中考卷-2020中考数学试题(解析版)(111)
天津市2020年中考数学试题(Word版,含答案与解析)

天津市2020年中考数学试卷一、单选题(共12题;共24分)1.计算30+(−20)的结果等于()A. 10B. -10C. 50D. -50【答案】A【考点】有理数的加法【解析】【解答】解:30+(−20)=30−20=10故答案为:A.【分析】根据有理数的加法运算法则计算即可.2.2sin45°的值等于()A. 1B. √2C. √3D. 2【答案】B【考点】特殊角的三角函数值=√2.【解析】【解答】2sin45°=2× √22故答案为:B.【分析】把sin45°的三角函数值代入计算.3.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A. 0.586×108B. 5.86×107C. 58.6×106D. 586×105【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:58600000=5.86×107,故答案为:B.【分析】把小数点向左移动7位,然后根据科学记数法的书写格式写出即可.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.【答案】C【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故答案为:C .【分析】根据轴对称图形的概念求解.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B. C. D.【答案】 D【考点】简单几何体的三视图【解析】【解答】解:从正面看第一层有两个小正方形,第二层在右边有一个小正方形,第三层在右边有一个小正方形,即:故答案为:D .【分析】从正面看所得到的图形是主视图,画出从正面看所得到的图形即可.6.估计 √22 的值在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】 B【考点】估算无理数的大小【解析】【解答】解:∵ 42<22<52 ,∴ 4<√22<5 .故答案为:B【分析】因为 42<22<52 ,所以 √22 在4到5之间,由此可得出答案.7.方程组 {2x +y =4x −y =−1的解是( ) A. {x =1y =2 B. {x =−3y =−2 C. {x =2y =0 D. {x =3y =−1【答案】 A【考点】解二元一次方程组【解析】【解答】解: {2x +y =4①x −y =−1②①+②得: 3x =3 ,解得: x =1 ,把 x =1 代入②中得: 1−y =−1 ,解得: y =2 ,∴方程组的解为: {x =1y =2; 故答案为:A .【分析】利用加减消元法解出 x,y 的值即可.8.如图,四边形 OBCD 是正方形,O , D 两点的坐标分别是 (0,0) , (0,6) ,点C 在第一象限,则点C 的坐标是( )A. (6,3)B. (3,6)C. (0,6)D. (6,6)【答案】 D【考点】点的坐标,正方形的性质【解析】【解答】解:∵O , D 两点的坐标分别是 (0,0) , (0,6) ,∴OD =6,∵四边形 OBCD 是正方形,∴OB ⊥BC , OB =BC =6∴C 点的坐标为: (6,6) ,故答案为:D .【分析】利用O , D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB , BC 的长度,进而得出C 点的坐标即可.9.计算 x (x+1)2+1(x+1)2 的结果是( )A. 1x+1B. 1(x+1)2C. 1D. x +1【答案】 A【考点】分式的混合运算【解析】【解答】 x (x+1)2+1(x+1)2 =x+1(x+1)2 ,因为 x +1≠0 ,故 x+1(x+1)2=1x+1 .故答案为:A .【分析】本题可先通分,继而进行因式约分求解本题.10.若点A(x1,−5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,则x1,x2,x3的大小关系是()A. x1<x2<x3 B. x2<x3<x1 C. x1<x3<x2 D. x3<x1<x2【答案】C【考点】反比例函数的性质【解析】【解答】将A,B,C三点分别代入y=10x,可求得x1=−2,x2=5,x3=2,比较其大小可得:x1<x3<x2.故答案为:C.【分析】因为A,B,C三点均在反比例函数上,故可将点代入函数,求解x1,x2,x3,然后直接比较大小即可.11.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF【答案】 D【考点】全等三角形的判定与性质,相似三角形的判定与性质【解析】【解答】由已知得:△ABC ≅△DEC,则AC=DC,∠A=∠D,∠B=∠CED,故A选项不符合题意;∵∠A=∠A,∠B=∠CED=∠AEF,故△AEF ∼△ABC,则EFBC =AEAB,假设BC=EF,则有AE=AB,由图显然可知AE ≠AB,故假设BC=EF不成立,故B选项不符合题意;假设∠AEF=∠D,则∠CED=∠AEF=∠D,故△CED为等腰直角三角形,即△ABC为等腰直角三角形,因为题干信息△ABC未说明其三角形性质,故假设∠AEF=∠D不一定成立,故C选项不符合题意;∵∠ACB=90°,∴∠A+∠B=90°.又∵∠A=∠D,∴∠B+∠D=90°.故AB⊥DF,D选项符合题意.故答案为:D.【分析】本题可通过旋转的性质得出△ABC与△DEC全等,故可判断A选项;可利用相似的性质结合反证法判断B,C选项;最后根据角的互换,直角互余判断D选项.12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x= 1.有下列结论:2① abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③ a<−1.其中,正确结论2的个数是()A. 0B. 1C. 2D. 3【答案】C【考点】二次函数图象与系数的关系,二次函数y=ax^2+bx+c的性质,利用二次函数图象判断一元二次方程根的情况,【解析】【解答】∵抛物线y=ax2+bx+c经过点(2,0),对称轴是直线x=12∴抛物线经过点(−1,0),b=-a当x= -1时,0=a-b+c,∴c=-2a;当x=2时,0=4a+2b+c,∴a+b=0,∴ab<0,∵c>1,∴abc<0,由此①是错误的,∵b2−4ac=a2−4a(−2a)=a2+8a2=9a2>0,而a≠0∴关于x的方程ax2+bx+c=a有两个不等的实数根,②符合题意;∵c>1,c=-2a>1,∴a<−1,③符合题意2故答案为:C.【分析】根据对称轴和抛物线与x轴的一个交点,得到另一个交点,然后根据图象确定答案即可判断①根据根的判别式b2−4ac>0,即可判断②;根据c>1以及c=-2a,即可判断③.二、填空题(共6题;共7分)13.计算x+7x−5x的结果等于________.【答案】3x【考点】合并同类项法则及应用【解析】【解答】解:原式= (1+7-5)x=3x故答案为:3x【分析】根据合并同类项法则化简即可.14.计算(√7+1)(√7−1)的结果等于________.【答案】6【考点】平方差公式及应用【解析】【解答】解:原式= (√7)2−12=7-1=6【分析】根据平方差公式计算即可.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.【答案】38【考点】概率公式【解析】【解答】解:∵不透明袋子中装有8个球,其中有3个红球、5个黑球,∴从袋子中随机取出1个球,则它是红球的概率为3,8.故答案为:38【分析】用红球的个数除以总球的个数即可得出取出红球的概率.16.将直线y=−2x向上平移1个单位长度,平移后直线的解析式为________.【答案】y=-2x+1【考点】一次函数图象与几何变换,两一次函数图象相交或平行问题【解析】【解答】解:∵直线的平移规律是“上加下减”,∴将直线y=−2x向上平移1个单位长度所得到的的直线的解析式为:y=−2x+1;故答案为:y=−2x+1.【分析】根据直线的平移规律是上加下减的原则进行解答即可.17.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为________.【答案】32【考点】等边三角形的判定与性质,平行四边形的性质,三角形的中位线定理【解析】【解答】解:如下图所示,延长DC交EF于点M,AD=3,AB=CF=2,∵平行四边形ABCD的顶点C在等边△BEF的边BF上,∴DM//AE,∴△CMF是等边三角形,∴AB=CF=CM=MF=2.在平行四边形ABCD中,AB=CD=2,AD=BC=3,又∵△BEF是等边三角形,∴BF=BE=EF=BC+CF=3+2=5,∴EM=EF−MF=5−2=3.∵ G为DE的中点,CD=CM=2,∴C是DM的中点,且CG是△DEM的中位线,∴CG =12EM =32. 故答案为: 32 .【分析】延长DC 交EF 于点M (图见详解),根据平行四边形与等边三角形的性质,可证△CFM 是等边三角形,BF=BE=EF=BC+CF=5,可求出CF=CM=MF=2,可得C 、G 是DM 和DE 的中点,根据中位线的性质,可得出CG= 12EM ,代入数值即可得出答案.18.如图,在每个小正方形的边长为1的网格中, △ABC 的顶点 A,C 均落在格点上,点B 在网格线上,且 AB =53 .(1)线段 AC 的长等于________;(2)以 BC 为直径的半圆与边 AC 相交于点D , 若 P,Q 分别为边 AC,BC 上的动点,当 BP +PQ 取得最小值时,请用无刻度...的直尺,在如图所示的网格中,画出点 P,Q ,并简要说明点 P,Q 的位置是如何找到的(不要求证明)________.【答案】 (1)√13(2)如图,取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点 B ′ ;连接 B ′C ,与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接 B ′P 并延长,与BC 相交于点Q ,则点P ,Q 即为所求.【考点】勾股定理,轴对称的应用-最短距离问题【解析】【解答】(1)如图,在Rt △AEC 中,CE=3,AE=2,则由勾股定理,得AC= √CE 2+AE 2=√32+22 = √13【分析】(1)根据勾股定理,即可求出线段AC 的长;(2) 取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点 B ′ ;连接 B ′C ,与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接 B ′P 并延长,与BC 相交于点Q , 即可求解.三、解答题(共7题;共56分)19.解不等式组 {3x ⩽2x +1, ①2x +5⩾−1. ② 请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________.【答案】 (1)x ≤1(2)x ≥−3(3)解:把不等式①和②的解集在数轴上表示出来:(4)−3≤x ≤1【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.20.农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位: cm )进行了测量.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次抽取的麦苗的株数为________,图①中m的值为________;(2)求统计的这组苗高数据的平均数、众数和中位数.【答案】(1)25;24(2)解:观察条形统计图,=15.6,这组麦苗得平均数为:x̅=13×2+14×3+15×4+16×10+17×62+3+4+10+6∵在这组数据中,16出现了10次,出现的次数最多,∴这组数据的众数为16.∵将这组数据按从小到大的顺序排列,其中处于中间位置的数是16,∴这组数据的中位数为16.故答案为:麦苗高的平均数是15.6,众数是16,中位数是16.【考点】总体、个体、样本、样本容量,平均数及其计算,中位数,众数【解析】【解答】解:(1)由图②可知:本次抽取的麦苗株数为:2+3+4+10+6=25(株),其中17cm的麦苗株数为6株,故其所占的比为6÷25=0.24=24%,即m=24.故答案为:25,24.【分析】(1)由图②中条形统计图即可求出麦苗的株数;用17cm的麦苗株数6除以总株数24即可得到m 的值;(Ⅱ)根据平均数、众数、中位数的概念逐一求解即可.21.在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(1)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(2)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.【答案】(1)解:∵∠APC是△PBC的一个外角,∠ABC=63°,∠APC=100°,∴∠C=∠APC−∠PBC=37°.∵在⊙O中,∠BAD=∠C,∴∠BAD=37°.∵AB为⊙O的直径,∴∠ADB=90°.∵在⊙O中,∠ADC=∠ABC=63°,又∠CDB=∠ADB−∠ADC,∴∠CDB=27°.(2)如下图所示,连接OD,∵CD⊥AB,∴∠CPB=90°.∴∠PCB=90°−∠PBC=27°.在⊙O中,由同弧所对的圆周角等于圆心角的一半可知:∠BOD=2∠BCD,∴∠BOD=2×27∘=54∘,∵DE是⊙O的切线,∴OD⊥DE.即∠ODE=90°,∴∠E=90°−∠BOD=90∘−54∘=36∘,∴∠E=36°.故答案为:∠E=36°.【考点】圆周角定理,切线的性质,相似三角形的判定与性质【解析】【分析】(1)先由△CPB中外角定理求出∠C的大小,再根据同弧所对的圆周角相等即可求出∠BAD 的值;且∠ADC=∠ABC,再由直径AB所对的圆周角等于90°求出∠ADB=90°,最后∠ADB-∠ADC即可得到∠CDB的值;(2)连接OD,由CD⊥AB先求出∠DCB,再由圆周角定理求出∠BOD,最后由切线的性质可知∠ODE=90°,进而求出∠E的度数.22.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.【答案】解:如图,过点A作AH⊥CB,垂足为H.根据题意,∠ACB=45°,∠ABC=58°,BC=221.在Rt△CAH中,tan∠ACH=AHCH,∴CH=AHtan45°=AH.在Rt△BAH中,tan∠ABH=AHBH ,sin∠ABH=AHAB,∴BH=AHtan58°,AB=AHsin58°.又CB=CH+BH,∴221=AH+AHtan58°.可得AH=221×tan58°1+tan58°.∴AB=221×tan58°(1+tan58°)⋅sin58°≈221×1.60(1+1.60)×0.85=160.答:AB的长约为160m.【考点】解直角三角形【解析】【分析】过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍,给出的图象反映了这个过程中小亮离宿舍的距离y km与离开宿舍的时间x min之间的对应关系.请根据相关信息,解答下列问题:(1)填表:(2)填空:①食堂到图书馆的距离为________ km.②小亮从食堂到图书馆的速度为________ km/min.③小亮从图书馆返回宿舍的速度为________ km/min.④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为________ min.(3)当0≤x≤28时,请直接写出y关于x的函数解析式.【答案】(1)0.5;0.7;1(2)0.3;0.06;0.1;6或62(3)解:当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7当23<x≤28时,设y=kx+b,将(23,0.7)(28,1)代入解析式{23k+b=0.728k+b=1,解得{k=0.06b=−0.68∴y=0.06x−0.68.【考点】函数自变量的取值范围,数学思想,通过函数图象获取信息并解决问题【解析】【解答】解:(1)从宿舍到食堂的速度为0.2 ÷2=0.1,0.1 ×5=0.5;离开宿舍的时间为23min时,小亮在食堂,故离宿舍的距离为0.7km;离开宿舍的时间为30min时,小亮在图书馆,故离宿舍的距离为1km故答案依次为:0.5,0.7,1,(2)①1-0.7=0.3,∴食堂到图书馆的距离为0.3 km;故答案为:0.3;②(1-0.7)÷(28-23)=0.06km/min,∴小亮从食堂到图书馆的速度为0.06 km/min故答案为:0.06;③1 ÷(68-58)=0.1km/min,∴小亮从图书馆返回宿舍的速度为0.1 km/min;故答案为:0.1;④当是小亮从宿舍去食堂的过程中离宿舍的距离为0.6km,则此时的时间为0.6 ÷0.1=6min.当是小亮从图书馆回宿舍,离宿舍的距离为0.6km,则从学校出发回宿舍已经走了1-0.6=0.4(km),0.4 ÷0.1=4(min)58+4=62(min)故答案为:6或62.【分析】(1)根据函数图象分析计算即可;(2)①结合题意,从宿舍出发,根据图象分析即可;②结合图像确定路程与时间,然后根据速度等于路程除以时间进行计算即可;③据速度等于路程除以时间进行计算即可;④需要分两种情况进行分析,可能是从学校去食堂的过程,也有可能是从学校回宿舍;(3)分段根据函数图象,结合“路程=速度×时间”写出函数解析式.24.将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(1)如图①,当OP=1时,求点P的坐标;(2)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O′,设OP=t.①如图②,若折叠后△O′PQ与△OAB重叠部分为四边形,O′P,O′Q分别与边AB相交于点C,D,试用含有t的式子表示O′D的长,并直接写出t的取值范围;②若折叠后△O′PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).【答案】(1)解:如图,过点P作PH⊥x轴,垂足为H,则∠OHP=90°.∵∠OAB=90°,∠B=30°∴∠BOA=90°−∠B=60°.∴∠OPH=90−∠POH=30°.在Rt△OHP中,OP=1,∴OH=12OP=12,HP=√OP2−OH2=√32.∴点P的坐标为(12,√32).(2)解:①由折叠知,△O′PQ≌△OPQ,∴O′P=OP,O′Q=OQ.又OQ=OP=t,∴O′P=OP=OQ=O′Q=t.∴四边形OQO′P为菱形.∴QO′//OB.可得∠ADQ=∠B=30°.∵点A(2,0),∴OA=2.有QA=OA−OQ=2−t.在Rt△QAD中,QD=2QA=4−2t.∵O′D=O′Q−QD,∴O′D=3t−4,其中t的取值范围是43<t<2.②由①知,△POQ′为等边三角形,∵四边形OQO′P为菱形,∴AB⊥PQ′,三角形DCQ为直角三角形,∠Q=60°,∴CQ=12DQ=12(3t−4),CD=√32DQ=√32(3t−4),∴S=S△POQ′−S△CDQ′=√34t2−√38(3t−4)2=−7√38(t−127)2+4√37,∵1≤t≤3,∴√38≤S≤4√37.,【考点】菱形的性质,翻折变换(折叠问题),二次函数的实际应用-几何问题【解析】【分析】(1)过点P作PH⊥x轴,则∠OHP=90°,因为∠OAB=90°,∠B=30°,可得∠BOA=60°,进而得∠OPH=30°,由30°所对的直角边等于斜边的一半可得OH=12OP=1 2,进而用勾股定理可得HP=√OP2−OH2=√32,点P的坐标即求出;(2)①由折叠知,△O′PQ≌△OPQ,所以O′P=OP,O′Q=OQ;再根据OQ=OP,即可根据菱形的定义“四条边相等的四边形是菱形”可证四边形OQO′P为菱形,所以QO′//OB,可得∠ADQ=∠B=30°;根据点A的坐标可知OA=2,加之OP=t,从而有QA=OA−OQ=2−t;而在Rt△QAD中,QD=2QA=4−2t,又因为O′D=O′Q−QD,所以得O′D=3t−4,由O′D=3t−4和QA=2−t的取值范围可得t的范围是43<t<2;②由①知,△POQ′为等边三角形,由(1)四边形OQO′P为菱形,所以AB⊥PQ′,三角形DCQ为直角三角形,∠Q=60°,从而CQ=12DQ=12(3t−4),CD=√3 2DQ=√32(3t−4),进而可得S=S△POQ′−S△CDQ′=√34t2−√38(3t−4)2=−7√38(t−127)2+4√37,又已知t的取值范围是1≤t≤3,即可得√38≤S≤4√37.25.已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(1)当a=1,m=−3时,求该抛物线的顶点坐标;(2)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E 是直线l上的动点,F是y轴上的动点,EF=2√2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是√22?【答案】(1)解:当a=1,m=−3时,抛物线的解析式为y=x2+bx−3.∵抛物线经过点A(1,0),∴0=1+b−3.解得b=2.∴抛物线的解析式为y=x2+2x−3.∵y=x2+2x−3=(x+1)2−4,∴抛物线的顶点坐标为(−1,−4).(2)解:①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=−m−1.∴抛物线的解析式为y=x2−(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt △EAH中,EH=1−(m+1)=−m,HA=0−m=−m,∴AE=√EH2+HA2=−√2m.∵AE=EF=2√2,∴−√2m=2√2.解得m=−2.此时,点E(−1,−2),点C(0,−2),有EC=1.∵点F在y轴上,∴在Rt △EFC中,CF=√EF2−EC2=√7.∴点F的坐标为(0,−2−√7)或(0,−2+√7).②由N是EF的中点,得CN=12EF=√2.根据题意,点N在以点C为圆心、√2为半径的圆上.由点M(m,0),点C(0,m),得MO=−m,CO=−m.∴在Rt△MCO中,MC=√MO2+CO2=−√2m.当MC≥√2,即m≤−1时,满足条件的点N落在线段MC上,MN的最小值为MC−NC=−√2m−√2=√22,解得m=−32;当MC<√2,−1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC−MC=√2−(−√2m)=√22,解得m=−12.∴当m的值为−32或−12时,MN的最小值是√22.【考点】待定系数法求二次函数解析式,数学思想,二次函数y=ax^2+bx+c的性质,二次函数的其他应用【解析】【分析】(1)根据a=1,m=−3,则抛物线的解析式为y=x2+bx−3,再将点A(1,0)代入y=x2+bx−3,求出b的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m的代数式表示出抛物线的解析式,求出C(0,m),点E(m+1,m).过点A作AH⊥l于点H,在Rt △EAH中,利用勾股定理求出AE的值,再根据AE=EF,EF=2√2,可求出m的值,进一步求出F的坐标;②首先用含m的代数式表示出MC的长,然后分情况讨论MN什么时候有最值.。
中考卷-2020中考数学试题(解析版),

中考卷-2020中考数学试题(解析版),2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线的垂线,可作垂线的条数有()A. 0条B. 1条C. 2条D. 无数条D 在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.在同一平面内,画已知直线的垂线,可以画无数条;故选:D.此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义. 2.墨迹覆盖了等式“()”中的运算符号,则覆盖的是()A. +B. -C. ×D. ÷ D 直接利用同底数幂的除法运算法则计算得出答案.∵(),,∴覆盖的是:÷.故选:D.本题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键. 3.对于①,②,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解C 根据因式分解的定义进行判断即可;①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C.本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键. 4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同 D 分别画出所给两个几何体三视图,然后比较即可得答案.第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键. 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元/千克,发现这四个单价的中位数恰好也是众数,则()A. 9B. 8C. 7D. 6 B 根据统计图中的数据结合中位数和众数的定义,确定a的值即可.解:由条形统计图可知,前三次的中位数是8 ∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B.本题考查条形统计图、中位数和众数的定义,掌握中位数和众数的定义是解答本题的关键. 6.如图1,已知,用尺规作它的角平分线.如图2,步骤如下,第一步:以为圆心,以为半径画弧,分别交射线,于点,;第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点;第三步:画射线.射线即为所求.下列正确的是()A. ,均无限制B. ,的长C. 有最小限制,无限制D. ,的长B根据作角平分线的方法进行判断,即可得出结论.第一步:以为圆心,适当长为半径画弧,分别交射线,于点,;∴;第二步:分别以,为圆心,大于的长为半径画弧,两弧在内部交于点;∴的长;第三步:画射线.射线即为所求.综上,答案为:;的长,故选:B.本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.7.若,则下列分式化简正确的是()A. B. C. D. D 根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.∵a≠b,∴,选项A错误;,选项B错误;,选项C错误;,选项D正确;故选:D.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.在如图所示的网格中,以点为位似中心,四边形的位似图形是()A. 四边形B. 四边形C. 四边形D. 四边形A 以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.解:如图所示,四边形的位似图形是四边形.故选:A 此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.9.若,则()A. 12B. 10C. 8D. 6 B 利用平方差公式变形即可求解.原等式变形得:.故选:B.本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.10.如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四边形,并推理如下:点,分别转到了点,处,而点转到了点处.∵,∴四边形是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形。
陕西省2020年中考数学试题(解析版)

2020年陕西省中考数学试卷一.选择题(共10小题)1.﹣18的相反数是()A.18B.﹣18C.D.﹣2.若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃5.计算:(﹣x2y)3=()A.﹣2x6y3B.x6y3C.﹣x6y3D.﹣x5y46.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD 是△ABC的高,则BD的长为()A.B.C.D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2B.3C.4D.68.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC =90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.29.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共4小题)11.计算:(2+)(2﹣)=.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=(k≠0)的图象经过其中两点,则m的值为.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为.三.解答题(共11小题)15.解不等式组:16.解分式方程:﹣=1.17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.19.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.21.某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.23.如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.24.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.25.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.2020年陕西省中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣18的相反数是()A.18B.﹣18C.D.﹣【分析】直接利用相反数的定义得出答案.【解答】解:﹣18的相反数是:18.故选:A.2.若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°【分析】根据∠A的余角是90°﹣∠A,代入求出即可.【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B.3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:990870=9.9087×105,故选:A.4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.5.计算:(﹣x2y)3=()A.﹣2x6y3B.x6y3C.﹣x6y3D.﹣x5y4【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.【解答】解:(﹣x2y)3==.故选:C.6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD 是△ABC的高,则BD的长为()A.B.C.D.【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2B.3C.4D.6【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积=3×2=3,故选:B.8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC =90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.2【分析】依据直角三角形斜边上中线的性质,即可得到EF的长,再根据梯形中位线定理,即可得到CG的长,进而得出DG的长.【解答】解:∵E是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EF=BC=4,∵EF∥AB,AB∥CG,E是边BC的中点,∴F是AG的中点,∴EF是梯形ABCG的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D.9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°【分析】连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=BDC=65°,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.【解答】解:∵y=x2﹣(m﹣1)x+m=(x﹣)2+m﹣,∴该抛物线顶点坐标是(,m﹣),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m﹣﹣3),∵m>1,∴m﹣1>0,∴>0,∵m﹣﹣3===﹣﹣1<0,∴点(,m﹣﹣3)在第四象限;故选:D.二.填空题(共4小题)11.计算:(2+)(2﹣)=1.【分析】先利用平方差公式展开得到原式=22﹣()2,再利用二次根式的性质化简,然后进行减法运算.【解答】解:原式=22﹣()2=4﹣3=1.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是144°.【分析】根据正五边形的性质和内角和为540°,求得每个内角的度数为108°,再结合等腰三角形和邻补角的定义即可解答.【解答】解:因为五边形ABCDE是正五边形,所以∠C==108°,BC=DC,所以∠BDC==36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=(k≠0)的图象经过其中两点,则m的值为﹣1.【分析】根据已知条件得到点A(﹣2,1)在第三象限,求得点C(﹣6,m)一定在第三象限,由于反比例函数y=(k≠0)的图象经过其中两点,于是得到反比例函数y=(k≠0)的图象经过B(3,2),C(﹣6,m),于是得到结论.【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A (﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y=(k≠0)的图象经过其中两点,∴反比例函数y=(k≠0)的图象经过B(3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为2.【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC ﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF===2.故答案为:2.三.解答题(共11小题)15.解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3.16.解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程﹣=1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x=,经检验x=是分式方程的解.17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.【解答】解:如图,点P即为所求.18.如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.【分析】根据等边对等角的性质求出∠DEC=∠C,在由∠B=∠C得∠DEC=∠B,所以AB∥DE,得出四边形ABCD是平行四边形,进而得出结论.【解答】证明:∵DE=DC,∴∠DEC=∠C.∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形.∴AD=BE.19.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg,众数是 1.5kg.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【分析】(1)根据中位数和众数的定义求解可得;(2)利用加权平均数的定义求解可得;(3)用单价乘以(2)中所得平均数,再乘以存活的数量,从而得出答案.【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是=1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2)==1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.【分析】过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,可得四边形AMEC和四边形AMFB均为矩形,可以证明△BFN≌△CEM,得NF=EM=49,进而可得商业大厦的高MN.【解答】解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m).答:商业大厦的高MN为80m.21.某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【分析】(1)分段函数,利用待定系数法解答即可;(2)利用(1)的结论,把y=80代入求出x的值即可解答.【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k=,∴y=;当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y=,∴;(2)当y=80时,80=,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.22.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【分析】(1)由频率定义即可得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球中一个是白球、一个是黄球的情况,利用概率公式求解即可求得答案.【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率==;(2)画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率==.23.如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=8,可证四边形OAFC是正方形,可得CF=AF=4,由锐角三角函数可求EF=12,即可求解.【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=,∴AD==8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=,∴EF=AF=12,∴CE=CF+EF=12+4.24.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.【分析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式,即可求解;(2)由题意得:PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,分点P 在抛物线对称轴右侧、点P在抛物线对称轴的左侧两种情况,分别求解即可.【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).25.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是CF、DE、DF.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.【分析】(1)证明四边形CEDF是正方形,即可得出结果;(2)连接OP,由AB是半圆O的直径,=2,得出∠APB=90°,∠AOP=60°,则∠ABP=30°,同(1)得四边形PECF是正方形,得PF=CF,在Rt△APB中,PB =AB•cos∠ABP=4,在Rt△CFB中,BF==CF,推出PB=CF+BF,即可得出结果;(3)①同(1)得四边形DEPF是正方形,得出PE=PF,∠APE+∠BPF=90°,∠PEA =∠PFB=90°,将△APE绕点P逆时针旋转90°,得到△A′PF,P A′=P A,则A′、F、B三点共线,∠APE=∠A′PF,证∠A′PB=90°,得出S△P AE+S△PBF=S△P A′B=P A′•PB=x(70﹣x),在Rt△ACB中,AC=BC=35,S△ACB=AC2=1225,由y=S△P A′B+S△ACB,即可得出结果;②当AP=30时,A′P=30,PB=40,在Rt△A′PB中,由勾股定理得A′B==50,由S△A′PB=A′B•PF=PB•A′P,求PF,即可得出结果.【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,=2,∴∠APB=90°,∠AOP=×180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,在Rt△CFB中,BF====CF,∵PB=PF+BF,∴PB=CF+BF,即:4=CF+CF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,P A′=P A,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(70﹣x),在Rt△ACB中,AC=BC=AB=×70=35,∴S△ACB=AC2=×(35)2=1225,∴y=S△P A′B+S△ACB=x(70﹣x)+1225=﹣x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B===50,∵S△A′PB=A′B•PF=PB•A′P,∴×50×PF=×40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.。
2020年新疆维吾尔自治区中考数学试题及参考答案(word解析版)

新疆维吾尔自治区2020年初中学业水平考试数学试题卷(满分150分,考试时间120分)一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.2.如图所示,该几何体的俯视图是()A.B.C.D.3.下列运算正确的是()A.x2•x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=﹣6x34.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b>05.下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0 B.x2+2x+4=0 C.x2﹣x+2=0 D.x2﹣2x=06.不等式组的解集是()A.0<x≤2 B.0<x≤6 C.x>0 D.x≤27.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.2B.5C.4D.10二、填空题(本大题共6小题,每小题5分,共30分)10.如图,若AB∥CD,∠A=110°,则∠1=°.11.分解因式:am2﹣an2=.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n 200 500 800 2000 12000成活的棵数m 187 446 730 1790 10836成活的频率0.935 0.892 0.913 0.895 0.903由此估计这种苹果树苗移植成活的概率约为.(精确到0.1)13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为.15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)2+|﹣|+(π﹣3)0﹣.17.(7分)先化简,再求值:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1),其中x=﹣.18.(8分)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.19.(10分)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.20.(9分)如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)21.(11分)某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?22.(11分)如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.23.(13分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN=S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.答案与解析一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.【知识考点】正数和负数.【思路分析】利用正数与负数的定义判断即可.【解答过程】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.【总结归纳】此题考查了正数与负数,熟练掌握各自的定义是解本题的关键.2.如图所示,该几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从上面看得到的图形是俯视图,可得俯视图.【解答过程】解:从上面看是四个正方形,符合题意的是C,故选:C.【总结归纳】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.下列运算正确的是()A.x2•x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=﹣6x3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据同底数幂的乘法、除法和积的乘方以及合并同类项进行判断即可.【解答过程】解:A、x2•x3=x5,选项错误.不符合题意;B、x6÷x3=x3,选项正确,符合题意;C、x3+x3=2x3,选项错误,不符合题意;D、(﹣2x)3=﹣8x3,选项错误,不符合题意;故选:B.【总结归纳】此题考查同底数幂的乘法、除法和积的乘方以及合并同类项,关键是根据法则解答.4.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b>0【知识考点】绝对值;有理数的加法;实数与数轴.【思路分析】直接利用数轴上a,b的位置进而比较得出答案.【解答过程】解:如图所示:A、a<b,故此选项错误;B、|a|>|b|,正确;C、﹣a>b,故此选项错误;D、a+b<0,故此选项错误;故选:B.【总结归纳】此题主要考查了实数与数轴,正确数形结合是解题关键.5.下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0 B.x2+2x+4=0 C.x2﹣x+2=0 D.x2﹣2x=0【知识考点】根的判别式.【思路分析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解答过程】解:A.此方程判别式△=(﹣1)2﹣4×1×=0,方程有两个相等的实数根,不符合题意;B.此方程判别式△=22﹣4×1×4=﹣12<0,方程没有实数根,不符合题意;C.此方程判别式△=(﹣1)2﹣4×1×2=﹣7<0,方程没有实数根,不符合题意;D.此方程判别式△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,符合题意;故选:D.【总结归纳】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac的关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6.不等式组的解集是()A.0<x≤2 B.0<x≤6 C.x>0 D.x≤2【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:,解不等式①,得:x≤2,解不等式②,得:x>0,则不等式组的解集为0<x≤2,故选:A.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.【知识考点】概率公式;列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是中心对称图形的情况,再利用概率公式求解即可求得答案.【解答过程】解:分别用A、B、C、D表示正方形、正五边形、正六边形和圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是中心对称图形的有6种情况,∴抽到卡片上印有的图案都是中心对称图形的概率为:=.故选:C.【总结归纳】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象;二次函数的图象.【思路分析】根据二次函数y=ax2﹣bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=﹣>0,得出b<0,进而对照四个选项中的图象即可得出结论.【解答过程】解:因为二次函数y=ax2﹣bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=﹣>0,得出b<0,所以一次函数y=ax+b经过一、三、四象限,反比例函数y=经过一、三象限,故选:D.【总结归纳】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据二次函数图象,找出a>0、b<0、c>0是解题的关键.9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC 的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.2B.5 C.4D.10【知识考点】三角形的面积;三角形中位线定理.【思路分析】过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=BC,求得DF=AH,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【解答过程】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.【总结归纳】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.二、填空题(本大题共6小题,每小题5分,共30分)10.如图,若AB∥CD,∠A=110°,则∠1=°.【知识考点】平行线的性质.【思路分析】由AB∥CD,利用“两直线平行,同位角相等”可得出∠2的度数,再结合∠1,∠2互补,即可求出∠1的度数.【解答过程】解:如图,∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.【总结归纳】本题考查了平行线的性质以及邻补角,牢记“两直线平行,同位角相等”是解题的关键.11.分解因式:am2﹣an2=.【知识考点】提公因式法与公式法的综合运用.【思路分析】原式提取a,再利用平方差公式分解即可.【解答过程】解:原式=a(m2﹣n2)=a(m+n)(m﹣n),故答案为:a(m+n)(m﹣n)【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n 200 500 800 2000 12000成活的棵数m 187 446 730 1790 10836成活的频率0.935 0.892 0.913 0.895 0.903由此估计这种苹果树苗移植成活的概率约为.(精确到0.1)【知识考点】利用频率估计概率.【思路分析】用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答过程】解:根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9.故答案为:0.9.【总结归纳】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB 长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【知识考点】坐标与图形性质.【思路分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x 轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.【解答过程】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.【总结归纳】本题考查了角平分线的作法及其性质在坐标与图形性质问题中的应用,明确题中的作图方法及角平分线的性质是解题的关键.、14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为.【知识考点】弧长的计算.【思路分析】连接OA,作OD⊥AB于点D,利用三角函数以及垂径定理即可求得AB的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半径.【解答过程】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=2,∠OAD=∠BAC=30°,则AD=OA•cos30°=.则AB=2AD=2,则扇形的弧长是:=π,设底面圆的半径是r,则2π×r=π,解得:r=.故答案为:.【总结归纳】本题考查了弧长的计算,圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC 的最小值为.【知识考点】轴对称﹣最短路线问题.【思路分析】作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,依据A与A'关于BC对称,可得AD=A'D,进而得出AD+DE=A'D+DE,当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,依据AD+DE的最小值为3,即可得到2AD+CD的最小值为6.【解答过程】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH=,AA'=2,∠C=30°,∴Rt△CDE中,DE=CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'=×2=3,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.【总结归纳】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)2+|﹣|+(π﹣3)0﹣.【知识考点】绝对值;实数的运算;零指数幂.【思路分析】原式先计算乘方运算,再算加减运算即可得到结果.【解答过程】解:(﹣1)2+|﹣|+(π﹣3)0﹣=1++1﹣2=.【总结归纳】此题考查了实数的运算,绝对值、零指数幂、熟练掌握运算法则是解本题的关键.17.(7分)先化简,再求值:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1),其中x=﹣.【知识考点】整式的混合运算—化简求值.【思路分析】根据完全平方公式、单项式乘多项式和平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答过程】解:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1)=x2﹣4x+4﹣4x2+4x+4x2﹣1=x2+3,当x=﹣时,原式=(﹣)2+3=5.【总结归纳】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.18.(8分)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.【知识考点】平行四边形的性质;菱形的判定与性质.【思路分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE =∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答过程】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵DE∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:由(1)知△ADE≌△CBF,则DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.【总结归纳】本题考查平行四边形的判定和性质、菱形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.(10分)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据百分比的和等于1求解即可.(2)利用加权平均数求解即可.(3)首先确定总人数,根据优秀人数=总人数×优秀率计算即可.【解答过程】解:(1)在抽取的学生中不及格人数所占的百分比=1﹣20%﹣25%﹣50%=5%,故答案为5%.(2)所抽取学生测试成绩的平均分==79.8(分).(3)由题意总人数=2÷5%=40(人),40×50%=20,20÷10%=200(人)答:该校九年级学生中优秀等级的人数约为200人.【总结归纳】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(9分)如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】在Rt△BDC中,根据三角函数的定义得到1.60=,求得BC=,在Rt△ACD中,根据三角函数的定义得到0.40=,求得AC=,列方程即可得到结论.【解答过程】解:在Rt△BDC中,∵tan∠DBC=,∴1.60=,∴BC=,在Rt△ACD中,∵tan∠DAC=,∴0.40=,∴AC=,∴AB=AC﹣BC=﹣=30,解得:CD=16(米),答:建筑物CD的高度为16米.【总结归纳】本题考查了解直角三角形的应用﹣仰角俯角问题,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解,难度一般.21.(11分)某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)根据题意可以列出相应的分式方程,从而可以求得A、B两款保温杯的销售单价,注意分式方程要检验;(2)根据题意可以得到利润与购买A款保温杯数量的函数关系,然后根据A款保温杯的数量不少于B款保温杯数量的两倍,可以求得A款保温杯数量的取值范围,再根据一次函数的性质,即可求得应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元.【解答过程】解:(1)设A款保温杯的单价是a元,则B款保温杯的单价是(a+10)元,,解得,a=30,经检验,a=30是原分式方程的解,则a+10=40,答:A、B两款保温杯的销售单价分别是30元、40元;(2)设购买A款保温杯x个,则购买B款保温杯(120﹣x)个,利润为w元,w=(30﹣20)x+[40×(1﹣10%)﹣20](120﹣x)=﹣6x+1920,∵A款保温杯的数量不少于B款保温杯数量的两倍,∴x≥2(120﹣x),解得,x≥80,∴当x=80时,w取得最大值,此时w=1440,120﹣x=40,答:当购买A款保温杯80个,B款保温杯40个时,能使这批保温杯的销售利润最大,最大利润是1440元.【总结归纳】本题考查分式方程的应用、一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答,注意分式方程要检验.22.(11分)如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC 的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.【知识考点】切线的判定;解直角三角形.【思路分析】(1)根据已知条件得到∠PAD=∠PAB,推出AD∥OP,根据平行线的性质得到PD ⊥OP,于是得到DP是⊙O的切线;(2)连接BC交OP于E,根据圆周角定理得到∠ACB=90°,推出四边形CDPE是矩形,得到CD=PE,PD=CE,解直角三角形即可得到结论.【解答过程】(1)证明:∵P是的中点,∴=,∴∠PAD=∠PAB,∵OA=OP,∴∠APO=∠PAO,∴∠DAP=∠APO,∴AD∥OP,∵PD⊥AD,∴PD⊥OP,∴DP是⊙O的切线;(2)解:连接BC交OP于E,∵AB为⊙O的直径,∴∠ACB=90°,∵P是的中点,∴OP⊥BC,CE=BE,∴四边形CDPE是矩形,∴CD=PE,PD=CE,∵∠APC=∠B,∴sin∠APC=sin∠ABC==,∵AC=5,∴AB=13,∴BC=12,∴PD=CE=BE=6,∵OE=AC=,OP=,∴CD=PE=﹣=4,∴AD=9,∴AP===3.【总结归纳】本题考查了切线的判定,垂径定理,解直角三角形,矩形的判定和性质,正确的作出辅助线构造直角三角形是解题的关键.23.(13分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN=S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)抛物线y=ax2+bx+c的顶点是A(1,3),可以假设抛物线的解析式为y=a(x ﹣1)2+3,求出点B的坐标,利用待定系数法即可解决问题.(2)①根据△A′MN在△OAB内部,构建不等式即可解决问题.②求出直线OA,AB的解析式,求出MN,利用面积关系构建方程即可解决问题.【解答过程】解:(1)∵抛物线y=ax2+bx+c的顶点是A(1,3),∴抛物线的解析式为y=a(x﹣1)2+3,∴OA绕点O顺时针旋转90°后得到OB,∴B(3,﹣1),把B(3,﹣1)代入y=a(x﹣1)2+3可得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+3,即y=﹣x2+2x+2,(2)①如图1中,∵B(3,﹣1),∴直线OB的解析式为y=﹣x,∵A(1,3),∴C(1,﹣),∵P(1,m),AP=PA′,∴A′(1,2m﹣3),由题意3>2m﹣3>﹣,∴3>m>.②∵直线OA的解析式为y=3x,直线AB的解析式为y=﹣2x+5,∵P(1,m),∴M(,m),N(,m),∴MN=﹣=,∵S△A′MN=S△OA′B,∴•(m﹣2m+3)•=××|2m﹣3+|×3,整理得m2﹣6m+9=|6m﹣8|解得m=6+(舍弃)或6﹣,当点P在x轴下方时,同法可得•(3﹣m)•(+3m)=××[﹣﹣(2m﹣3)]×3,整理得:m2﹣8m+5=0,解得m=4±2(舍弃),不存在满足条件的点P,∴满足条件的m的值为6﹣.【总结归纳】本题属于二次函数综合题,考查了待定系数法,一次函数的性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题,学会构建不等式或方程解决问题,属于中考压轴题.。
2020年天津市中考数学试卷(解析版)

2020年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于()A.B.1 C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算的结果为()A.1 B.a C.a+1 D.8.方程组的解是()A.B.C.D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.计算x7÷x4的结果等于.14.计算的结果等于.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。
2020年河南省中考数学试卷 (解析版)

2020年河南省中考数学试卷一、选择题1.2的相反数是()A.﹣2B.﹣C.D.22.如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y17.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.500(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75009.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(,2)B.(2,2)C.(,2)D.(4,2)10.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3二、填空题(每小题3分,共15分)11.请写出一个大于1且小于2的无理数.12.已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB 上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(1﹣)÷,其中a=+1.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=,b=;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.小亮在学习中遇到这样一个问题:如图,点D是上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为的中点时,BD=5.0cm”.则上表中a的值是;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD 和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.2的相反数是()A.﹣2B.﹣C.D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.解:2的相反数是﹣2.故选:A.2.如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【分析】分别确定每个几何体的主视图和左视图即可作出判断.解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.3.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【分析】根据平行线的性质即可得到结论.解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B【分析】列出算式,进行计算即可.解:由题意得:210×210×210B=210+10+10=230B,故选:A.6.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=﹣的图象上,∴y1=﹣=6,y2=﹣=﹣3,y3=﹣=﹣2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.7.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】根据新定义运算法则以及即可求出答案.解:由题意可知:1☆x=x2﹣x﹣1=0,∴△=1﹣4×1×(﹣1)=5>0,故选:A.8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.500(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=7500【分析】根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.9.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(,2)B.(2,2)C.(,2)D.(4,2)【分析】根据已知条件得到AC=6,OC=2,OB=7,求得BC=9,根据正方形的性质得到DE=OC=OE=2,求得O′E′=O′C′=2,根据相似三角形的性质得到BO′=3,于是得到结论.解:如图,设正方形D′C′O′E′是正方形OCDE沿x轴向右平移后的正方形,∵顶点A,B的坐标分别为(﹣2,6)和(7,0),∴AC=6,OC=2,OB=7,∴BC=9,∵四边形OCDE是正方形,∴DE=OC=OE=2,∴O′E′=O′C′=2,∵E′O′⊥BC,∴∠BO′E′=∠BCA=90°,∴E′O′∥AC,∴△BO′E′∽△BCA,∴=,∴=,∴BO′=3,∴OC′=7﹣2﹣3=2,∴当点E落在AB边上时,点D的坐标为(2,2),故选:B.10.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3【分析】连接BD交AC于O,根据已知条件得到BD垂直平分AC,求得BD⊥AC,AO =CO,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据等边三角形的性质得到∠DAC=∠DCA=60°,求得AD=CD=AB=3,于是得到结论.解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.二、填空题(每小题3分,共15分)11.请写出一个大于1且小于2的无理数.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.解:大于1且小于2的无理数是,答案不唯一.故答案为:.12.已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为x>a.【分析】根据关于x的不等式组的解集表示在数轴上表示方法求出x的取值范围即可.解:∵b<0<a,∴关于x的不等式组的解集为:x>a,故答案为:x>a.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.【分析】用树状图或列表法表示所有可能出现的结果,进而求出相应的概率.解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种,∴P(两次颜色相同)==,故答案为:.14.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE =∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据射影定理即可得到结论.解:设DF,CE交于O,∵四边形ABCDA是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB 上一动点.若OB=2,则阴影部分周长的最小值为.【分析】利用轴对称的性质,得出当点E移动到点E′时,阴影部分的周长最小,此时的最小值为弧CD的长与CD′的长度和,分别进行计算即可.解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长l==,∴阴影部分周长的最小值为2+=.故答案为:.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(1﹣)÷,其中a=+1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.解:==a﹣1,把a=+1代入a﹣1=+1﹣1=.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501 [整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=501,b=5%;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.【分析】(1)根据中位数的计算方法,求出乙机器分装实际质量的中位数;乙机器的不合格的有1个,调查总数为20,可求出不合格率,从而确定a、b的值;(2)根据合格率进行判断.解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b=1÷20=0.05=5%,故答案为:501,5%;(2)选择甲机器,理由:甲的不合格率较小,18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【分析】(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到结论;(2)建议为:为了减小误差可以通过多次测量取平均值的方法.解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°===0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【分析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值;(3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.解:(1)∵y1=k1x+b过点(0,30),(10,180),∴,解得,k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.20.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN 切半圆O于F.求证:EB,EO就把∠MEN三等分.【分析】根据垂直的定义得到∠ABE=∠OBE=90°,根据全等三角形的性质得到∠1=∠2,根据切线的性质得到∠2=∠3,于是得到结论.解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.21.如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;(2)先求出点M,点N坐标,即可求解.解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤4.22.小亮在学习中遇到这样一个问题:如图,点D是上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为的中点时,BD=5.0cm”.则上表中a的值是5;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD 和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).【分析】(1)①由=可求BD=CD=a=5cm;②由“AAS”可证△BAD≌△CAF,可得BD=CF,即可求解;(2)由题意可画出函数图象;(3)结合图象可求解.解:(1)∵点D为的中点,∴=,∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.23.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.【分析】(1)由旋转的性质得出AB=AB',∠BAB'=60°,证得△ABB'是等边三角形,可得出△DEB'是等腰直角三角形.证明△BDB'∽△CDE,得出.(2)①得出∠EDB'=∠EB'D=45°,则△DEB'是等腰直角三角形,得出,证明△B'DB∽△EDC,由相似三角形的性质可得出.②分两种情况画出图形,由平行四边形的性质可得出答案.解:(1)∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直角三角形,.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°﹣,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°﹣,∴∠EB'D=∠AB'D﹣∠AB'B=135°﹣=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②=3或1.若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直角三角形,∴B'D=B'E,由(2)①可知△BDB'∽△CDE,且BB'=CE.∴=+1=+1=+1=+1=3.若CD为平行四边形的一边,如图3,点E与点A重合,∴=1.综合以上可得=3或1.。
2020年广西南宁市中考数学试题及参考答案(word解析版)
2020年广西南宁市中考数学试题及参考答案与解析(考试时间120分钟,满分120分)第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A.B.1 C.0 D.﹣52.下列图形是中心对称图形的是()A.B.C.D.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×1064.下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.3010.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2﹣OC2的值为()A.5 B.3C.4 D.2第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.)13.如图,在数轴上表示的x的取值范围是.14.计算:﹣=.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数15 33 78 158 231 801“射中9环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为.18.如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣(﹣1)+32÷(1﹣4)×2.20.(6分)先化简,再求值:÷(x﹣),其中x=3.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B 型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.26.(10分)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A 是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A 的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC 的面积;若不存在,请说明理由.答案与解析第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A.B.1 C.0 D.﹣5【知识考点】算术平方根;无理数.【思路分析】无限不循环小数是无理数,而1,0,﹣5是整数,也是有理数,因此是无理数.【解题过程】解:无理数是无限不循环小数,而1,0,﹣5是有理数,因此是无理数,故选:A.【总结归纳】本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.2.下列图形是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解题过程】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【总结归纳】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000有6位,所以可以确定n=6﹣1=5.【解题过程】解:889000=8.89×105.故选:C.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2【知识考点】整式的混合运算.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解题过程】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.【总结归纳】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量【知识考点】全面调查与抽样调查.【思路分析】利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.【解题过程】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.【总结归纳】本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.6.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【知识考点】根的判别式.【思路分析】先根据方程的一般式得出a、b、c的值,再计算出△=b2﹣4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.【解题过程】解:∵a=1,b=﹣2,c=1,∴△=(﹣2)2﹣4×1×1=4﹣4=0,∴有两个相等的实数根,故选:B.【总结归纳】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE 的度数.【解题过程】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.【总结归纳】本题考查了作图﹣基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【解题过程】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是=,故选:C.【总结归纳】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.30【知识考点】正方形的性质;相似三角形的判定与性质.【思路分析】设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【解题过程】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴=,解得:x=40,∴AN=60﹣x=60﹣40=20.故选:B.【总结归纳】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.10.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣20【知识考点】由实际问题抽象出分式方程.【思路分析】直接利用总时间的差值进而得出等式求出答案.【解题过程】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.【总结归纳】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.11.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【知识考点】勾股定理的应用.【思路分析】画出直角三角形,根据勾股定理即可得到结论.【解题过程】解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.【总结归纳】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x >0)于点C,D.若AC=BD,则3OD2﹣OC2的值为()A.5 B.3C.4 D.2【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【思路分析】延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【解题过程】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC=﹣a.又∵AC=BD,∴﹣a=(b﹣),两边平方得:a2+﹣2=3(b2+﹣2),即a2+=3(b2+)﹣4,在直角△ODF中,OD2=OF2+DF2=b2+,同理OC2=a2+,∴3OD2﹣OC2=3(b2+)﹣(a2+)=4.故选:C.【总结归纳】本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC =BD得到a,b的关系是解题的关键.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.)13.如图,在数轴上表示的x的取值范围是.【知识考点】在数轴上表示不等式的解集.【思路分析】根据“小于向左,大于向右及边界点含于解集为实心点,不含于解集即为空心点”求解可得.【解题过程】解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.【总结归纳】本题主要考查在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.14.计算:﹣=.【知识考点】二次根式的加减法.【思路分析】先化简=2,再合并同类二次根式即可.【解题过程】解:=2﹣=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,属于基础题型.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数15 33 78 158 231 801“射中9环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).【知识考点】利用频率估计概率.【思路分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解题过程】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.【总结归纳】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.【知识考点】规律型:数字的变化类.【思路分析】根据题意可得前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.【解题过程】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.【总结归纳】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为.【知识考点】坐标与图形变化﹣旋转.【思路分析】如图,根据点M (3,4)逆时针旋转90°得到点N,则可得点N的坐标为(﹣4,3).【解题过程】解:如图,∵点M (3,4)逆时针旋转90°得到点N,则点N的坐标为(﹣4,3).故答案为:(﹣4,3).【总结归纳】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.18.如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质;轨迹.【思路分析】如图,作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB =120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.【解题过程】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长==π.故答案为π.【总结归纳】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣(﹣1)+32÷(1﹣4)×2.【知识考点】有理数的混合运算.【思路分析】直接利用有理数的混合运算法则计算得出答案.【解题过程】解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5.【总结归纳】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.20.(6分)先化简,再求值:÷(x﹣),其中x=3.【知识考点】分式的化简求值.【思路分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x的值代入计算可得答案.【解题过程】解:原式=÷(﹣)=÷=•=,当x=3时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.【知识考点】全等三角形的判定与性质;平行四边形的判定.【思路分析】(1)证出BC=EF,由SSS即可得出结论;(2)由全等三角形的性质得出∠B=∠DEF,证出AB∥DE,由AB=DE,即可得出结论.【解题过程】(1)证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE,又∵AB=DE,∴四边形ABED是平行四边形.【总结归纳】本题考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定等知识;熟练掌握平行四边形的判定,证明三角形全等是解题的关键.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.【知识考点】用样本估计总体;频数(率)分布表;中位数;众数;统计量的选择.【思路分析】(1)将数据从小到大重新排列,再根据中位数和众数的概念求解可得;(2)用总人数乘以样本中不低于90分的人数占被调查人数的比例即可得;(3)从众数和中位数的意义求解可得.【解题过程】解:(1)将这组数据重新排列为:81,82,83,86,87,88,89,90,90,90,92,93,96,96,98,99,100,100,100,100,∴a=5,b==91,c=100;(2)估计成绩不低于90分的人数是1600×=1040(人);(3)中位数,在被调查的20名学生中,中位数为91分,有一半的人分数都是再91分以上.【总结归纳】考查中位数、众数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)过B作PM⊥AB于C,解直角三角形即可得到结论;(2)在Rt△BCM中,解直角三角形求得∠CBM=60°,即可求得∠CBG=45°,BC=40nmile,即可得到结论.【解题过程】解:(1)过B作BM⊥AC于M,由题意可知∠BAM=45°,则∠ABM=45°,在Rt△ABM中,∵∠BAM=45°,AB=40nmile,∴BM=AM=AB=20nmile,∴渔船航行20nmile距离小岛B最近;(2)∵BM=20nmile,MC=20nmile,∴tan∠MBC===,∴∠MBC=60°,∴∠CBG=180°﹣60°﹣45°﹣30°=45°,在Rt△BCM中,∵∠CBM=60°,BM=20nmile,∴BC==2BM=40nmile,故救援队从B处出发沿点B的南偏东45°的方向航行到达事故地点航程最短,最短航程是40 nmile.【总结归纳】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h 共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.【知识考点】二元一次方程组的应用;一次函数的应用.【思路分析】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,根据题意列出方程即可求出答案.(2)根据题意列出方程即可求出答案.(3)根据a的取值,求出w与a的函数关系,从而求出w的最小值.【解题过程】解:(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,由题意可知:,解得:,答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20,∴b=100﹣2a(10≤a≤45).(3)当10≤a<30时,此时40≤b≤80,∴w=20×a+0.8×12(100﹣2a)=0.8a+960,当a=10时,此时w有最小值,w=968万元,当30≤a≤35时,此时30≤b≤40,∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960,当a=35时,此时w有最小值,w=918万元,当35<a≤45时,此时10≤b<30,∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45时,w有最小值,此时w=930,答:选购A型号机器人35台时,总费用w最少,此时需要918万元.【总结归纳】本题考查一次函数,解题的关键正确找出题中的等量关系,本题属于中等题型.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.。
2020年贵州省遵义市中考数学试卷(解析版)
2020年贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)1.(4分)﹣3的绝对值是()A.3B.﹣3C.D.±3【分析】根据绝对值的概念可得﹣3的绝对值就是数轴上表示﹣2的点与原点的距离.进而得到答案.【解答】解:﹣3的绝对值是3,故选:A.2.(4分)在文化旅游大融合的背景下,享受文化成为旅游业的新趋势.今年“五一”假期,我市为游客和市民提供了丰富多彩的文化享受,各艺术表演馆、美术馆、公共图书馆、群众文化机构、非遗机构及文物机构累计接待游客18.25万人次,将18.25万用科学记数法表示为()A.1.825×105B.1.825×106C.1.825×107D.1.825×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:18.25万=182500,用科学记数法表示为:1.825×105.故选:A.3.(4分)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°【分析】根据平行线的性质即可得到结论.【解答】解:∠AB∠CD,∠∠1=∠D=45°,故选:B.4.(4分)下列计算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:x2+x不能合并,故选项A错误;(﹣3x)2=9x2,故选项B错误;8x4÷2x2=4x2,故选项C正确;(x﹣2y)(x+2y)=x2﹣4y2,故选项D错误;故选:C.5.(4分)某校7名学生在某次测量体温(单位:∠)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是()A.众数是36.5B.中位数是36.7C.平均数是36.6D.方差是0.4【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【解答】解:7个数中36.5出现了三次,次数最多,即众数为36.5,故A选项正确,符合题意;将7个数按从小到大的顺序排列为:36.3,36.4,36.5,36.5,36.5,36.6,36.7,第4个数为36.5,即中位数为36.5,故B选项错误,不符合题意;=×(36.3+36.4+36.5+36.5+36.5+36.6+36.7)=36.5,故C选项错误,不符合题意;S2=[(36.3﹣36.5)2+(36.4﹣36.5)2+3×(36.5﹣36.5)2+(36.6﹣36.5)2+(36.7﹣36.5)2]=,故D 选项错误,不符合题意;故选:A.6.(4分)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.13【分析】利用根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.7.(4分)如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A.(30﹣2x)(40﹣x)=600B.(30﹣x)(40﹣x)=600C.(30﹣x)(40﹣2x)=600D.(30﹣2x)(40﹣2x)=600【分析】设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(30﹣2x)(40﹣2x)=600.故选:D.8.(4分)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A.B.C.D.【分析】乌龟是匀速行走的,图象为线段.兔子是:跑﹣停﹣急跑,图象由三条折线组成;最后同时到达终点,即到达终点花的时间相同.【解答】解:A.此函数图象中,S2先达到最大值,即兔子先到终点,不符合题意;B.此函数图象中,S2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,不符合题意;C.此函数图象中,S1、S2同时到达终点,符合题意;D.此函数图象中,S1先达到最大值,即乌龟先到终点,不符合题意.故选:C.9.(4分)如图,在菱形ABCD中,AB=5,AC=6,过点D作DE∠BA,交BA的延长线于点E,则线段DE的长为()A.B.C.4D.【分析】由在菱形ABCD中,AB=5,AC=6,利用菱形的性质以及勾股定理,求得OB的长,继而可求得BD的长,然后由菱形的面积公式可求得线段DE的长.【解答】解:如图.∠四边形ABCD是菱形,AC=6,∠AC∠BD,OA=AC=3,BD=2OB,∠AB=5,∠OB==4,∠BD=2OB=8,∠S菱形ABCD=AB•DE=AC•BD,∠DE===.故选:D.10.(4分)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt∠ACB 中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A.+1B.﹣1C.D.【分析】在Rt∠ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,根据tan22.5°=计算即可.【解答】解:在Rt∠ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,∠tan22.5°===﹣1,故选:B.11.(4分)如图,∠ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为()A.9B.12C.15D.18【分析】易证∠ANQ∠∠AMP∠∠AOB,由相似三角形的性质:面积比等于相似比的平方可求出∠ANQ的面积,进而可求出∠AOB的面积,则k的值也可求出.【解答】解:∠NQ∠MP∠OB,∠∠ANQ∠∠AMP∠∠AOB,∠M、N是OA的三等分点,∠=,=,∠=,∠四边形MNQP的面积为3,∠=,∠S∠ANQ=1,∠=()2=,∠S∠AOB=9,∠k=2S∠AOB=18,故选:D.12.(4分)抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()∠4a﹣b=0;∠c≤3a;∠关于x的方程ax2+bx+c=2有两个不相等实数根;∠b2+2b>4ac.A.1个B.2个C.3个D.4个【分析】根据抛物线的对称轴可判断∠;由抛物线与x轴的交点及抛物线的对称性以及由x=﹣1时y>0可判断∠,由抛物线与x轴有两个交点,且顶点为(﹣2,3),即可判断∠;利用抛物线的顶点的纵坐标为3得到=3,即可判断∠.【解答】解:∠抛物线的对称轴为直线x=﹣=﹣2,∠4a﹣b=0,所以∠正确;∠与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∠由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∠x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,∠c>3a,所以∠错误;∠抛物线与x轴有两个交点,且顶点为(﹣2,3),∠抛物线与直线y=2有两个交点,∠关于x的方程ax2+bx+c=2有两个不相等实数根,所以∠正确;∠抛物线的顶点坐标为(﹣2,3),∠=3,∠b2+12a=4ac,∠4a﹣b=0,∠b=4a,∠b2+3b=4ac,∠a<0,∠b=4a<0,∠b2+2b>4ac,所以∠正确;故选:C.二、填空题(本小题共4小题,每小题4分,共16分,答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)13.(4分)计算:﹣的结果是.【分析】首先化简,然后根据实数的运算法则计算.【解答】解:=2﹣=.故答案为:.14.(4分)如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b <2的解集为x<4.【分析】结合函数图象,写出直线y=kx+2在直线y=2下方所对应的自变量的范围即可.【解答】解:∠直线y=kx+b与直线y=2交于点A(4,2),∠x<4时,y<2,∠关于x的不等式kx+b<2的解集为x<4.故答案为x<4.15.(4分)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将∠ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是.【分析】在Rt∠A'BM中,解直角三角形求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.【解答】解:∠将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,∠AB=2BM,∠A′MB=90°,MN∠BC.∠将∠ABE沿BE折叠,使点A的对应点A′落在MN上.∠A′B=AB=2BM.在Rt∠A′MB中,∠∠A′MB=90°,∠sin∠MA′B=,∠∠MA′B=30°,∠MN∠BC,∠∠CBA′=∠MA′B=30°,∠∠ABC=90°,∠∠ABA′=60°,∠∠ABE=∠EBA′=30°,∠BE=.故答案为:.16.(4分)如图,∠O是∠ABC的外接圆,∠BAC=45°,AD∠BC于点D,延长AD交∠O于点E,若BD=4,CD=1,则DE的长是.【分析】连结OB,OC,OA,过O点作OF∠BC于F,作OG∠AE于G,根据圆周角定理可得∠BOC=90°,根据等腰直角三角形的性质和勾股定理可得DG,AG,可求AD,再根据相交弦定理可求DE.【解答】解:连结OB,OC,OA,过O点作OF∠BC于F,作OG∠AE于G,∠∠O是∠ABC的外接圆,∠BAC=45°,∠∠BOC=90°,∠BD=4,CD=1,∠BC=4+1=5,∠OB=OC=,∠OA=,OF=BF=,∠DF=BD﹣BF=,∠OG=,GD=,在Rt∠AGO中,AG==,∠AD=AG+GD=,∠AD×DE=BD×CD,DE==.故答案为:.三、解答题(本题共有8小题,共86分.答题请用黑色量水笔或黑色签字笔书写在答题卡的相应位置上解答时应写出必要的文字说明、证明过程成演算步骤)17.(8分)计算:(1)sin30°﹣(π﹣3.14)0+(﹣)﹣2;(2)解方程;=.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1+4=3;(2)去分母得:2x﹣3=3x﹣6,解得:x=3,经检验x=3是分式方程的解.18.(8分)化简式子÷(x﹣),从0、1、2中取一个合适的数作为x的值代入求值.【分析】直接利用分式的性质进行通分运算,进而结合分式的混合运算法则分别化简得出答案.【解答】解:原式=÷=•=,∠x≠0,2,∠当x=1时,原式=﹣1.19.(10分)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【分析】延长BC交AD于点E,构造直角∠ABE和矩形EDNB,通过解直角三角形分别求得BE、CE的长度,易得BC的值;然后根据矩形的性质知MN=BC.【解答】解:延长BC交AD于点E,则AE=AD﹣DE=0.6m.BE=≈1.875m,CE=≈0.374m.所以BC=BE﹣CE=1.528m.所以MN=BC≈1.5m.答:小聪在地面的有效测温区间MN的长度约为1.5m.20.(10分)如图,AB是∠O的直径,点C是∠O上一点,∠CAB的平分线AD交于点D,过点D作DE∠BC 交AC的延长线于点E.(1)求证:DE是∠O的切线;(2)过点D作DF∠AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∠AE,由DE∠BC 得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明∠DBF∠∠ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解答】解:(1)连接OD,如图:∠OA=OD,∠∠OAD=∠ADO,∠AD平分∠CAB,∠∠DAE=∠OAD,∠∠ADO=∠DAE,∠OD∠AE,∠DE∠BC,∠∠E=90°,∠∠ODE=180°﹣∠E=90°,∠DE是∠O的切线;(2)∠AB是∠O的直径,∠∠ADB=90°,∠OF=1,BF=2,∠OB=3,∠AF=4,BA=6.∠DF∠AB,∠∠DFB=90°,∠∠ADB=∠DFB,又∠∠DBF=∠ABD,∠∠DBF∠∠ABD,∠=,∠BD2=BF•BA=2×6=12.∠BD=2.21.(12分)遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:h)的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:劳动时间分组频数频率0≤t<2020.120≤t<404m40≤t<6060.360≤t<80a0.2580≤t<10030.15解答下列问题:(1)频数分布表中a=5,m=0.2;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在60h≤t<80h的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.【分析】(1)根据频数分布表所给数据即可求出a,m;进而可以补充完整频数分布直方图;(2)根据样本估计总体的方法即可估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)根据题意画出用树状图即可求所选学生为1男1女的概率.【解答】解:(1)a=(2÷0.1)×0.25=5,m=4÷20=0.2,补全的直方图如图所示:故答案为:5,0.2;(2)400×(0.25+0.15)=160(人);(3)根据题意画出树状图,由树状图可知:共有20种等可能的情况,1男1女有12种,故所选学生为1男1女的概率为:P==.22.(12分)为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入=售价×销售数甲种型号乙种型号量)第一月2281100第二月38242460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种型号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.【分析】(1)根据表格中的数据可以列出相应的二元一次方程组,从而可以求得甲、乙两种型号水杯的销售单价;(2)根据题意,可以得到w与a的函数关系式.【解答】解:(1)设甲、乙两种型号水杯的销售单价分别为x元、y元,,解得,,答:甲、乙两种型号水杯的销售单价分别为30元、55元;(2)由题意可得,,解得:50≤a≤55,w=(30﹣25)a+(55﹣45)(80﹣a)=﹣5a+800,故当a=50时,W有最大值,最大为550,答:第三月的最大利润为550元.23.(12分)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF∠DE交射线BA于点F,过点E作MN∠BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.【分析】(1)要证明EF=DE,只要证明∠DME∠∠ENF即可,然后根据题目中的条件和正方形的性质,可以得到∠DME∠∠ENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长.【解答】(1)证明:∠四边形ABCD是正方形,AC是对角线,∠∠ECM=45°,∠MN∠BC,∠BCM=90°,∠∠NMC+∠BCM=180°,∠MNB+∠B=180°,∠∠NMC=90°,∠MNB=90°,∠∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∠MC=ME,∠CD=MN,∠DM=EN,∠DE∠EF,∠EDM+∠DEM=90°,∠∠DEF=90°,∠∠DEM+∠FEN=90°,∠∠EDM=∠FEN,在∠DME和∠ENF中,∠∠DME∠∠ENF(ASA),∠EF=DE;(2)如图1所示,由(1)知,∠DME∠∠ENF,∠ME=NF,∠四边形MNBC是矩形,∠MC=BN,又∠ME=MC,AB=4,AF=2,∠BN=MC=NF=1,∠∠EMC=90°,∠CE=,∠AF∠CD,∠∠DGC∠∠FGA,∠,∠,∠AB=BC=4,∠B=90°,∠AC=4,∠AC=AG+GC,∠AG=,CG=,∠GE=GC﹣CE==;如图2所示,同理可得,FN=BN,∠AF=2,AB=4,∠AN=1,∠AB=BC=4,∠B=90°,∠AC=4,∠AF∠CD,∠∠GAF∠∠GCD,∠,即,解得,AG=4,∠AN=NE=1,∠ENA=90°,∠AE=,∠GE=GA+AE=5.24.(14分)如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∠y轴,交抛物线于点P.(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得∠QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作∠M,当∠M与坐标轴相切时,求出∠M的半径.【分析】(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+x+c求出a与c的值即可得出抛物线的解析式;(2)∠当点Q在y轴右边时,假设∠QCO为等边三角形,过点Q作QH∠OC于H,OC=3,则OH=,tan60°=,求出Q(,),把x=代入y=﹣x2+x+3,得y=﹣≠,则假设不成立;∠当点Q在y轴的左边时,假设∠QCO为等边三角形,过点Q作QT∠OC于T,OC=3,则OT=,tan60°=,求出Q(﹣,),把x=﹣代入y=﹣x2+x+3,得y=﹣﹣≠,则假设不成立;(3)求出B(4,0),待定系数法得出BC直线的解析式y=﹣x+3,当M在线段BC上,∠M与x轴相切时,延长PM交AB于点D,则点D为∠M与x轴的切点,即PM=MD,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,∠M与y轴相切时,延长PM交AB于点D,过点M作ME∠y轴于E,则点E为∠M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,代入即可得出结果;当M在BC延长线,∠M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,∠M与y轴相切时,延长PD交x轴于D,过点M作ME∠y轴于E,则点E为∠M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=x2﹣x﹣3,MD=x﹣3,代入即可得出结果.【解答】解:(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+x+c得:,解得:,∠抛物线的解析式为:y=﹣x2+x+3;(2)不存在,理由如下:∠当点Q在y轴右边时,如图1所示:假设∠QCO为等边三角形,过点Q作QH∠OC于H,∠点C(0,3),∠OC=3,则OH=OC=,tan60°=,∠QH=OH•tan60°=×=,∠Q(,),把x=代入y=﹣x2+x+3,得:y=﹣≠,∠假设不成立,∠当点Q在y轴右边时,不存在∠QCO为等边三角形;∠当点Q在y轴的左边时,如图2所示:假设∠QCO为等边三角形,过点Q作QT∠OC于T,∠点C(0,3),∠OC=3,则OT=OC=,tan60°=,∠QT=OT•tan60°=×=,∠Q(﹣,),把x=﹣代入y=﹣x2+x+3,得:y=﹣﹣≠,∠假设不成立,∠当点Q在y轴左边时,不存在∠QCO为等边三角形;综上所述,在抛物线上不存在一点Q,使得∠QCO是等边三角形;(3)令﹣x2+x+3=0,解得:x1=﹣1,x2=4,∠B(4,0),设BC直线的解析式为:y=kx+b,把B、C的坐标代入则,解得:,∠BC直线的解析式为:y=﹣x+3,当M在线段BC上,∠M与x轴相切时,如图3所示:延长PM交AB于点D,则点D为∠M与x轴的切点,即PM=MD,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,∠(﹣x2+x+3)﹣(﹣x+3)=﹣x+3,解得:x1=1,x2=4(不合题意舍去),∠∠M的半径为:MD=﹣+3=;当M在线段BC上,∠M与y轴相切时,如图4所示:延长PM交AB于点D,过点M作ME∠y轴于E,则点E为∠M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,∠(﹣x2+x+3)﹣(﹣x+3)=x,解得:x1=,x2=0(不合题意舍去),∠∠M的半径为:EM=;当M在BC延长线,∠M与x轴相切时,如图5所示:点P与A重合,∠M的横坐标为﹣1,∠∠M的半径为:M的纵坐标的值,即:﹣×(﹣1)+3=;当M在CB延长线,∠M与y轴相切时,如图6所示:延长PD交x轴于D,过点M作ME∠y轴于E,则点E为∠M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=x2﹣x﹣3,MD=x﹣3,∠(x2﹣x﹣3)﹣(x﹣3)=x,解得:x1=,x2=0(不合题意舍去),∠∠M的半径为:EM=;综上所述,∠M的半径为或或或.多送一套2019年北京卷,不喜欢可以删除2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3 (B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN∠CD(D )MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类别5下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∠∠(B )∠∠(C )∠∠∠ (D )∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD上,BE=DF ,连接EF .图3图2图1(1)求证:AC∠EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∠相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a(a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;CBA∠对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整:AB(1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ∠当2k=时,结合函数图象,求区域W 内的整点个数;∠若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y axbxa 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a ,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA 上一定点,1OH+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.(1)如图,在Rt∠ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t =,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;备用图图1BAOB ABCDE AED CB∠若在∠ABC中存在一条中内弧,使得所在圆的圆心P在∠ABC的内部或边上,直接写出t 的取值范围.2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∠∠ 12. 45°13. 0 14. 12 15. =16. ∠∠∠三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∠四边形ABCD为菱形∠AB=AD,AC平分∠BAD∠BE=DF∠AB BE AD DF-=-∠AE=AF∠∠AEF是等腰三角形∠AC平分∠BAD∠AC∠EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∠∠ 22. 【答案】 (1)∠BD 平分∠ABC ∠∠=∠ABD CBD∠AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组 3x3x3x第4组(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∠6个 ∠10k -≤<或2k =-26. 【答案】(1)1(2,)B a ;(2)直线1x;(3)1a ≤2. 27. 【答案】。
2020年云南省中考数学试题及参考答案(word解析版)
2020年云南省初中学业水平考试数学试题卷(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.3.要使有意义,则x的取值范围是.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m=.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×1078.下列几何体中,主视图是长方形的是()A.B.C.D.9.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于()A.B.C.D.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1 C.D.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59 C.﹣60或﹣59 D.﹣61或﹣60或﹣59 三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E 职员F 杂工G 月工资/元7000 4400 2400 2000 1900 1800 1800 1800 1200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地/车型A地(元/辆)B地(元/辆)大货车900 1000小货车500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.答案与解析一、填空题(本大题共6小题,每小题3分,共18分)1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.【知识考点】正数和负数.【思路分析】根据正负数的意义,直接写出答案即可.【解答过程】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.【总结归纳】本题考查了正数和负数.根据互为相反意义的量,确定运出的符号是解决本题的关键.2.如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.【知识考点】平行线的性质.【思路分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【解答过程】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.【总结归纳】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.3.要使有意义,则x的取值范围是.【知识考点】二次根式有意义的条件.【思路分析】根据二次根式有意义的条件得到x﹣2≥0,然后解不等式即可.【解答过程】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.【总结归纳】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数,即当a≥0时有意义;若含分母,则分母不能为0.4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m =.【知识考点】反比例函数图象上点的坐标特征.【思路分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点(3,1)和(﹣1,m),即可得到k=3×1=﹣m,进而得出m=﹣3.【解答过程】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.【总结归纳】本题主要考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.【知识考点】根的判别式.【思路分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于c 的不等式,求出c的值即可.【解答过程】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.【总结归纳】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是.【知识考点】勾股定理;矩形的性质.【思路分析】由勾股定理可求BC=2,分点E在CD上或在AB上两种情况讨论,由勾股定理可求解.【解答过程】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.【总结归纳】本题考查了矩形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:1500000=1.5×106,故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.下列几何体中,主视图是长方形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据各个几何体的主视图的形状进行判断即可.【解答过程】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.【总结归纳】本题考查简单几何体的三视图,主视图就是从正面看该物体所得到的图形.9.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)【知识考点】算术平方根;幂的乘方与积的乘方;同底数幂的除法;负整数指数幂.【思路分析】根据二次根式的性质,负整数指数幂法则,幂的性质进行解答便可.【解答过程】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.【总结归纳】本题主要考查了二次根式的性质,负整数指数幂的运算法则,幂的运算法则,关键是熟记性质和法则.10.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【知识考点】三角形内角和定理;全面调查与抽样调查;算术平均数;方差;随机事件;概率的意义;概率公式.【思路分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答过程】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是比可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.【总结归纳】本题考查普查、抽查,三角形的内角和,方差和概率的意义,理解各个概念的内涵是正确判断的前提.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于()A.B.C.D.【知识考点】三角形中位线定理;平行四边形的性质;相似三角形的判定与性质.【思路分析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD 的面积的比.【解答过程】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.【总结归纳】本题考查了平行四边形的性质、三角形中位线定理以及相似三角形的判定与性质,利用平行四边形的性质及三角形中位线定理,找出OE∥BC且OE=BC是解题的关键.12.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【知识考点】规律型:数字的变化类;单项式.【思路分析】根据题意,找出规律:单项式的系数为(﹣2)的幂,其指数为比序号数少1,字母为a.【解答过程】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.【总结归纳】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1 C.D.【知识考点】圆锥的计算.【思路分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答过程】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.【总结归纳】本题考查了圆锥的计算,解决本题的关键是掌握圆锥的底面周长与展开后所得扇形的弧长相等.14.若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59 C.﹣60或﹣59 D.﹣61或﹣60或﹣59【知识考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【思路分析】解不等式组,得<x≤25,根据不等式组有且只有45个整数解,可得﹣61≤a <﹣58,根据关于y的方程+=1的解为非正数:解得a≥﹣61,又y+1不等于0,进而可得a的值.【解答过程】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.【总结归纳】本题考查了分式方程的解、解一元一次不等式组、一元一次不等式组的整数解,解决本题的关键是确定一元一次不等式组的整数解.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【知识考点】分式的化简求值.【思路分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答过程】解:原式=÷=•=,当x=时,原式=2.【总结归纳】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【知识考点】全等三角形的判定与性质.【思路分析】根据SSS推出△ADB和△BCA全等,再根据全等三角形的性质得出即可.【解答过程】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.【总结归纳】本题考查了全等三角形的判定和性质.解题的关键是掌握全等三角形的性质和判定的运用,注意:全等三角形的对应边相等,对应角相等.17.(8分)某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E 职员F 杂工G月工资/元7000 4400 2400 2000 1900 1800 1800 1800 1200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.【知识考点】算术平均数;中位数;众数.【思路分析】(1)求出9个数据之和再除以总个数即可;对于中位数,按从大到小的顺序排列,找出最中间的那个数即可;出现频数最多的数据即为众数;(2)根据剩下的8名员工的月工资数据的平均数比原9名员工的月工资数据的平均数减小,得出辞职的那名员工工资高于2700元,从而得出辞职的那名员工可能是经理或副经理.【解答过程】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700,9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.【总结归纳】本题考查了确定一组数据的平均数、中位数和众数的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.一组数据中出现次数最多的数据叫做众数.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【知识考点】分式方程的应用.【思路分析】设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据“实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务”列出方程即可求解.【解答过程】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.【总结归纳】此题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【知识考点】列表法与树状图法.【思路分析】(1)直接用概率公式求解可得;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得出所有等可能结果,从中找到甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的结果数,根据概率公式求解可得.【解答过程】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【知识考点】勾股定理;垂径定理;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)连接BC,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的性质即可得到结论.【解答过程】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x=,∴AB=.【总结归纳】本题考查切线的判定和性质,相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车900 1000小货车500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【知识考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设大货车、小货车各有x与y辆,根据题意列出方程组即可求出答案.(2)根据题中给出的等量关系即可列出y与x的函数关系.(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.【解答过程】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.【总结归纳】本题考查一次函数,解题的关键是正确求出大货车、小货车各有12与8辆,并正确列出y与x的函数关系式,本题属于中等题型.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的判定与性质.【思路分析】(1)根据菱形的性质得到∠ABC=∠ADC=120°,根据角平分线的性质得到CE=CF,根据直角三角形的性质得到EH=FH=AC,于是得到结论;(2)根据三角形的面积公式得到AE=8,根据勾股定理得到AC==4,连接BD,则BD⊥AC,AH=AC=2,根据相似三角形的性质得到BD=2BH=2,由菱形的面积公式即可得到结论.【解答过程】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠ABC=∠ADC=120°,∵CE⊥AB,CF⊥AD,∴CE=CF,∵H为对角线AC的中点,∴EH=FH=AC,∵∠CAE=30°,∵CE=AC,∴CE=EH=CF=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.【总结归纳】本题考查了菱形的判定和性质,直角三角形的性质,角平分线的性质,勾股定理,相似三角形的判定和性质,正确的识别图形是解题的关键.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可.【解答过程】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,。
2020年中考数学试题(解析版)
2020年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)数1,0,−23,﹣2中最大的是( )A .1B .0C .−23D .﹣22.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为( )A .17×105B .1.7×106C .0.17×107D .1.7×1073.(4分)某物体如图所示,它的主视图是( )A .B .C .D .4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )A .47B .37C .27D .17 5.(4分)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm7.(4分)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.√2D.√38.(4分)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+150tanα)米C.(1.5+150sinα)米D.(1.5+150sinα)米9.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 10.(4分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ =15,则CR的长为()A.14B.15C.8√3D.6√5二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2﹣25=.12.(5分)不等式组{x−3<0,x+42≥1的解为.13.(5分)若扇形的圆心角为45°,半径为3,则该扇形的弧长为.14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有头.15.(5分)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.16.(5分)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为米,BC为米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:√4−|﹣2|+(√6)0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).18.(8分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.19.(8分)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.20.(8分)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=√5MN.21.(10分)已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值.(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12﹣y1,求m的值.22.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AĈ上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.23.(12分)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.24.(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M 在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=245.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.2020年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)数1,0,−23,﹣2中最大的是()A.1B.0C.−23D.﹣2【分析】根据有理数大小比较的方法即可得出答案.【解答】解:﹣2<−23<0<1,所以最大的是1.故选:A.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:1700000=1.7×106,故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.(4分)某物体如图所示,它的主视图是()A .B .C .D .【分析】根据主视图的意义和画法进行判断即可.【解答】解:根据主视图就是从正面看物体所得到的图形可知:选项A 所表示的图形符合题意,故选:A .【点评】考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )A .47B .37C .27D .17 【分析】根据概率公式求解.【解答】解:从布袋里任意摸出1个球,是红球的概率=27.故选:C .【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.5.(4分)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°【分析】根据等腰三角形的性质可求∠C ,再根据平行四边形的性质可求∠E .【解答】解:∵在△ABC 中,∠A =40°,AB =AC ,∴∠C =(180°﹣40°)÷2=70°,∵四边形BCDE 是平行四边形,∴∠E =70°.故选:D .【点评】考查了平行四边形的性质,等腰三角形的性质,关键是求出∠C的度数.6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm【分析】根据表格中的数据,可以得到这组数据的中位数,本题得以解决.【解答】解:由表格中的数据可得,这批“金心大红”花径的众数为6.7,故选:C.【点评】本题考查众数,解答本题的关键是明确众数的含义,会求一组数据的众数.7.(4分)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.√2D.√3【分析】连接OB,根据菱形的性质得到OA=AB,求得∠AOB=60°,根据切线的性质得到∠DBO=90°,解直角三角形即可得到结论.【解答】解:连接OB,∵四边形OABC是菱形,∴OA=AB,∵OA=OB,∴OA=AB=OB,∴∠AOB=60°,∵BD是⊙O的切线,∴∠DBO=90°,∵OB=1,∴BD=√3OB=√3,故选:D.【点评】本题考查了切线的性质,菱形的性质,等边三角形的判定和性质,解直角三角形,熟练正确切线的性质定理是解题的关键.8.(4分)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+150tanα)米C.(1.5+150sinα)米D.(1.5+150sinα)米【分析】过点A作AE⊥BC,E为垂足,再由锐角三角函数的定义求出BE的长,由BC =CE+BE即可得出结论.【解答】解:过点A作AE⊥BC,E为垂足,如图所示:则四边形ADCE为矩形,AE=150,∴CE=AD=1.5,在△ABE中,∵tanα=BEAE=BE150,∴BE=150tanα,∴BC=CE+BE=(1.5+150tanα)(m),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=−−122×(−3)=−2,∵a=﹣3<0,∴x=﹣2时,函数值最大,又∵﹣3到﹣2的距离比1到﹣2的距离小,∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.10.(4分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ =15,则CR的长为()A.14B.15C.8√3D.6√5【分析】如图,连接EC,CH.设AB交CR于J.证明△ECP∽△HCQ,推出PCCQ =CECH=EP HQ =12,由PQ=15,可得PC=5,CQ=10,由EC:CH=1:2,推出AC:BC=1:2,设AC=a,BC=2a,证明四边形ABQC是平行四边形,推出AB=CQ=10,根据AC2+BC2=AB2,构建方程求出a即可解决问题.【解答】解:如图,连接EC,CH.设AB交CR于J.∵四边形ACDE,四边形BCJHD都是正方形,∴∠ACE=∠BCH=45°,∵∠ACB=90°,∠BCI=90°,∴∠ACE+∠ACB+∠BCH=180°,∠ACB+∠BCI=90°∴B,C,H共线,A,C,I共线,∵DE∥AI∥BH,∴∠CEP=∠CHQ,∵∠ECP=∠QCH,∴△ECP∽△HCQ,∴PCCQ =CECH=EPHQ=12,∵PQ=15,∴PC=5,CQ=10,∵EC:CH=1:2,∴AC:BC=1:2,设AC=a,BC=2a,∵PQ⊥CRCR⊥AB,∴CQ∥AB,∵AC∥BQ,CQ∥AB,∴四边形ABQC是平行四边形,∴AB =CQ =10,∵AC 2+BC 2=AB 2,∴5a 2=100,∴a =2√2(负根已经舍弃),∴AC =2√5,BC =4√5,∵12•AC •BC =12•AB •CJ , ∴CJ =2√5×4√510=4, ∵JR =AF =AB =10,∴CR =CJ +JR =14,故选:A .【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会踢脚线有辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m 2﹣25= (m +5)(m ﹣5) .【分析】直接利用平方差进行分解即可.【解答】解:原式=(m ﹣5)(m +5),故答案为:(m ﹣5)(m +5).【点评】此题主要考查了运用公式法分解因式,关键是掌握平方差公式:a 2﹣b 2=(a +b )(a ﹣b ).12.(5分)不等式组{x −3<0,x+42≥1的解为 ﹣2≤x <3 . 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:{x −3<0①x+42≥1②, 解①得x <3;解②得x ≥﹣2.故不等式组的解集为﹣2≤x <3.故答案为:﹣2≤x <3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.13.(5分)若扇形的圆心角为45°,半径为3,则该扇形的弧长为34π . 【分析】根据弧长公式l =nπr 180,代入相应数值进行计算即可. 【解答】解:根据弧长公式:l =45⋅π×3180=34π, 故答案为:34π. 【点评】此题主要考查了弧长的计算,关键是掌握弧长公式.14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生猪有 140 头.【分析】根据题意和直方图中的数据可以求得质量在77.5kg 及以上的生猪数,本题得以解决.【解答】解:由直方图可得,质量在77.5kg 及以上的生猪:90+30+20=140(头),故答案为:140.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.15.(5分)点P ,Q ,R 在反比例函数y =k x (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 275 .【分析】设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ),推出CP =3k 3a ,DQ =k 2a ,ER =k a ,推出OG =AG ,OF =2FG ,OF =23GA ,推出S 1=23S 3=2S 2,根据S 1+S 3=27,求出S 1,S 3,S 2即可.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ), ∴CP =3k 3a ,DQ =k 2a ,ER =k a ,∴OG =AG ,OF =2FG ,OF =23GA ,∴S 1=23S 3=2S 2,∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.【点评】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.16.(5分)如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE ⊥l ,BF ⊥l ,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN 方向走到M 点,观测C 点发现∠1=∠2.测得EF =15米,FM =2米,MN =8米,∠ANE =45°,则场地的边AB 为 15√2 米,BC 为 20√2 米.【分析】根据已知条件得到△ANE和△BNF是等腰直角三角形,求得AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),于是得到AB=AN﹣BN=15√2(米);过C作CH ⊥l于H,过B作PQ∥l交AE于P,交CH于Q,根据矩形的性质得到PE=BF=QH=10,PB=EF=15,BQ=FH,根据相似三角形的性质即可得到结论.【解答】解:∵AE⊥l,BF⊥l,∵∠ANE=45°,∴△ANE和△BNF是等腰直角三角形,∴AE=EN,BF=FN,∴EF=15米,FM=2米,MN=8米,∴AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),∴AN=25√2,BN=10√2,∴AB=AN﹣BN=15√2(米);过C作CH⊥l于H,过B作PQ∥l交AE于P,交CH于Q,∴AE∥CH,∴四边形PEHQ和四边形PEFB是矩形,∴PE=BF=QH=10,PB=EF=15,BQ=FH,∵∠1=∠2,∠AEF=∠CHM=90°,∴△AEF∽△CHM,∴CHHM =AEEF=2515=53,∴设MH=3x,CH=5x,∴CQ=5x﹣10,BQ=FH=3x+2,∵∠APB=∠ABC=∠CQB=90°,∴∠ABP+∠P AB=∠ABP+∠CBQ=90°,∴∠P AB=∠CBQ,∴△APB∽△BQC,∴APBQ =PBCQ,∴153x+2=155x−10,∴x=6,∴BQ=CQ=20,∴BC=20√2,故答案为:15√2,20√2.【点评】本题考查了相似三角形的应用,矩形的性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:√4−|﹣2|+(√6)0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).【分析】(1)直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:(1)原式=2﹣2+1+1=2;(2)(x﹣1)2﹣x(x+7)=x2﹣2x+1﹣x2﹣7x=﹣9x+1.【点评】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.18.(8分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.【分析】(1)由“AAS”可证△ABC≌△DCE;(2)由全等三角形的性质可得CE=BC=5,由勾股定理可求解.【解答】证明:(1)∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE,∴CE=BC=5,∵∠ACE=90°,∴AE=√AC2+CE2=√25+144=13.【点评】本题考查了全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定方法是本题的关键.19.(8分)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.【分析】(1)由要评价两家酒店月盈利的平均水平,即可得选择两家酒店月盈利的平均值,然后利用求平均数的方法求解即可求得答案;(2)平均数,盈利的方差反映酒店的经营业绩,A酒店的经营状况较好.【解答】解:(1)选择两家酒店月盈利的平均值;=2.5,x A=1+1.6+2.2+2.7+3.5+46=2.3;x B=2+3+1.7+1.8+1.7+3.66(2)平均数,方差反映酒店的经营业绩,A酒店的经营状况较好.理由:A酒店盈利的平均数为2.5,B酒店盈利的平均数为2.3.A酒店盈利的方差为1.073,B酒店盈利的方差为0.54,无论是盈利的平均数还是盈利的方差,都是A酒店比较大,故A酒店的经营状况较好.【点评】此题考查了折线统计图的知识.此题难度适中,注意掌握折线统计图表达的实际意义是解此题的关键.20.(8分)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=√5MN.【分析】(1)根据题意画出线段即可;(2)根据题意画出线段即可.【解答】解:(1)如图1,线段EF 和线段GH 即为所求;(2)如图2,线段MN 和线段PQ 即为所求.【点评】本题考查了作图﹣应用与设计作图,熟练掌握勾股定理是解题的关键.21.(10分)已知抛物线y =ax 2+bx +1经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值.(2)若(5,y 1),(m ,y 2)是抛物线上不同的两点,且y 2=12﹣y 1,求m 的值.【分析】(1)把点(1,﹣2),(﹣2,13)代入y =ax 2+bx +1解方程组即可得到结论;(2)把x =5代入y =x 2﹣4x +1得到y 1=6,于是得到y 1=y 2,即可得到结论.【解答】解:(1)把点(1,﹣2),(﹣2,13)代入y =ax 2+bx +1得,{−2=a +b +113=4a −2b +1, 解得:{a =1b =−4; (2)由(1)得函数解析式为y =x 2﹣4x +1,把x =5代入y =x 2﹣4x +1得,y 1=6,∴y 2=12﹣y 1=6,∵y 1=y 2,∴对称轴为x =2,∴m =4﹣5=﹣1.【点评】本题考查了二次函数图象上点的坐标特征,解方程组,正确的理解题意是解题的关键.22.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AĈ上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.【分析】(1)根据圆周角定理和AB为⊙O的直径,即可证明∠1=∠2;(2)连接DF,根据垂径定理可得FD=FC=10,再根据对称性可得DC=DF,进而可得DE的长,再根据锐角三角函数即可求出⊙O的半径.【解答】解:(1)∵∠ADC=∠G,∴AĈ=AD̂,∵AB为⊙O的直径,∴BĈ=BD̂,∴∠1=∠2;(2)如图,连接DF,∵AĈ=AD̂,AB是⊙O的直径,∴AB⊥CD,CE=DE,∴FD=FC=10,∵点C,F关于DG对称,∴DC=DF=10,∴DE=5,∵tan ∠1=25,∴EB =DE •tan ∠1=2,∵∠1=∠2,∴tan ∠2=25,∴AE =DE tan∠2=252,∴AB =AE +EB =292,∴⊙O 的半径为294.【点评】本题考查了圆周角定理、轴对称的性质、解直角三角形,解决本题的关键是掌握轴对称的性质.23.(12分)某经销商3月份用18000元购进一批T 恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T 恤衫多少件?(2)4月份,经销商将这批T 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a 件,然后将b 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同. ①用含a 的代数式表示b .②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T 恤衫多少件;(2)①根据甲乙两店的利润相同,可以得到关于a 、b 的方程,然后化简,即可用含a 的代数式表示b ;②根据题意,可以得到利润与a 的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a 的取值范围,从而可以求得乙店利润的最大值.【解答】解:(1)设3月份购进x 件T 恤衫,18000x +10=390002x ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元),(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简,得b=150−a2;②设乙店的利润为w元,w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×150−a2−600=36a+2100,∵乙店按标价售出的数量不超过九折售出的数量,∴a≤b,即a≤150−a2,解得,a≤50,∴当a=50时,w取得最大值,此时w=3900,答:乙店利润的最大值是3900元.【点评】本题考查一次函数的应用、分式方程的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答,注意分式方程要检验.24.(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M 在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=245.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.【分析】(1)推出∠AED=∠ABF,即可得出DE∥BF;(2)求出DE=12,MN=10,把y=245代入y=−65x+12,解得x=6,即NQ=6,得出QM=4,由FQ=QB,BM=2FN,得出FN=2,BM=4,即可得出结果;(3)连接EM并延长交BC于点H,易证四边形DFME是平行四边形,得出DF=EM,求出∠DEA=∠FBE=∠FBC=30°,∠ADE=∠CDE=∠FME=60°,∠MEB=∠FBE =30°,得出∠EHB=90°,DF=EM=BM=4,MH=2,EH=6,由勾股定理得HB=2√3,BE=4√3,当DP=DF时,求出BQ=223,即可得出BQ>BE;②(Ⅰ)当PQ经过点D时,y=0,则x=10;(Ⅱ)当PQ经过点C时,由FQ∥DP,得出△CFQ∽△CDP,则FQDP =CFCD,即可求出x=10 3;(Ⅲ)当PQ经过点A时,由PE∥BQ,得出△APE∽△AQB,则PEBQ =AEAB,求出AE=6√3,AB=10√3,即可得出x=143,由图可知,PQ不可能过点B.【解答】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°﹣(∠A+∠C)=180°,∵DE、BF分别平分∠ADC、∠ABC,∴∠ADE=12∠ADC,∠ABF=12∠ABC,∴∠ADE+∠ABF=12×180°=90°,∵∠ADE+∠AED=90°,∴∠AED=∠ABF,∴DE∥BF;(2)令x=0,得y=12,∴DE=12,令y=0,得x=10,∴MN=10,把y=245代入y=−65x+12,解得:x=6,即NQ=6,∴QM=10﹣6=4,∵Q是BF中点,∴FQ=QB,∵BM=2FN,∴FN+6=4+2FN,解得:FN=2,∴BM=4,∴BF=FN+MN+MB=16;(3)①连接EM并延长交BC于点H,如图2所示:∵FM=2+10=12=DE,DE∥BF,∴四边形DFME是平行四边形,∴DF=EM,∵AD=6,DE=12,∠A=90°,∴∠DEA=30°,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°﹣120°﹣30°=30°,∴∠MEB=∠FBE=30°,∴∠EHB=180°﹣30°﹣30°﹣30°=90°,DF=EM=BM=4,∴MH=12BM=2,∴EH=4+2=6,由勾股定理得:HB =√BM 2−MH 2=√42−22=2√3,∴BE =√EH 2−HB 2=√62+(2√3)2=4√3,当DP =DF 时,−65x +12=4,解得:x =203,∴BQ =14﹣x =14−203=223, ∵223>4√3,∴BQ >BE ;②(Ⅰ)当PQ 经过点D 时,如图3所示:y =0,则x =10;(Ⅱ)当PQ 经过点C 时,如图4所示:∵BF =16,∠FCB =90°,∠CBF =30°,∴CF =12BF =8,∴CD =8+4=12,∵FQ ∥DP ,∴△CFQ ∽△CDP ,∴FQ DP =CF CD , ∴2+x−65x+12=812,解得:x =103;(Ⅲ)当PQ 经过点A 时,如图5所示:∵PE ∥BQ ,∴△APE ∽△AQB ,∴PE BQ =AE AB ,由勾股定理得:AE =√DE 2−AD 2=√122−62=6√3,∴AB =6√3+4√3=10√3,∴12−(−65x+12)14−x=√310√3, 解得:x =143,由图可知,PQ 不可能过点B ;综上所述,当x =10或x =103或x =143时,PQ 所在的直线经过四边形ABCD 的一个顶点.【点评】本题是四边形综合题,主要考查了平行四边形的的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,难度较大,熟练掌握平行四边形的判定与性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考卷-2020中考数学试题(解析版)(111)湖北省孝感市2020年中考数学试题─、精心选一选,相信自己的判断!1.如果温度上升,记作,那么温度下降记作()A. B. C. D. 【答案】A 【解析】【分析】根据具有相反意义的量进行书写即可.【详解】由题知:温度上升,记作,∴温度下降,记作,故选:A.【点睛】本题考查了具有相反意义的量的书写形式,熟知此知识点是解题的关键.2.如图,直线,相交于点,,垂足为点.若,则的度数为()A. B. C. D. 【答案】B 【解析】【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵ ∴ ∵ ∴ 故选:B 【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.3.下列计算正确是()A. B. C. D. 【答案】C 【解析】【分析】据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变和单项式的乘法法则,逐一判断即可. 【详解】A:2a和3b不是同类项,不能合并,故此选项错误;B:故B错误;C:正确;D:故D错误. 【点睛】本题考查了合并同类项以及单项式的乘法的知识,解答本题的关键是熟练掌握合并同类项的法则. 4.如图是由5个相同的正方体组成的几何体,则它的左视图是()A. B. C. D. 【答案】C 【解析】【分析】从左面看,所得到的图形形状即为所求答案.【详解】从左面可看到第一层为2个正方形,第二层为1个正方形且在第一层第一个的上方,故答案为:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.某公司有10名员工,每人年收入数据如下表:年收入/万元4 6 8 10 人数/人3 4 2 1 则他们年收入数据的众数与中位数分别为()A. 4,6B. 6,6C. 4,5D. 6,5 【答案】B 【解析】【分析】数据出现最多的为众数;将数据从小到大排列,最中间的2个数的平均数为中位数.【详解】6出现次数最多, 故众数为: 6,最中间的2个数为6和6,中位数为,故选: B.【点睛】本题考查众数和中位数,需要注意,求解中位数前,一定要将数据进行排序. 6.已知,,那么代数式的值是()A. 2B.C. 4D. 【答案】D 【解析】【分析】先按照分式四则混合运算法则化简原式,然后将x、y的值代入计算即可.【详解】解:==x+y=+=2.故答案为D.【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键.7.已知蓄电池的电压为定值,使用蓄电池时,电流(单位:)与电阻(单位:)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为()A. B. C. D. 【答案】C 【解析】【分析】根据题意,电流与电阻是反比例函数关系,根据图中给出的坐标即可求出该反比例函数解析式.【详解】根据题意,电流与电阻是反比例函数关系,在该函数图象上有一点(6,8),故设反比例函数解析式为I=,将(6,8)代入函数解析式中,解得k=48,故I= 故选C.【点睛】本题主要考查反比例函数解析式的求解方法,掌握求解反比例函数解析式的方法是解答本题的关键.8.将抛物线向左平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称,则抛物线的解析式为()A. B. C. D. 【答案】A 【解析】【分析】利用平移的规律:左加右减,上加下减.并用规律求函数解析式,再因为关于x轴对称的两个抛物线,自变量x的取值相同,函数值y互为相反数,由此可直接得出抛物线的解析式.【详解】解:抛物线向左平移1个单位长度,得到抛物线:,即抛物线:; 由于抛物线与抛物线关于轴对称,则抛物线的解析式为:. 故选:A.【点睛】主要考查了函数图象的平移、对称,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式以及关于x轴对称的两个抛物线,自变量x的取值相同,函数值y互为相反数.9.如图,在四边形中,,,,,.动点沿路径从点出发,以每秒1个单位长度的速度向点运动.过点作,垂足为.设点运动的时间为(单位:),的面积为,则关于的函数图象大致是()A. B. C. D. 【答案】D 【解析】【分析】分点P在AB边上,如图1,点P在BC边上,如图2,点P在CD边上,如图3,利用解直角三角形的知识和三角形的面积公式求出相应的函数关系式,再根据相应函数的图象与性质即可进行判断.【详解】解:当点P在AB 边上,即0≤x≤4时,如图1,∵AP=x,,∴,∴;当点P在BC边上,即4<x≤10时,如图2,过点B作BM⊥AD 于点M,则,∴;当点P在CD边上,即10<x≤12时,如图3,AD=,,∴;综上,y与x的函数关系式是:,其对应的函数图象应为:.故选:D.【点睛】本题以直角梯形为载体,主要考查了动点问题的函数图象、一次函数和二次函数的图象与性质以及解直角三角形等知识,属于常考题型,正确分类、列出相应的函数关系式是解题的关键.10.如图,点在正方形的边上,将绕点顺时针旋转到的位置,连接,过点作的垂线,垂足为点,与交于点.若,,则的长为()A. B. C. 4 D. 【答案】B 【解析】【分析】根据正方形性质和已知条件可知BC=CD=5,再由旋转可知DE=BF,设DE=BF=x,则CE=5-x,CF=5+x,然后再证明△ABG∽△CEF,根据相似三角形的性质列方程求出x,最后求CE即可.【详解】解:∵,∴BC=BG+GC=2+3=5 ∵正方形∴CD=BC=5 设DE=BF=x,则CE=5-x,CF=5+x ∵AH⊥EF,∠ABG=∠C=90° ∴∠HFG+∠AGF=90°,∠BAG+∠AGF=90° ∴∠HFG=∠BAG ∴△ABG∽△CEF ∴ ,即,解得x= ∴CE=CD-DE=5-=.故答案为B.【点睛】本题考查了正方形的性质和相似三角形的判定与性质,根据相似三角形的性质列方程求出DE的长是解答本题的关键.二、细心填一填,试试自己的身手!11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______.【答案】【解析】【分析】先将100万写成***-*****,然后再写成a×10n的形式,其中1≤|a|<10,n为***-*****写成a时小时点向左移动的位数.【详解】解:100万=***-*****= 故答案为.【点睛】本题考查了科学记数法,将***-*****写成a×10n的形式,确定a和n的值是解答本题的关键.12.有一列数,按一定的规律排列成,,3,,27,-81,….若其中某三个相邻数的和是,则这三个数中第一个数是______.【答案】【解析】【分析】题中数列的绝对值的比是-3,由三个相邻数的和是,可设三个数为n,-3n,9n,据题意列式即可求解.【详解】题中数列的绝对值的比是-3,由三个相邻数的和是,可设第一个数是n,则三个数为n,-3 n,9n 由题意:,解得:n=-81,故答案为:-81.【点睛】此题主要考查数列的规律探索与运用,一元一次方程与数字的应用,熟悉并会用代数式表示常见的数列,列出方程是解题的关键.13.某型号飞机的机翼形状如图所示,根据图中数据计算的长为______.(结果保留根号)【答案】【解析】【分析】如图(见解析),先在中,解直角三角形可求出CF的长,再根据等腰直角三角形的判定与性质可得DE 的长,从而可得CE的长,然后根据线段的和差即可得.【详解】如图,过A作,交DF于点E,则四边形ABFE是矩形由图中数据可知,,,,在中,,即解得是等腰三角形则的长为故答案为:.【点睛】本题考查了解直角三角形的应用、等腰三角形的判定与性质等知识点,掌握解直角三角形的方法是解题关键.14.在线上期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长分钟;B类:5分钟总时长分钟;C类:10分钟总时长分钟;D类:总时长15分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.【答案】336 【解析】【分析】先根据A类的条形统计图和扇形统计图信息求出调查抽取的总人数,再求出每天做眼保健操总时长超过5分钟且不超过10分钟的学生的占比,然后乘以1200即可得.【详解】调查抽取的总人数为(人)C类学生的占比为B类学生的占比为则(人)即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人故答案为:336.【点睛】本题考查了条形统计图和扇形统计图的信息关联等知识点,掌握理解统计调查的相关知识是解题关键.15.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为,空白部分的面积为,大正方形的边长为,小正方形的边长为,若,则的值为______.【答案】【解析】【分析】如图(见解析),设,先根据直角三角形的面积公式、正方形的面积公式求出的值,再根据建立等式,然后根据建立等式求出a 的值,最后代入求解即可.【详解】如图,由题意得:,,,是直角三角形,且均为正数则大正方形的面积为小正方形的面积为设则又,即解得或(不符题意,舍去)将代入得:两边同除以得:令则解得或(不符题意,舍去)即的值为故答案为:.【点睛】本题考查了一元二次方程与几何图形、勾股定理、三角形全等的性质等知识点,理解题意,正确求出的值是解题关键.16.如图,已知菱形的对角线相交于坐标原点,四个顶点分别在双曲线和上,.平行于轴的直线与两双曲线分别交于点,,连接,,则的面积为______.【答案】【解析】【分析】先作轴于点G,作轴于点H,证明,利用,同时设出点A的坐标,表示出OH,BH的长度,求出k的值,设直线EF的解析式为,表示点E,F 的坐标,求出EF的长度,可求得的面积.【详解】作轴于点G,作轴于点H,如图所示:∵即∴ ∴ 设点A的坐标为则∴ ∴ ∵的图象在第二,四象限∴ 设直线EF的解析式为:则∴ ∴ 故答案为:.【点睛】本题考查了反比例函数与几何图形的综合,快速找到相似三角形求出k的值,是解题的关键.用心做一做,显显自己的能力!17.计算:【答案】.【解析】分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可.【详解】原式.【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.18.如图,在中,点在的延长线上,点在的延长线上,满足.连接,分别与,交于点,.求证:.【答案】证明见解析.【解析】分析】先根据平行四边形的性质可得,,再根据平行线的性质、邻补角的定义可得,,然后根据三角形全等的判定定理与性质即可得证.【详解】∵四边形为平行四边形∴,∴,在和中,∴ ∴.【点睛】本题考查了平行四边形的性质、平行线的性质、邻补角的定义、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质,正确找出全等三角形是解题关键.19.有4张看上去无差别的卡片,上面分别写有数,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【答案】(1);(2)【解析】【分析】(1)直接利用概率公式进行计算即可;(2)列表展示所有16种等可能的结果数,再找出两次抽取的卡片上两数之差的绝对值大于3结果数,然后根据概率公式求解.【详解】解:(1)抽取到的数为偶数的概率为P=.(2)列表如下:次第2次2 5 8 2 5 8 ∵差的绝对值有16种可能,绝对值大于3的有6种可能,∴差的绝对值大于3的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.如图,在平面直角坐标系中,已知点,和,请按下列要求画图并填空.(1)平移线段,使点平移到点,画出平移后所得的线段,并写出点的坐标为______;(2)将线段绕点逆时针旋转,画出旋转后所得的线段,并直接写出的值为______;(3)在轴上找出点,使的周长最小,并直接写出点的坐标为______.【答案】(1)(2,-4)(2)(3)(0,4)【解析】【分析】(1)平移线段AB,使A点平移到C点,可以知道A点是向右平移5个单位,向下平移5个单位,故可以确定D 点坐标.(2)根据B、C、E三点坐标,连接BE,可以判断出△BCE 为直角三角形,故可求解值.(3)过A点做y轴的对称点A’,连接A’B,与y轴的交点即为F点.此时△ABF的周长最小,通过求解函数解析式确认点F的坐标.【详解】解:(1)如图所示:平移线段AB,使A点平移到C点,可以知道A点是向右平移5个单位,再向下平移5个单位,根据题意可知,B点(-3,1)平移到D点,故可以确定点D的坐标.点D的坐标为;(2)如图所示:根据题意,AE是线段AB围绕点A逆时针旋转90°得到,故AB=AE,不难算出点E的坐标为(3,3).连接BE,根据B、C、E三点坐标算出BC=、EC=、BE=,故,可以判断出△BEC为直角三角形.故(3)如图所示:过A点做y轴的对称点A’,连接A’B,与y轴的交点即为F点.故可知A’的坐标为(1,5),点B的坐标为(-3,1),设A’B的函数解析式为y=kx+b,将(1,5),(-3,1)代入函数解析中解得k=1,b=4,则函数解析式为y=x+4,则F点坐标为(0,4), 故点F的坐标为(0,4).【点睛】(1)本题主要考查平移,洞察点A是如何平移到点C,是求出D点坐标的关键.(2)连接BE,根据B、C、E三点坐标判断出△BCE是直角三角形,就不难算出的值.(3)本题通过做A点的对称点A’,连接A’B,找到A’B与y轴的交点F是解答本题的关键.21.已知关于的一元二次方程.(1)求证:无论为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根,满足,求的值.【答案】(1)见解析(2)0,-2 【解析】【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得与的、的关系式,进一步可以求出答案. 【详解】(1)证明:∵,∵无论为何实数,,∴,∴无论为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得:,,∵,∴,∴,∴,化简得:,解得,.【点睛】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题. 22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知乙产品的售价比甲产品的售价多5元,丙产品的售价是甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买农产品最少要花费多少元?【答案】(1)甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)按此方案购买农产品最少要花费300元.【解析】【分析】(1)设甲产品的售价为元,先表示出乙产品的售价和丙产品的售价,再根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”建立方程,然后求解即可得;(2)设的甲、乙、丙三种农产品搭配中,丙种农产品有,先求出乙种农产品的数量和甲种农产品的数量,再根据题干三种农产品间的数量关系列出不等式求出m的取值范围,然后根据(1)的结论得出所需费用关于m的函数关系式,最后利用一次函数的性质即可得.【详解】(1)设甲产品的售价为元,则乙产品的售价为元,丙产品的售价为元由题意得:解得:经检验,是所列分式方程的解,也符合题意则,答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设的甲、乙、丙三种农产品搭配中,丙种农产品有,则乙种农产品有,甲种农产品有由题意得:解得设按此销售方案购买农产品所需费用元则∵在范围内,随的增大而增大∴当时,取得最小值,最小值为(元)答:按此方案购买农产品最少要花费300元.【点睛】本题考查了分式方程的实际应用、一次函数的实际应用、一元一次不等式的应用等知识点,依据题意,正确列出方程和函数的解析式是解题关键.23.已知内接于,,的平分线与交于点,与交于点,连接并延长与过点的切线交于点,记.(1)如图1,若,①直接写出值为______;②当的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若,且,,求的长.【答案】(1)①;② ;(2)5 【解析】【分析】(1)①连接AD,连接AO并延长交BC于H点,根据题意先证明△ABC是等边三角形,再得到∠AFD 为直角,利用含30°的直角三角形即可求解;②根据割补法即可求解阴影部分面积;(2)连接,连接并延长交于点,连接,根据题意先证明,得到,再求出,根据,得到,即可求出BD,从而求出BE的长.【详解】解:(1)①,∴△ABC是等边三角形,∵BD平分∠ABC,∴∠DBC=∠ABC=30°,∵∠BDC=∠BAC=60° ∴∠BCD=180°-∠DBC-∠BDC=90° ∴BD是直径,∴∠BAD=90°,CD=AD 连接AO 并延长交BC于H点,∵AO=BO ∴∠BAH=∠ABO=30°,∴∠AHB=180°-∠BAH-∠ABC=90° ∴AH⊥BC ∵AF是的切线∴AF⊥AH ∴四边形AHCF是矩形∴AF⊥CF ∵∠ADB=∠BDC=60° ∴∠ADF=180°-∠ADB-∠BDC=60° ∴∠FAD=90°-∠ADF=30° ∴;②∵半径为2,∴AO=OD=2,∵∠DBC=30°,∴CD=BD=2=AD,∴DF=AD=1, ∴AF=, ∵∠AOB=180°-2∠ABO=120°,∴∠AOD=180°-∠AOB=60°,∴﹔故答案为:①;②;(2)如图,连接,连接并延长交于点,连接,则,∴.∵与相切,∴.∴.∵平分,∴.∴,∴.∵,∴.∵四边形内接于,∴.又∵,∴.又∵,∴.又∵公共,∴,∴.∵,∴.∵,公共,∴.∴,即,∴.∴.【点睛】此题主要考查切线的判定与性质综合,解题的关键是熟知切线的性质、等边三角形的判定与性质及相似三角形的判定与性质.24.在平面直角坐标系中,已知抛物线与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.(1)当时,直接写出点,,,的坐标:______,______,______,______;(2)如图1,直线交轴于点,若,求的值和的长;(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.①用含的代数式表示;②设,求的最大值.【答案】(1),,,;(2);;(3)①;②.【解析】【分析】(1)求出时,x的值可得点A、B的坐标,求出时,y的值可得点C的坐标,将二次函数的解析式化为顶点式即可得点D的坐标;(2)先求出顶点D的坐标,从而可得DK、OK的长,再利用正切三角函数可得EK、OE、OC的长,从而可得出点C的坐标,然后将点C的坐标代入二次函数的解析式可得a的值,利用勾股定理可求出CE的长;(3)①如图,先利用待定系数法求出直线AN的解析式,从而可得点F的坐标,由此可得出PF的长,再利用待定系数法求出直线CE的解析式,从而可得点J的坐标,由此可得出FJ的长,然后根据相似三角形的判定与性质可得,从而可得FH的长,最后根据的定义即可得;②先将的表达式化为顶点式,从而得出其增减性,再利用二次函数的性质即可得.【详解】(1)当时,当时,,解得或则点A的坐标为,点B的坐标为当时,则点C的坐标为将化成顶点式为则点D的坐标为故答案为:,,,;(2)如图,作轴于点将化成顶点式为则顶点D的坐标为∴,在中,,即解得在中,,即解得,将点代入得:解得;(3)①如图,作与的延长线交于点由(2)可知,,∴ 当时,,解得或∴,为OC的中点∴ 设直线AN的解析式为将点,代入得:,解得则直线AN的解析式为∵ ∴ ∴ 由(2)知,,设直线CE的解析式为将点,代入得:,解得则直线CE的解析式为∴ ∴ ∵,轴∴,∴ ∴,即解得∴ 即;②将化成顶点式为由二次函数的性质可知,当时,随t的增大而增大;当时,随t的增大而减小因此,分以下两种情况:当时在内,随t的增大而增大则当时,取得最大值,最大值为又当时,当时在内,随t的增大而增大;在内,随t的增大而减小则当时,取得最大值,最大值为综上,的最大值为.【点睛】本题考查了利用待定系数法求二次函数的表达式、二次函数的图象与性质、正切三角函数、相似三角形的判定与性质等知识点,较难的是题(3)①,通过作辅助线,构造相似三角形求出的长是解题关键.。