最新山西省中考数学试题及答案
2022山西中考数学试卷+答案解析

2022年山西省中考数学一、选择题(本大题共10个小题,每小题3分,共30分)1. ―6的相反数为( ) A.6 B.16 C.―16 D.―62. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度。
下列航天图标,其文字上方的图案是中心对称图形的是 ( )A B C D3. 粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68 285万吨。
该数据可用科学记数法表示为( )A .6.828 5×104吨B .68 285×104吨C .6.828 5×107吨D .6.828 5×108吨4. 神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618。
这体现了数学中的 ( )A .平移B .旋转C .轴对称D .黄金分割5. 不等式组{2x +1≥3,4x −1<7的解集是 ( )A .x ≥1B .x <2C .1≤x <2D .x <126. 如图,Rt △ABC 是一块直角三角板,其中∠C =90°,∠BAC =30°。
直尺的一边DE 经过顶点A ,若DE ∥CB ,则∠DAB 的度数为 ( )A .100°B .120°C .135°D .150° 7. 化简1a−3―6a 2−9的结果是 ( )A.1a+3B.a ―3C.a +3D.1a−3 8. 如图,△ABC 内接于☉O ,AD 是☉O 的直径,若∠B =20°,则∠CAD 的度数是 ( )A.60°B.65°C.70°D.75°9. “二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”。
小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是( )A .23B .12C .16D .18 10. 如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在AB 上的点C 处,图中阴影部分的面积为 ( )A.3π―3√3B.3π―9√32C.2π―3√3D.6π―9√32二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:√18×√12的结果为.12.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示,当S=0.25 m2时,该物体承受的压强p的值为Pa.13.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol·m―2·s―1),结果统计如下:则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”). 14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15. 如图,在正方形ABCD 中,点E 是边BC 上的一点,点F 在边CD 的延长线上,且BE =DF ,连接EF 交边AD 于点G.过点A 作AN ⊥EF ,垂足为点M ,交边CD 于点N 。
中考数学试题及答案山西

中考数学试题及答案山西第一题:已知数对 (a, b) 满足条件 a > b > 0,且满足方程 a^2 - b^2 = 55,求 a 和 b 的值。
解析:根据已知条件 a > b > 0,我们可以设 a = b + x,其中 x > 0。
代入方程 a^2 - b^2 = 55,得到 (b + x)^2 - b^2 = 55。
化简得 x^2 + 2bx = 55。
因为 x > 0,所以 x^2 > 0,即 x^2 + 2bx > 2bx > 0。
因此,方程 x^2 + 2bx = 55 没有正整数解。
所以,此题无解。
第二题:一架飞机在起始时刻从 A 点向 B 点以每小时 400 千米的速度飞行,同时从 B 点向 A 点以每小时 300 千米的速度飞行。
相遇后飞机返回原点,以每小时 500 千米的速度飞行。
求总共飞行的时间。
解析:设从 A 点到 B 点的距离为 d,飞机相遇的时间为 t。
在 t 小时内,飞机 A 飞行的距离为 400t 千米,飞机 B 飞行的距离为 300t 千米。
由条件可知,400t + 300t = d,即 700t = d。
当飞机返回原点时,它已经飞行了 2d 的距离。
根据飞机返回原点的速度 500 千米/小时,可得 500t = 2d。
将两个方程联立解得 t = d/700 并代入第一个方程得到 d = 700/3。
所以,总共飞行的时间为 t = d/700 = (700/3)/700 = 1/3 小时。
第三题:设函数 f(x) = x^2 - x,则当 x > 0 时,f(f(x)) = ?解析:将 f(x) = x^2 - x 代入 f(f(x)) 中:f(f(x)) = f(x^2 - x)= (x^2 - x)^2 - (x^2 - x)= x^4 - 2x^3 + x^2 - x^2 + x= x^4 - 2x^3 + x= x(x^3 - 2x^2 + 1)所以,当 x > 0 时,f(f(x)) = x(x^3 - 2x^2 + 1)。
山西省中考数学试题及答案

山西省中考数学试题及答案一、选择题1. 小明有5枚同样的硬币,他将这5枚硬币摞在一起。
如果顺序不同,摞硬币的方式共有几种?A. 5种B. 10种C. 20种D. 120种答案:D解析:第一枚硬币有5种摞法,第二枚硬币有4种摞法,第三枚硬币有3种摞法,依次类推,共有5 × 4 × 3 × 2 × 1 = 120种。
2. 一张矩形桌子的长是2.5米,宽是1.8米。
给这张桌子围上一个宽度为0.5米的边框,桌子加上边框的面积是多少平方米?A. 7.5平方米B. 8平方米C. 12平方米D. 14平方米答案:C解析:原桌子的面积为2.5 × 1.8 = 4.5平方米,边框的面积为[(2.5 + 0.5) × (1.8 + 0.5)] - 2.5 × 1.8 = 12平方米,桌子加上边框的面积为4.5 + 12 = 16.5平方米。
3. 两个正整数之和为120,差为50,这两个正整数分别是多少?A. 70和50B. 85和35C. 90和30D. 100和20答案:C解析:假设两个正整数分别为x和y,则有x + y = 120,x - y = 50。
通过解方程组可以得到x = 90,y = 30。
4. 一张纸折叠4次,叠起来后有多少层?A. 4层B. 8层C. 16层D. 32层答案:D解析:每次折叠纸张,层数翻倍。
第一次折叠为2层,第二次折叠为4层,第三次折叠为8层,第四次折叠为16层,共32层。
5. 一套图书原价150元,打折后优惠了30元,打折后的价格是原价的几分之几?A. 8/10B. 2/3C. 3/5D. 5/9答案:C解析:打折后的价格为150 - 30 = 120元,打折后的价格是原价的120/150 = 3/5。
二、填空题1. 计算:(3 - √(5 - 2x))² = 10的解为x = __。
答案:1解析:展开等式,得到9 - 6√(5 - 2x) + 5 - 2x = 10,化简后得到-6√(5 - 2x) - 2x - 6 = 0,进一步求解得到x = 1。
2022年山西省中考数学试卷(解析版)

2022年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)(2022•山西)﹣6的相反数为()A.6B.C.D.﹣62.(3分)(2022•山西)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.3.(3分)(2022•山西)粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.(3分)(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.(3分)(2022•山西)不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<6.(3分)(2022•山西)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°7.(3分)(2022•山西)化简﹣的结果是()A.B.a﹣3C.a+3D.8.(3分)(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.(3分)(2022•山西)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.(3分)(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)(2022•山西)计算:×的结果为.12.(3分)(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.13.(3分)(2022•山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.(3分)(2022•山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.(3分)(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD 的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(2022•山西)(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.(8分)(2022•山西)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.(7分)(2022•山西)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.(8分)(2022•山西)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告××中学学生读书情况调查主题调查抽样调查调查对象××中学学生方式数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.(8分)(2022•山西)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a ≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为.21.(8分)(2022•山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB 与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.(13分)(2022•山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF =90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN 的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.(13分)(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.2022年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)(2022•山西)﹣6的相反数为()A.6B.C.D.﹣6【分析】根据相反数的定义:只有符号不同的两个数叫相反数,可以直接得到答案.【解答】解:﹣6的相反数是:6,故选:A.【点评】此题主要考查了相反数的定义,同学们要熟练掌握相反数的定义.2.(3分)(2022•山西)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义进行判断,即可得出答案.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.(3分)(2022•山西)粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨【分析】将较大的数写成科学记数法形式:a×10n,其中1≤a<10,n为正整数即可.【解答】解:68285万吨=6.8285×104×104=6.8285×108(吨),故选:D.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.4.(3分)(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割【分析】利用黄金分割比的意义解答即可.【解答】解:∵每圈螺纹的直径与相邻螺纹直径的比约为0.618,又黄金分割比为≈0.618,∴其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割,故选:D.【点评】本题主要考查了数学与自然界与数学知识的联系,熟悉线段的黄金分割是解题的关键.5.(3分)(2022•山西)不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式2x+1≥3,得:x≥1,解不等式4x﹣1<7,得:x<2,则不等式组的解集为1≤x<2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2022•山西)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°【分析】先根据平行线的性质求得∠DAC的度数,再根据角的和差关系求得结果.【解答】解:∵DE∥CB,∠C=90°,∴∠DAC=∠C=90°,∵∠BAC=30°,∴∠DAB=∠DAC+∠BAC=120°,故答案为:B.【点评】本题主要考查了平行线的性质以及三角形角和差计算,关键是利用平行线的性质求得∠DAC.7.(3分)(2022•山西)化简﹣的结果是()A.B.a﹣3C.a+3D.【分析】根据异分母分式的加减法法则,进行计算即可解答.【解答】解:﹣=﹣===,故选:A.【点评】本题考查了分式的加减法,熟练掌握异分母分式的加减法法则是解题的关键.8.(3分)(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°【分析】连接BD,根据直径所对的圆周角是直角可得∠ABD=90°,从而可求出∠CBD 的度数,然后利用同弧所对的圆周角相等即可解答.【解答】解:连接BD,∵AD是⊙O的直径,∴∠ABD=90°,∵∠ABC=20°,∴∠CBD=∠ABD﹣∠ABC=70°,∴∠CAD=∠CBD=70°,故选:C.【点评】本题考查了圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.(3分)(2022•山西)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.【分析】根据题意,可以画出相应的树状图,从而可以得到小乐抽到的两张邮票恰好是“立春”和“立夏”的概率.【解答】解:设立春用A表示,立夏用B表示,立秋用C表示,立冬用D表示,树状图如下,由上可得,一共有12种可能性,其中小乐抽到的两张邮票恰好是“立春”和“立夏”的可能性2种,∴小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是=,故选:C.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图.10.(3分)(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣【分析】根据折叠的想找得到AC=AO,BC=BO,推出四边形AOBC是菱形,连接OC 交AB于D,根据等边三角形的性质得到∠CAO=∠AOC=60°,求得∠AOB=120°,根据菱形和扇形的面积公式即可得到结论.【解答】解:沿AB折叠扇形纸片,点O恰好落在上的点C处,∴AC=AO,BC=BO,∵AO=BO,∴四边形AOBC是菱形,连接OC交AB于D,∵OC=OA,∴△AOC是等边三角形,∴∠CAO=∠AOC=60°,∴∠AOB=120°,∵AC=3,∴OC=3,AD=AC=,∴AB=2AD=3,∴图中阴影部分的面积=S扇形AOB﹣S菱形AOBC=﹣3×3=3π﹣,故选:B.【点评】本题考查了扇形面积的计算,菱形的判定和性质,等边三角形的判定和性质,正确地作出辅助线是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)(2022•山西)计算:×的结果为3.【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.12.(3分)(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为400Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图象经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是灵活应用待定系数法解决问题,属于中考常考题型.13.(3分)(2022•山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是乙(填“甲”或“乙”).【分析】直接利用方差公式,进而计算得出答案.【解答】解:甲的方差为:=[(32﹣25)2+(30﹣25)2+(25﹣25)2+(18﹣25)2+(20﹣25)2]=29.6;乙的方差为:=[(28﹣25)2+(25﹣25)2+(26﹣25)2+(24﹣25)2+(22﹣25)2]=4.∵29.6>4,∴两个大豆品种中光合作用速率更稳定的是乙.故答案为:乙.【点评】此题考查了方差、平均数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2022•山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价32元.【分析】设该护眼灯可降价x元,根据“以利润率不低于20%的价格降价出售”列一元一次不等式,求解即可.【解答】解:设该护眼灯可降价x元,根据题意,得,解得x≤32,故答案为:32.【点评】本题考查了一元一次不等式的应用,理解题意并根据题意建立一元一次不等式是解题的关键.15.(3分)(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD 的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为4.【分析】连接AE,AF,EN,由正方形的性质可得AB=AD,BC=CD,∠ABE=∠BCD =∠ADF=90°,可证得△ABE≌△ADF(SAS),可得∠BAE=∠DAF,AE=AF,从而可得∠EAF=90°,根据等腰三角形三线合一可得点M为EF中点,由AN⊥EF可证得△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),可得EN=FN,设DN=x,则EN=FN=x+5,CE=x+3,由勾股定理解得x=12,可得AB=CD=20,由勾股定理可得AE =5,从而可得AM=EM=FM=,由勾股定理可得MN=,即可求解.【解答】解:如图,连接AE,AF,EN,∵四边形ABCD为正方形,∴AB=AD,BC=CD,∠ABE=∠BCD=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF,AE=AF,∴∠EAF=90°,∴△EAF为等腰直角三角形,∵AN⊥EF,∴EM=FM,∠EAM=∠F AM=45°,∴△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),∴EN=FN,设DN=x,∵BE=DF=5,CN=8,∴CD=CN+DN=x+8,∴EN=FN=DN+DF=x+5,CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3,在Rt△ECN中,由勾股定理可得:CN2+CE2=EN2,即82+(x+3)2=(x+5)2,解得:x=12,∴AB=CD=x+8=20,EN=x+5=17,在Rt△ABE中,由勾股定理可得:AE===5,∴AM=EM=FM==,在Rt△EMN中,由勾股定理可得:MN===,∴AN=AM+MN=+=4,故答案为:4.【点评】本题考查正方形的性质,勾股定理,等腰三角形的性质,全等三角形的判定与性质等知识点,解题的关键是正确作出辅助线,构建全等三角形解决问题.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(2022•山西)(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.【分析】(1)根据有理数的乘方,负整数指数幂,有理数的加法,绝对值计算即可;(2)根据加减消元法求解即可.【解答】解:(1)原式=9×+(﹣3)+2=3+(﹣3)+2=2;(2)①+②得:3x=9,∴x=3,将x=3代入②得:3+y=6,∴y=3,∴原方程组的解为.【点评】本题考查了实数的运算,有理数的乘方,负整数指数幂,绝对值,解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.17.(8分)(2022•山西)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.【分析】(1)利用尺规作图﹣线段垂直平分线的作法,进行作图即可;(2)利用矩形的性质求证∠EAO=∠FCO,∠AEO=∠CFO,由线段的垂直平分线得出AO=CO,即可证明△AOE≌△COF,进而得出AE=CF.【解答】解:(1)如图,(2)AE=CF,证明如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF.【点评】本题考查了基本作图,矩形的性质,全等三角形的判定与性质,熟练掌握线段垂直平分线的作法,矩形的性质,全等三角形的判定方法是解决问题的关键.18.(7分)(2022•山西)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.【分析】原来的燃油汽车行驶1千米所需的油费(x+0.54)元,根据题意可得等量关系:燃油汽车所需油费200元所行使的路程×4=电动汽车所需电费200元所行使的路程,根据等量关系列出方程即可.【解答】解:设这款电动汽车平均每公里的充电费用为x元,根据题意,得,解得x=0.2,经检验,x=0.2是原方程的根,答:这款电动汽车平均每公里的充电费用为0.2元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中等量关系,设出未知数,列出方程,注意不要忘记检验.19.(8分)(2022•山西)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告××中学学生读书情况调查主题抽样调查调查对象××中学学生调查方式数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.【分析】(1)由条形统计图和扇形统计图可得平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,即可求解,由条形统计图可知从图书馆借阅的人数占总数人的62%,即可求解;(2)由扇形统计图可知平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,即可求解;(3)由第一项可知阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少,由第二项可知阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少等等.【解答】解:(1)∵平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,∴参与本次抽样调查的学生人数为:33÷11%=300(人),∵从图书馆借阅的人数占总数人的62%,∴选择“从图书馆借阅”的人数为:300×62%=186(人),答:参与本次抽样调查的学生人数为300人,选择“从图书馆借阅”的人数为186人;(2)∵平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,∴3600×32%=1152(人),答:该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数为1152人;(3)答案不唯一,如:由第一项可知:阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少,由第二项可知:阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少.【点评】本题考查条形统计图,扇形统计图,用样本估计总体等知识点,解题的关键是掌握利用统计图提取所需信息.20.(8分)(2022•山西)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a ≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.。
精品解析:2022年山西省中考数学真题(解析版)

A. 吨B. 吨
C. 吨D. 吨
【答案】D
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【答案】这款电动汽车平均每公里的充电费为0.2元.
【解析】
【分析】设这款电动汽车平均每公里的充电费为x元,则燃油车平均每公里的充电费为(x+0.6)元,根据“电动汽车可行驶的总路程是燃油车的4倍”列分式方程,解方程即可求解.
【详解】解:设这款电动汽车平均每公里的充电费为x元.
根据题意,得 .
解,得 .
16.(1)计算: ;
(2)解方程组: .
【答案】(1)2;(2) .
【解析】
【分析】(1)先根据乘方的意义、负整数指数幂、绝对值运算,然后合并即可;
(2)利用加减消元法解方程组.
【详解】(1)解:
;
(2)解: .
①+②,得 ,
∴ .
将 代入②,得 ,
∴ .
所以原方程组的解为 ,
【点睛】本题考查了解二元一次方程组,以及乘方、负整数指数幂、绝对值运算.熟练掌握运算法则是解本题的关键.
故选:D.
【点睛】本题考查相反数,掌握相反数的定义是解题的关键.
2.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()
A. B. C. D.
【答案】B
【解析】
2022太原中考数学试题及答案

2022太原中考数学试题及答案2022年太原市初中学业水平考试数学试卷一、选择题(本题共10个小题,每小题3分,共30分)1. 2022年太原市初中学业水平考试数学试卷共有选择题、填空题、解答题三种题型,其中选择题有10个小题,小题的分值为3分,则选择题的总分值为 A 30分。
A. 30B. 40C. 50D. 602. 2022年太原市初中学业水平考试数学试卷共有选择题、填空题、解答题三种题型,其中选择题有10个小题,小题的分值为3分,则填空题的总分值为 B 24分。
A. 24B. 30C. 36D. 423. 2022年太原市初中学业水平考试数学试卷共有选择题、填空题、解答题三种题型,其中选择题有10个小题,小题的分值为3分,则解答题的总分值为 C 90分。
A. 90B. 84C. 78D. 724. 2022年太原市初中学业水平考试数学试卷共有选择题、填空题、解答题三种题型,其中选择题有10个小题,小题的分值为3分,则选择题、填空题、解答题三种题型的总分值之和为 D 144分。
A. 144B. 120C. 108D. 905. 若一个数的相反数是-3,则这个数是 A 3。
A. 3B. -3C. 0D. 66. 若一个数的绝对值是5,则这个数是 D ±5。
A. 5B. -5C. 0D. ±57. 若a=2,b=-3,则a-b的值为 B 5。
A. 5B. -5C. 1D. -18. 若a=2,b=-3,则-a+b的值为 C -5。
A. 5B. -5C. -1D. 19. 若a=2,b=-3,则ab的值为 D -6。
A. 6B. -6C. 0D. -610. 若a=2,b=-3,则a+b的值为 C -1。
A. 1B. -1C. 5D. -5二、填空题(本题共5个小题,每小题3分,共15分)11. 若一个数的相反数是-3,则这个数是 3 。
12. 若一个数的绝对值是5,则这个数是 ±5 。
2022年山西太原中考数学试卷及答案

2022年山西太原中考数学试卷及答案一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣6的相反数为()A.6 B.C.D.﹣62.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.3.粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.不等式组的解集是()A.x≥1 B.x<2 C.1≤x<2 D.x<6.如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°. 直尺的一边DE经过顶点A,若DE∥CB,则∠DAB 的度数为()A.100°B.120°C.135°D.150°7.化简﹣的结果是()A.B.a﹣3 C.a+3 D.8.如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大赛”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:×的结果为.12.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示,当S=0.25m2时,该物体承受的压强p的值为Pa.13. 生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲32 30 25 18 20 25乙28 25 26 24 22 25则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点. 与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为21.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l ∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.。
2022年山西省中考数学试题(含答案解析)

山西省2022年高中阶段教育学校招生统一考试数 学注意事项:1. 本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共6页,满分120分,考试时间120分钟。
2. 答卷前,考试务必将自己的姓名、准考证号填写在本试卷相应的位置。
3. 答案全部答在答题卡上,答在本试卷上无效。
4. 考试结束后将本试卷和答题卡一并交回。
第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.6-的相反数为A .6B .16C .16-D .6-2. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中 心对称图形的是A .B .C .D .3.粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为 A .46.828510⨯吨 B .46828510⨯吨 C .76.828510⨯吨D .86.828510⨯吨4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的 A .平移 B .旋转 C .轴对称D .黄金分割5.不等式组213417x x +⎧⎨-<⎩的解集是A .1xB .2x <C .12x <D .12x <6.如图,Rt ABC ∆是一块直角三角板,其中90C ∠=︒,30BAC ∠=︒.直尺的一边DE 经过顶点A ,若//DE CB ,则DAB ∠的度数为 A .100︒ B .120︒ C .135︒D .150︒7.化简21639a a ---的结果是 A .13a + B .3a - C .3a + D .13a - 8.如图,ABC ∆内接于O ,AD 是O 的直径,若20B ∠=︒,则CAD ∠的度数是 A .60︒B .65︒C .70︒D .75︒9.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四 张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同), 让小乐从中随机抽取一张(不放回),再从中随机抽 取一张,则小乐抽到的两张邮票恰好是“立春”和 “立夏”的概率是 A .23B .12C .16D .1810.如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在AB 上的点C 处,图中阴影部分的面积为 A .333π- B .9332π-C .233π-D .9362π-第Ⅱ卷 选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分) 11.计算:1182⨯的结果为 . 12.根据物理学知识,在压力不变的情况下,某物体承受的压强()p Pa是它的受力面积2()S m 的反比例函数,其函数图象如图所示.当20.25S m =时,该物体承受的压强p 的值为 Pa .13.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同 等实验条件下,测量它们的光合作用速率(单位:21)mol m s μ--⋅⋅,结果统计如下:品种 第一株 第二株 第三株 第四株 第五株 平均数 甲 32 30 25 18 20 25 乙282526242225则两个大豆品种中光合作用速率更稳定的是 (填“甲”或“乙” ). 14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯 最多可降价 元.15.如图,在正方形ABCD 中,点E 是边BC 上的一点,点F 在边CD 的延长线上,且BE DF =,连接EF 交边AD 于点G .过点A 作AN EF ⊥,垂足 为点M ,交边CD 于点N .若5BE =,8CN =,则线段AN 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2小题,每小题5分,共10分)(1)计算:21(3)3(52)|2|--⨯+-++-; (2)解方程组:236x y x y -=⎧⎨+=⎩①②.17.(本题8分)如图,在矩形ABCD 中,AC 是对角线.(1)实践与操作:利用尺规作线段AC 的垂直平分线,垂足为点O ,交边AD 于点E ,交边BC 于点F (要求:尺规作图并保留作图痕迹,不写作法,标明字母). (2)猜想与证明:试猜想线段AE 与CF 的数量关系,并加以证明.18.(本题7分)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.(本题8分)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代 奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当0a>时①②的分析过程,写出③中当0<时,一元二a>,△0次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为.21.(本题8分)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70︒,楼CD上点E处的俯角为30︒,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60︒,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin700.94≈.︒≈,3 1.73)︒≈,cos700.34︒≈,tan70 2.75问题情境:在Rt ABC ∆中,90BAC ∠=︒,6AB =,8AC =.直角三角板EDF 中90EDF ∠=︒,将三角板的直角顶点D 放在Rt ABC ∆斜边BC 的中点处,并将三角板绕点D 旋转,三角板的两边DE ,DF 分别与边AB ,AC 交于点M ,N .猜想证明:(1)如图①,在三角板旋转过程中,当点M 为边AB 的中点时,试判断四边形AMDN 的形状,并说明理由; 问题解决:(2)如图②,在三角板旋转过程中,当B MDB ∠=∠时,求线段CN 的长; (3)如图③,在三角板旋转过程中,当AM AN =时,直接写出线段AN 的长.第22题图23.(本题13分)综合与探究如图,二次函数213442y x x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .点P 是第一象限内二次函数图象上的一个动点,设点P 的横坐标为m .过点P 作直线PD x ⊥轴于点D ,作直线BC 交PD 于点E .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)当CEP ∆是以PE 为底边的等腰三角形时,求点P 的坐标;(3)连接AC ,过点P 作直线//l AC ,交y 轴于点F ,连接DF .试探究:在点P 运动的过程中,是否存在点P ,使得CE FD =,若存在,请直接写出m 的值;若不存在,请说明理由.山西省2022年高中阶段教育学校招生统一考试数学试题参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.A 2.B 3.D 4.D 5.C 6.B7.A8.C9.C10.B二、填空题(本大题共5个小题,每小题3分,共15分)11.312. 400.13.乙.14.32.15.434.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.解:(1)原式19(3)23=⨯+-+3(3)2=+-+2=;(2)①+②得:39x =,3x ∴=,将3x =代入②得:36y +=,3y ∴=,∴原方程组的解为33x y =⎧⎨=⎩.17.解: (1)如图,(2)AE CF =,证明如下:四边形ABCD 是矩形,//AD BC ∴,EAO FCO ∴∠=∠,AEO CFO ∠=∠,EF 是AC 的垂直平分线,AO CO ∴=,在AOE ∆和COF ∆中,AEO CFO EAO FCO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOE COF AAS ∴∆≅∆, AE CF ∴=.18.解:设这款电动汽车平均每公里的充电费用为x 元, 根据题意,得20020040.6x x =⨯+, 解得0.2x =,经检验,0.2x =是原方程的根,答:这款电动汽车平均每公里的充电费用为0.2元. 19.解:(1)平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,∴参与本次抽样调查的学生人数为:3311%300÷=(人),从图书馆借阅的人数占总数人的62%,∴选择“从图书馆借阅”的人数为:30062%186⨯=(人),答:参与本次抽样调查的学生人数为300人,选择“从图书馆借阅”的人数为186人;(2)平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,360032%1152∴⨯=(人),答:该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数为1152人;(3)答案不唯一,如: 由第一项可知:阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少, 由第二项可知:阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少.20.解:(1)上面小论文中的分析过程,主要运用的数学思想是AC ;故答案为:AC ; (2)0a >时,抛物线开口向上,当△240b ac =-<时,有240ac b ->.0a >,∴顶点纵坐标2404ac b a->∴顶点在x 轴的上方,抛物线与x 轴无交点,如图, ∴一元二次方程20(0)ax bx c a ++=≠无实数根;(3)可用函数观点认识二元一次方程组的解;故答案为:可用函数观点认识二元一次方程组的解(答案不唯一). 21.解:延长AB ,CD 分别与直线OF 交于点G 和点H , 则60AG m =,GH AC =,90AGO EHO ∠=∠=︒, 在Rt AGO ∆中,70AOG ∠=︒,6021.8()tan70 2.75AG OG m ∴=≈≈︒, HFE ∠是OFE ∆的一个外角,30OEF HFE FOE ∴∠=∠-∠=︒, 30FOE OEF ∴∠=∠=︒, 24OF EF m ∴==,在Rt EFH ∆中,60HFE ∠=︒,1cos602412()2FH EF m ∴=⋅︒=⨯=, 21.8241258()AC GH OG OF FH m ∴==++=++≈,∴楼AB 与CD 之间的距离AC 的长约为58m .22.解:(1)四边形AMDN 是矩形,理由如下: 点D 是BC 的中点,点M 是AB 的中点,//MD AC ∴, 180A AMD ∴∠+∠=︒, 90BAC ∠=︒,90AMD ∴∠=︒,90A AMD MDN ∠=∠=∠=︒,∴四边形AMDN 是矩形;(2)如图2,过点N 作NG CD ⊥于G ,6AB =,8AC =,90BAC ∠=︒,2210BC AB AC ∴=+=,点D 是BC 的中点,5BD CD ∴==, 90MDN A ∠=︒=∠,90B C ∴∠+∠=︒,190BDM ∠+∠=︒, 1C ∴∠=∠, DN CN ∴=,又NG CD ⊥,52DG CG ∴==, cos CG ACC CN BC==, ∴58210CN =, 258CN ∴=; (3)如图③,连接MN ,AD ,过点N 作HN AD ⊥于H ,AM AN =,90MAN ∠=︒, 45AMN ANM ∴∠=∠=︒, 90BAC EDF ∠+∠=︒,∴点A ,点M ,点D ,点N 四点共圆,45ADN AMN ∴∠=∠=︒, NH AD ⊥,45ADN DNH ∴∠=∠=︒, DH HN ∴=,5BD CD ==,90BAC ∠=︒, 5AD CD ∴==,C DAC ∴∠=∠, 3tan tan 4HN AB C DAC AH AC ∴=∠===, 43AH HN ∴=, 5AH HD AD +==,157DH HN ∴==,207AH =, 222254002549497AN AH HN ∴=+=+=. 23.解:(1)在213442y x x =-++中,令0x =得4y =,令0y =得8x =或2x =-, (2,0)A ∴-,(8,0)B ,(0,4)C , 设直线BC 解析式为4y kx =+,将(8,0)B 代入得: 840k +=,解得12k =-,∴直线BC 解析式为142y x =-+; (2)过C 作CG PD ⊥于G ,如图:设213(,4)42P m m m -++,213442PD m m ∴=-++, 90COD PDO CGD ∠=∠=∠=︒,∴四边形CODG 是矩形,4DG OC ∴==,CG OD m ==,221313444242PG PD DG m m m m ∴=-=-++-=-+, CP CE =,CG PD ⊥,21342GE PG m m ∴==-+, GCE OBC ∠=∠,90CGE BOC ∠=︒=∠, CGE BOC ∴∆∆∽,∴CG GE OB OC =,即2134284m m m -+=, 解得0m =(舍去)或4m =,(4,6)P ∴;(3)存在点P ,使得CE FD =,理由如下: 过C 作CH PD ⊥于H ,如图:设213(,4)42P m m m -++,由(2,0)A -,(0,4)C 可得直线AC 解析式为24y x =+,根据//PF AC ,设直线PF 解析式为2y x b =+,将213(,4)42P m m m -++代入得: 2134242m m m b -++=+, 211442b m m ∴=--+, ∴直线PF 解析式为2112442y x m m =--+, 令0x =得211442y m m =--+,211(0,4)42F m m ∴--+, 211|4|42OF m m ∴=--+, 同(2)可得四边形CODH 是矩形, CH OD ∴=,CE FD =,Rt CHE Rt DOF(HL)∴∆≅∆,HCE FDO ∴∠=∠,HCE CBO ∠=∠,FDO CBO ∴∠=∠,tan tan FDO CBO ∴∠=∠,∴OF OC OD OB=,即211|4|4428m m m --+=, 21114422m m m ∴--+=或21114422m m m --+=-,解得2m =-或2m =-或4m =或4m =-, P 在第一象限,2m ∴=或4m =.。