t,∴NQ=CN﹣CQ=32﹣13t,∴y= •PP′•NQ= (48﹣12t)•(32﹣13t)=78t2﹣504t+768(<t≤4)(3)解:存在.理由如下:如图3中,作QE⊥BC于E.∵PQ平分∠CPP′,QE⊥PC,QN⊥PP′,∴QN=QE,∵sin∠C= = ,∴t=2,∴t=2时,PQ平分角∠P′PC【考点】相似三角形的判定与性质,锐角三角函数的定义【解析】【分析】(1)由∠C的余弦定义既在Rt△APC,又可在Rt△ACM中列出比例式,二者相等,构建方程,求出m;(2)由△PCN∽△ACM,可表示出PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,代入面积公式,即可得y= •PP′•NQ=78t2﹣504t+768;(3)利用∠C的正弦有两种表示的比例式,二者相等,可列出方程,求出t.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

{来源}2019年山东青岛中考数学试卷 {适用范围:3. 九年级}{标题}2019年山东省青岛市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 小题,每小题 分,合计分.{题目}1.(2019年青岛)的相反数是( ) A .B .3CD{答案}D{解析}本题考查了相反数的定义,绝对值相等、符号不同的两个数互为相反数,由于因此本题选D . {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2.(2019年青岛)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.{答案}D{解析}本题考查了轴对称图形和中心对称图形的识别,轴对称图形是沿直线对折后直线两旁的部分能够重合的图形,中心对称图形是绕某点旋转180°后能与自身重合的图形,正确区分这两类图形是解题的关键. 选项A ,C ,D 中的图形都是轴对称图形,选项B ,D 中的图形都是中心对称图形,故选项B 中的图形既是轴对称图形也是中心对称图形,因此本题选B . {分值}3{章节:[1-23-2-2]中心对称图形} {考点:轴对称图形} {考点:中心对称图形} {类别:常考题} {难度:2-简单}{题目}3.(2019年青岛)2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4×104 kmB .3.84×105 kmC .0.384×106 kmD .3.84×106 km {答案}B{解析}本题考查了用科学记数法表示较大的数,将一个数表示为a ×10n 的形式时,注意1≤a <10. 384 000=384×103=3.84×102×103=3.84×105,因此本题选B . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}4.(2019年青岛)计算(-2m )2·(-m ·m 2+3m 3)的结果是( ) A .8m 5 B .-8m 5 C .8m 6 D .-4m 4+12m 5 {答案}A{解析}本题考查了整式的运算,掌握积的乘方、合并同类项、多项式乘多项式等运算法则是解题的关键,解题注意不要混淆幂的几个运算性质而出错.原式=4m 2·(-m 3+3m 3)=4m 2·2m 3=8m 5,因此本题选A . {分值}3{章节:[1-14-1]整式的乘法} {考点:积的乘方} {考点:整式加减}{考点:单项式乘以多项式} {考点:同底数幂的乘法} {类别:常考题} {难度:2-简单}{题目}5.(2019年青岛)如图,线段 AB 经过⊙O 的圆心, AC , BD 分别与⊙O 相切于点 C , D .若 AC =BD =4 ,∠A =45 °,则弧CD 的长度为( )A .πB .2πC .πD .4π{答案}B{解析}本题考查了圆的切线的性质、等腰直角三角形的判定和性质、弧长的计算,先根据“圆的切线垂直于经过切点的半径”可得到直角三角形,再根据“等角对等边”可得到等腰三角形,最后根据公式180n rl π=计算弧长.如图,连接OC ,OD.∵AC , BD 分别与⊙O 相切于点 C , D ,∴AC ⊥OC ,BD ⊥OD ,∴∠ACO =∠BDO =90°.∵∠A =45°,∴∠AOC =45°,∴∠A =∠AOC ,∴OC =AC =4.∵AC =BD ,OC =OD ,∴OD =BD ,∴∠DOB =∠B =45°,∴∠COD =180°-45°-45°=90°.∴9042180180CD n r l πππ⨯===.因此本题选B .{分值}3{章节:[1-24-4]弧长和扇形面积} {考点:三角形内角和定理} {考点:等角对等边} {考点:切线的性质} {考点:弧长的计算} {类别:常考题}{难度:3-中等难度}{题目}6.(2019年青岛)如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 A'B',则点 B 的对应点 B'的坐标是()A.(-4 , 1)B.(-1, 2)C.(4,-1)D.(1,-2){答案}D{解析}本题考查了线段的平移、旋转及点的坐标,解题的关键是画出平移、旋转后的图形,从而正确写出点的坐标.如图,先将线段AB向右平移5个单位得到线段A1B1,再将线段A1B1绕原点按顺时针方向旋转 90°,得到线段 A′B′,可知点 B 的对应点 B′的坐标是(1,-2).因此本题选D.{分值}3{章节:[1-23-1]图形的旋转}{考点:平移作图}{考点:作图-旋转}{考点:点的坐标}{类别:常考题}{难度:3-中等难度}{题目}7.(2019年青岛)如图, BD 是△ABC 的角平分线, AE⊥BD ,垂足为 F .若∠ABC=35,∠C=50,则∠CDE 的度数为()A.35° B.40° C.45° D.50°{答案}C{解析}本题考查了三角形内角和定理、角平分线、垂直的性质、全等三角形的判定和性质、外角的性质,根据已知条件判定两对全等三角形是解题的关键.在△ABC中,∵∠ABC=35°,∠C=50°,∴∠BAC=180°-35°-50°=95°.∵BD是△ABC的平分线,∴∠ABD=∠DBC.∵AE⊥BD,∴∠AFB =∠EFB =90°.又∵BF =BF ,∴△ABF ≌△EBF ,∴AB =EB.∵BD =BD ,∴△ABD ≌△EBD ,∴∠DEB =∠BAC =95°.∵∠DEB 是△DEC 的外角,∴∠CDE =∠DEB -∠C =95°-50°=45°.,因此本题选C . {分值}3{章节:[1-12-2]三角形全等的判定} {考点:三角形的角平分线} {考点:三角形内角和定理} {考点:全等三角形的判定SAS} {考点:三角形的外角} {类别:常考题}{难度:3-中等难度}{题目}8.(2019年青岛)已知反比例函数 y =abx的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx +a 在同一平面直角坐标系中的图象可能是( )A. B. C. D. {答案}C{解析}本题考查了反比例函数和二次函数的图像.对于反比例函数y =kx,当k >0时,其图像的两个分支分为位于第一、三象限;当k <0时,其图像的两个分支分为位于第二、四象限.对于二次函数y =ax2+bx +c ,当a >0时,其图像的开口向上;当a <0时,其图像的开口向下.当a ,b 同号时,对称轴-2b a <0,其图像的对称轴在y 轴左侧;当a ,b 异号时,对称轴-2b a>0,其图像的对称轴在y 轴右侧.∵反比例函数 y =abx的图像位于第一、三象限,∴ab >0,即a,b 同号.对于二次函数y=ax 2-2x ,当x =0时,y =0,即它的图像经过原点,故不能是选项A 中的图像.当a >0,b >0时,二次函数y =ax 2-2x 的图像开口向上,对称轴x =212a a--=>0,即对称轴在y 轴右侧,一次函数y =bx +a 的图像经过第一、二、三象限,故不可能是选项B 中的图像,可能是选项C 中的图像;当a <0,b <0时,二次函数y =ax 2-2x 的图像开口向下,对称轴x =212a a--=<0,即对称轴在y 轴左侧,一次函数y =bx +a 的图像经过第二、三、四象限,故不可能是选项D 中的图像,因此本题选C . {分值}3{章节:[1-22-1-4]二次函数y =ax2+bx +c 的图象和性质} {考点:反比例函数的图象}{考点:二次函数y =ax2+bx +c 的性质} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}9.(2019年青岛)0= .{答案}1{解析}本题考查了二次根式的运算及零指数幂,根据二次根式的运算法则和零指数幂的性质计算即()1211-=-=,因此本题答案为+1. {分值}3{章节:[1-16-3]二次根式的加减} {考点:二次根式的混合运算} {考点:零次幂} {类别:常考题} {难度:2-简单}{题目}10.(2019年青岛)若关于 x 的一元二次方程2x 2-x +m =0有两个相等的实数根,则 m 的值为 .{答案}18{解析}本题考查了一元二次方程根的情况与根的判别式b 2-4ac 的关系,即当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根. ∵关于 x 的一元二次方程2x 2-x +m =0有两个相等的实数根,∴b 2-4ac =0,即(-1)2-4×2×m =0,解得m =18.因此答案为18. {分值}3{章节:[1-21-2-2]公式法} {考点:根的判别式} {类别:常考题} {难度:2-简单}{题目}11.(2019年青岛)射击比赛中,某队员 10 次射击成绩如图所示,则该队员的平均成绩是 环.{答案}8.5{解析}本题考查了条形统计图和算术平均数的计算,解题的关键是看懂统计图中的数据和正确计算.1=10x -×(6×1+7×1+8×2+9×4+10×2)=110×85=8.5,即该队员的平均成绩是8.5环,因此本题答案为8.5. {分值}3{章节:[1-20-1-1]平均数} {考点:条形统计图} {考点:算术平均数} {类别:常考题} {难度:2-简单}{题目}12.(2019年青岛)如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则 ∠BDF 的度数是 °.{答案}54{解析}本题考查了圆内接正多边形的性质、圆周角定理及其推论,即圆内接正n边形的中心角等于360 n ︒,同弧所对的圆周角等于圆心角的一半,直径所对的圆周角是直角.如图,连接AD.∵AF是⊙O 的直径,∴∠ADF=90°.∵五边形 ABCDE 是⊙O 的内接正五边形,∴∠AOB=360°÷5=72°,∴∠ADB=12×72°=36°.∴∠BDF=90°-36°=54°,因此本题答案为54.{分值}3{章节:[1-24-3]正多边形和圆}{考点:正多边形和圆}{考点:圆周角定理}{考点:直径所对的圆周角}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年青岛)如图,在正方形纸片 ABCD 中, E 是 CD 的中点,将正方形纸片折叠,点 B 落在线段AE 上的点 G 处,折痕为 AF .若 AD=4 cm,则 CF 的长为 cm .{答案}{解析}本题是一道折叠问题,考查了轴对称的性质、正方形的性质、勾股定理等知识,解题的关键根据折叠的性质得到相等的线段,进而根据勾股定理列方程求解.∵E是CD的中点,CD=AD=4,∴DE=CE=2.在Rt△ADE中,根据勾股定理,得AE由折叠的性质可得△AGF≌△ABF,∴AG=AB=4,GF=BF,∠AGF=∠B=90°.∴∠FGE=90°,GE=AE-AG= 4.设BF=x ,则GF =x ,FC =4-x.在Rt △GEF 中,根据勾股定理,得EF 2=GE 2+GF 2=()224+x .在Rt△CEF 中,根据勾股定理,得EF 2=CE 2+FC 2=()222+4-x .∴()()22224+x =2+4-x ,解得x= {分值}3{章节:[1-18-2-3] 正方形} {考点:勾股定理}{考点:正方形有关的综合题} {考点:折叠问题} {类别:常考题} {难度:4-较高难度}{题目}14.(2019年青岛)如图,一个正方体由 27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 个小立方块.{答案}16{解析}本题考查了几何体的三视图,解题的关键是具有较好的空间想象能力.当至少剩下9个小立方块时新几何体与原正方体的表面积相等,故最多可以取走27-9=16个小立方块,因此本题答案为16. {分值}3{章节:[1-29-2]三视图} {考点:简单组合体的三视图} {类别:高度原创} {类别:易错题} {难度:5-高难度}{题型:4-解答题}三、解答题:本大题共 小题,合计分. {题目}15.(2019年青岛)已知: ∠α,直线 l 及 l 上两点 A , B . 求作: Rt △ABC ,使点 C 在直线 l 的上方,且∠ABC =90°, ∠BAC =∠α.{解析}本题考查了尺规作图,掌握用尺规作一个角等于已知角,过直线上一点作这条直线的垂线是解题的关键.如图,在直线l 上方作∠BAD =∠α,过点B 作直线EF ⊥l ,交BD 于点C ,则△ABC 即为所求. ……4分 {答案}解:{分值}4{章节:[1-13-1-2]垂直平分线} {难度:2-简单} {类别:常考题}{考点:与全等有关的作图问题} {考点:与垂直平分线有关的作图}{题目}16(1).(2019年青岛)化简:222m n m n n m m ⎛⎫-+÷- ⎪⎝⎭; {解析}本题考查了分式的混合运算,按照先计算括号内的加法,再计算除法进行运算.{答案}解: 原式=222m n m n mn m m m ⎛⎫-+÷- ⎪⎝⎭=222m n m n mn m m -+-÷=()2m n m n m m --÷ =()2m n mm m n -⋅-=1m n -. {分值}4{章节:[1-15-2-2]分式的加减} {难度:2-简单} {类别:常考题}{考点:分式的混合运算}{题目}16(2).(2019年青岛)解不等式组161,55318x x ⎧-≤⎪⎨⎪-<⎩ ,并写出它的正整数解.{解析}本题考查了不等组的解法和不等式组的整数解,解不等式组的步骤为:先解出不等式组中每个不等式的解集,然后在数轴上分别表示出两个解集,找出公共部分,得出不等式组的解集. {答案}解: 解不等式1-15x ≤65,得x ≥-1; 解不等式3x -1<8,得x <3;∴不等式组的解集为-1≤x <3. ∴不等式组的正整数解为x =1,2.{分值}4{章节:[1-9-3]一元一次不等式组} {难度:2-简单} {类别:常考题}{考点:解一元一次不等式组}{考点:一元一次不等式组的整数解}{题目}17.(2019年青岛)小明和小刚一起做游戏,游戏规则如下:将分别标有数字 1, 2, 3, 4 的 4 个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于 2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.{解析}本题考查了概率的求法,先列表或画树状图表示出所有可能的情形,进而求出小明胜和小刚胜的概率;再根据“如果两人获胜的概率相等,那么游戏对双方公平,否则不公平”作出判断..10种,∴P(小明获胜)=105=168,P (小明获胜)=63=168. ∵P (小明获胜)≠P (小明获胜),∴这个游戏对两人不公平.{分值}6{章节:[1-25-2]用列举法求概率} {难度:2-简单} {类别:常考题}{考点:绝对值的意义} {考点:两步事件放回} {考点:游戏的公平性}{题目}18.(2019年青岛)为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h ) ,统计结果如下: 9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9, 7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9. 在对这些数据整理后,绘制了如下的统计图表:请根据以上信息,解答下列问题:(1) m=, n=, a=, b=;(2)抽取的这 40 名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.{解析}本题是一道统计综合题,考察了频数分布表、扇形统计图、中位数及用样本估计总体.(1)根据统计结果可知,睡眠时间在7≤t<8范围的内有7人,故m=7,∴n=40-7-11-4=18,a=740×100%=17.5%,b=1840×100%=45%.(2)因为共有40个数据,所以中位数等于第20个数据和第21个数据的平均数.由统计表可知第20个数据和第21个数据都在第3组内,故中位数落在第3组.(3)利用样本去估计总体中睡眠时间符合要求的人数所占百分比.{答案}解:(1)7 18 17.5% 45%;(2)3;(3)在抽取的这40名学生中平均每天的睡眠时间应不少于 9 h的学生人数所占百分比为45%+10%=55%,由此估计该校学生中睡眠时间符合要求的人数约为800×55%=440(人).{分值}6{章节:[1-20-1-2]中位数和众数}{难度:2-简单}{类别:常考题}{考点:扇形统计图}{考点:频数(率)分布表}{考点:用样本估计总体}{考点:频数与频率}{考点:中位数}{题目}19.(2019年青岛)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道 AB ,栈道 AB 与景区道路CD 平行.在 C 处测得栈道一端 A 位于北偏西 42°方向,在 D 处测得栈道另一端 B 位于北偏西 32°方向.已知 CD=120 m , BD=80 m ,求木栈道 AB 的长度(结果保留整数).(参考数据:sin32°≈1732,cos32°≈1720,tan32°≈58,sin42°≈2740,cos42°≈34,tan42°≈9 10){解析}本题考查了解直角三角形的实际应用,做辅助线构造直角三角形是解题的关键.如图,过点C作CE⊥AB于E,过点D作DF⊥AB,交AB的延长线于点F,则四边形CDFE是矩形.在Rt△BDF中求出BF和DF的长,进而得到EB的长;在Rt△Rt△ACE中求出AE的长,进而根据AB=AE+EB求解. {答案}解:如图,过点C作CE⊥AB于E,过点D作DF⊥AB,交AB的延长线于点F,∴CE∥DF.∵AB ∥CD,∴四边形CDFE是矩形,∴EF=CD=120,CE=DF.在Rt△BDF中,∵∠BDF=32°,BD=80,∴BF=80·sin32°=80×1732=42.5,DF=80·cos32°=80×1720=68.∴EB=EF-BF=120-42.5=77.5.在Rt△ACE中,∵CE=DF=68,∠ACE=42°,∴AE=68·tan42°=68×910=61.2.∴AB=AE+EB=61.2+77.5≈139. 答:木栈道 AB 的长度约为139m.{分值}6{章节:[1-28-1-2]解直角三角形}{难度:3-中等难度}{类别:常考题}{考点:矩形的性质}{考点:解直角三角形-方位角}{题目}20.(2019年青岛)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过 7800 元,那么甲至少加工了多少天?{解析}本题考查了列方程解决实际问题和列不等式解决实际问题,找出问题中的等量关系和不等关系是解题的关键.(1)根据“乙加工600个零件的时间-甲加工600个零件的时间=5”列分式方程求解,不要遗漏检验;(2)根据“甲的加工费+乙的加工费≤7800”列不等式求解.{答案}解:解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据题意,得60060051.5x x-=,解这个方程,得x=40.经检验,x=40是原分式方程的根.1.5x=1.5×40=60.答:甲每天加工60个零件,乙每天加工40个零件.(2)设甲加工了x天,根据题意,得150x+30006012040x-⨯≤7800,解这个不等式,得x≥40.答:甲至少加工了40天.{分值}8{章节:[1-15-3]分式方程}{难度:3-中等难度}{类别:常考题}{考点:分式方程的应用(工程问题)}{考点:一元一次不等式的应用}{题目}21.(2019年青岛)如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为OB , OD 的中点,延长 AE 至 G ,使 EG=AE ,连接 CG .(1)求证:△ABE≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.{解析}本题考查了平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,掌握以上图形的性质和判定方法是解题的关键.(1)根据平行四边形的性质可得到AB=CD,∠ABE=∠CDF,根据中点的定义可得到BE=DF,进而根据SAS证得△ABE≌△CDF.(2)由△ABE≌△CDF 可得到AE=CF=EG, AG∥CF,从而得到四边形EGCF是平行四边形.假设平行四边形 EGCF 是矩形,从而可得AE⊥BO,又有BE=EO,则AB=AO=12AC,即当AC=2AB时,四边形EGCF是矩形.{答案}解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OB=OD.∴∠ABE=∠CDF.∵点 E , F 分别为 OB , OD 的中点,∴BE=DF. ∴△ABE≌△CDF.(2)当AC=2AB时,四边形EGCF是矩形.∵△ABE≌△CDF,∴AE=CF,∠BAE=∠DCF.∵EG=AE,∴EG=CF.∵AB∥CD,∴∠BAC=∠DCA,∴∠GAC=∠FCA,∴AG∥CF,∴四边形EGCF是平行四边形.∵AC=2AB,AC=2AO,∴AB=AO.∵点E是BO的中点,∴AE⊥BO,∴∠GEF=90°,∴□EGCF是矩形.{分值}10{章节:[1-18-2-1]矩形}{难度:4-较高难度}{类别:发现探究}{考点:平行四边形边的性质}{考点:全等三角形的判定SAS}{考点:一组对边平行且相等的四边形是平行四边形}{考点:矩形的判定}{题目}22.(2019年青岛)某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?{解析}本题是一道综合考查一次函数和二次函数的实际应用题,理解各个数量之间的关系是解题的关键.(1)利用待定系数法求y与x之间的函数关系式;(2)由题意,得30≤x≤50,根据“每天获得的利润=每件利润×每天销售量”求出w与x的函数关系,结合x的取值范围求w的最大值;(3)由题意,得w≥800.由w=800时x的值得到w≥800时x的取值范围,再结合y与x之间的函数关系式确定y的最小值.{答案}解:(1)设y与x之间的函数关系式为y=kx+b,将(30,100)(45,70)代入上式,得30100,4570,k bk b+=⎧⎨+=⎩,解得2,160,kb=-⎧⎨=⎩∴y与x之间的函数关系式为y=-2x+160.(2)根据题意,得w=y(x-30)=(-2x+160)(x-30)=-2x2+220x-4800=-2(x-55)2+1250.∴当x≤55时,w随x的增大而增大.∵30≤x≤50,∴当x=50时,y最大值=1200.答:销售单价定为50元/件时,才能使销售该商品每天获得的利润 w(元)最大,最大利润是1200元.(3)将w=800代入w=-2(x-55)2+1250,得x1=40,x2=70.∴当40≤x≤70时,w≥800.对于y=-2x+160, y随x的增大而减小,故当x=70时,y最小值=20.答:若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为20件. {分值}10{章节:[1-22-3]实际问题与二次函数}{难度:4-较高难度}{类别:常考题}{考点:一次函数的图象}{考点:商品利润问题}{考点:待定系数法求一次函数的解析式}{题目}23.(2019年青岛)问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L”形纸片,图②是一张a⨯b 的方格纸(a⨯ b的方格纸指边长分别为a,b 的矩形,被分成a⨯b个边长为 1 的小正方形,其中a≥2 , b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在 2 ⨯2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于 2⨯2的方格纸,要用图①盖住其中的三个小正方形,显然有 4 种不同的放置方法.探究二:把图①放置在 3⨯2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在 3⨯2的方格纸中,共可以找到 2 个位置不同的 2 2 ⨯方格,依据探究一的结论可知,把图①放置在 3⨯2 的方格纸中,使它恰好盖住其中的三个小正方形,共有 2 ⨯ 4=8种不同的放置方法.探究三:把图①放置在 a ⨯ 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a ⨯ 2 的方格纸中,共可以找到_________个位置不同的 2⨯2方格,依据探究一的结论可知,把图①放置在 a ⨯ 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.探究四:把图①放置在a ⨯ 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a⨯ 3 的方格纸中,共可以找到_________个位置不同的 2⨯ 2方格,依据探究一的结论可知,把图①放置在 a ⨯ 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.……问题解决:把图①放置在 a ⨯ b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为 1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为 a,b ,c (a≥2 , b≥2 , c≥2 ,且 a,b,c 是正整数)的长方体,被分成了 a ⨯b ⨯c个棱长为 1 的小立方体.在图⑧的不同位置共可以找到_________个图⑦这样的几何体.{解析}本题是一道规律探究题,理解探究一、二是正确解答后面问题的前提.探究三:如图⑤,在 a×2 的方格纸中,共可以找到(a-1)个位置不同的 2×2方格;依据探究一的结论可知图①在每个2×2的方格中有4种不同的放置方法,所以把图①放置在 a×2 的方格纸中,共有(a-1)×4种不同的放置方法.探究四:在 a×3 的方格纸中,共可以找到(a-1)×(3-1)个位置不同的 2×2方格;依据探究一的结论可知图①在每个2×2的方格中有4种不同的放置方法,所以把图①放置在 a×3的方格纸中,共有(a-1)×(3-1)×4种不同的放置方法.问题解决:在 a×b的方格纸中,共可以找到(a-1)×(b-1)个位置不同的 2×2方格;依据探究一的结论可知图①在每个2×2的方格中有4种不同的放置方法,所以把图①放置在 a×b 的方格纸中,共有(a-1)×(b-1)×4种不同的放置方法.问题拓展:在 a×b×c的几何体中,共可以找到(a-1)×(b-1)×(c-1)个位置不同的2×2×2的正方体;而图⑦在每个2×2×2的正方体中有8种不同的放置方法,所以把图⑦放置在 a×b×c的几何体中,共有(a-1)×(b-1)×(c-1)×8种不同的放置方法.{答案}解:探究三:a-1 4a-4;探究四:2(a-1),8a-8;问题解决:4(a-1)(b-1);问题拓展:8(a-1)(b-1)(c-1).{分值}10{章节:[1-29-2]三视图}{难度:5-高难度}{类别:思想方法}{类别:高度原创}{类别:发现探究}{考点:规律-图形变化类}{题目}24.(2019年青岛)已知:如图,在四边形 ABCD 中, AB∥CD,∠ACB=90°, AB=10cm, BC=8cm, OD 垂直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点 P 作 PE⊥AB,交 BC 于点 E,过点 Q 作 QF∥AC,分别交 AD, OD 于点 F, G.连接 OP,EG.设运动时间为 t ( s )(0<t<5),解答下列问题:(1)当 t 为何值时,点 E 在∠BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm2) ,求 S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE, OQ,在运动过程中,是否存在某一时刻t ,使 OE⊥OQ?若存在,求出t 的值;若不存在,请说明理由.{解析}本题是一道与动点有关的压轴题,综合考查了相似三角形的判定和性质、直角三角形的性质、角平分线的性质、二次函数等知识,难度较大.(1)当点E在∠BAC的平分线上时,有PE=EC.故将PE和EC用含t的代数式表示出来即可列方程求出t的值.(2)四边形PEGO是一般四边形,故不能直接求其面积,根据S四边形PEGO= S△ABC+ S△OCD―S△AOP―S△BPE―S梯形GDCE求解即可.(3)利用(2)中所求二次函数关系式求解.(4)假设存在某一时刻t,使得OE⊥OQ.此时有△OCE∽△△OQG,进而根据相似三角形对应边成比例列出关于t的方程求解.{答案}解:(1)由题意,得BP=DQ=t.在△ABC 中,∵∠ACB =90°,AB =10,BC =8,∴AC 6.∵PE ⊥AB ,∴∠BPE =90°,∴∠BPE =∠ACB.又∵∠PBE =∠ABC ,∴△EBP ∽△ABC. ∴BP PE BE BC AC AB ==,即8610t PE BE ==, ∴PE =34t ,BE =54t .∴EC =8-54t . 当点E 在∠BAC 的平分线上时,PE =EC. ∴34t =8-54t ,解得t =4.(2)如图,过点P 作PH ⊥AC 于H ,∴∠AHP =∠ACB =90°.∴PH ∥BC ,∴△APH ∽△ABC. ∴AP PH AB BC =,即10108t PH -= ∴PH =485t - . ∵OD 垂直平分AC ,AC =6,∴OA =OC =3,∠AOD =∠COD =90°.∴S △AOP =12×AO ×PH =12×3×(485t -)=1265t -. ∵AB ∥CD ,∴∠ACD =∠BAC.又∵∠COD =∠ACB ,∴△COD ∽△ACB. ∴OC CD OD AC AB BC ==,即36108CD OD ==,∴CD =5,OD =4. ∵QF ∥AC ,∴△DGQ ∽△DOC ,∴GD DQ GQ OD CD OC ==,即453GD t GQ ==,∴GD =45t ,GQ =35t . ∴S 梯形GDCE =12(GD +EC )×OC =12(45t +8-54t )×3=12-2740t . 又∵S △ABC =12×BC ×AC =12×8×6=24,S △OCD =12×OC ×OD =12×3×4=6, S △BPE =12×BP ×PE =12×t ×34t =238t , ∴S 四边形PEGO = S △ABC + S △OCD ―S △AOP ―S △BPE ―S 梯形GDCE=24+6-(1265t -)-238t -(12-2740t ) =2315688t t -++(0<t <5).(3)对于S 四边形PEGO =2315688t t -++, ∵38-<0,∴当t =-155882223b a -==⎛⎫⨯- ⎪⎝⎭时,S 四边形PEGO 最大. (4)假设存在某一时刻t ,使得O E⊥OQ. 此时∠EOQ =∠DOC =90°,∴∠EOC =∠DOQ. ∵∠OCE =∠OGQ =90°,∴△OCE ∽△△OQG, ∴EC OC OG QG =,即583443455t t t -=-, 即t 2-13.2 t +32=0,解得t 1=3.2,t 2=10(舍去). 即当t =3.2时,O E⊥OQ.{分值}12{章节:[1-27-1-2]相似三角形的性质} {难度:5-高难度}{类别:发现探究}{考点:几何图形最大面积问题}{考点:角平分线的性质}{考点:勾股定理}{考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质}。

相关文档
最新文档