2016迎春杯六年级初赛详解

合集下载

最新迎春杯六年级初试试题及详解

最新迎春杯六年级初试试题及详解

2014“数学解题能力展示”读者评选活动笔试试题小学六年级(2013年12月21日)一、选择题(每小题8分,共32分)1.在算式112014()1953⨯-的计算结果是().A.34 B.68 C.144 D.722.一个半径为20 厘米的蛋糕可以让4 个人吃饱,如果半径增加了150%,同样高的蛋糕可以让()个人吃饱.A.9 B.15 C.16 D.253.如图所示,有两个大小相等的正方形,它们的边平行,并且覆盖在一个半径为3厘米的圆上.阴影的总面积是()平方厘米.(π取3)A.9 B.10 C.15 D.184.如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器的一半,这个容器最多能装水()升A.100 B.200 C.400 D.800二、选择题(每小题10 分,共70 分)5.式子20141x+为整数,则正整数x有()种取值.A.6 B.7 C.8 D.96.甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙分别比丁多拿了3,7,14 件礼物,最后结算时,乙付给了丁14 元钱,并且乙没有付给甲钱.那么丙应该再付给丁()元钱.A.6 B.28 C.56 D.707.下面算式的有( )种不同的情况.A.2 B.3 C.4 D.58.算式2015201640292013+2014+2014201520142015⨯⨯⨯计算结果是().A.4027 B.4029 C.2013 D.20159.已知4 个质数的积是它们和的11倍,则它们的和为()A.46 B.47 C.48 D.没有符合条件的数10.把11块相同的长方体砖如图拼成一个大长方体,已知每块砖的体积是288立方厘米,大长方体的表面积是( )平方厘米.A.1944 B.1974 C.2014 D.205411.4个选项之中各有4个碎片,用碎片将下图铺满选项()是不能将下图恰好不重不漏地铺满的(碎片可以旋转、翻转)12.17个圆如图相切排列,一只青蛙从中央大圆出发,每次只能跳到相邻圆上,五次后回到中央大圆的情况有( )种.A.20 B.24 C.28 D.3213.A在B地西边60千米处.甲乙从A地,丙丁从B地同时出发.甲、乙、丁都向东行驶,丙向西行驶.已知甲乙丙丁的速度依次成为一个等差数列,甲的速度最快.出发后经过n小时乙丙相遇,再过n小时甲在C地追上丁.则B、C两地相距()千米.A.15 B.30 C.60 D.9014.在面积为360的正方形ABCD中,E是AD中点,H是FG中点,且DF CG,那么三角形AGH的面积是()A.70 B.72 C.75 D.9015.老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话:甲:我不知道这个完全平方数是多少.乙:不用你说,我也知道你一定不知道.丙:我已经知道这个数是多少了.甲:听了丙的话,我也知道这个数是多少了.乙:听了甲的话,我也知道这个数是多少了.请问这个数是()的平方.A.14 B.17 C.28 D.292014“数学解题能力展示”读者评选活动笔试试题 小学六年级参考答案1 2 3 4 5 6 7 8 B D A C B D A B 9 10 11 12 13 14 15 D无DBBAB部分解析一、选择题(每小题8分,共32分)1.在算式112014()1953⨯-的计算结果是( ).A .34B .68C .144D .72【考点】分数计算 【难度】☆ 【答案】B【分析】原式=112014201410638681953⨯-⨯=-=2.一个半径为20厘米的蛋糕可以让4个人吃饱,如果半径增加了150%,同样高的蛋糕可以让( )个人吃饱.A .9B .15C .16D .25 【考点】圆的面积公式 【难度】☆ 【答案】D【分析】由条件,面积变为原来的2(1150%)+,所以可供24(125%)25⨯+=个人吃饱.3.如图所示,有两个大小相等的正方形,它们的边平行,并且覆盖在一个半径为3厘米的圆上.阴影的总面积是( )平方厘米.(π取3)A .9B .10C .15D .18 【考点】圆的面积公式和勾股定理 【难度】☆ 【答案】A【分析】22=32327189S π⨯-⨯=-=阴4.如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器的一半,这个容器最多能装水( )升.A .100B .200C .400D .800 【考点】圆锥公式的运用 【难度】☆ 【答案】C【分析】半径变为原来的2倍,高度变为原来的2倍,根据圆锥的体积公式:213V r h π=.现在的体积为原来的8倍,这个容器最多能装水:508400⨯=(升)二、选择题(每小题10 分,共70 分)5.式子20141x +为整数,则正整数x 有( )种取值. A .6 B .7 C .8 D .9【考点】分解质因数和枚举计数 【难度】☆☆ 【答案】B【分析】因为2014=21953⨯⨯,1x +可能的取值为:2、19、53、38、106、1007、2014共七种.6.甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙分别比丁多拿了3,7,14件礼物,最后结算时,乙付给了丁14元钱,并且乙没有付给甲钱.那么丙应该再付给丁( )元钱.A .6B .28C .56D .70 【考点】应用题 【难度】☆☆☆ 【答案】D【分析】设丁拿了a 件礼物,则四人花同样的钱,每人可以拿到371464a a +++=+件礼物,实际情况:丁少拿了6件,乙多拿了1件,给丁14元,则货物单价14元,丙多拿了1468-=件,3件给甲,5件给丁,514=70⨯元7.下面算式的有( )种不同的情况.A.2 B.3 C.4 D.5【考点】数字谜【难度】☆☆☆【答案】A【分析】首先容易定出第一排百位是1,第二排个位是1,要保证第四排是4位数,第二排的百位必须大于5,要保证第四排的十位为4,经枚举尝试,只有1927⨯或1729⨯两种可能.故答案为2种.8.算式2015201640292013+2014+2014201520142015⨯⨯⨯计算结果是().A.4027 B.4029 C.2013 D.2015 【考点】估算、分数裂项【难度】☆☆【答案】B【分析】2015201320132014⨯>,2016201420142015⨯>结果大于4027.结果为B9.已知4个质数的积是它们和的11倍,则它们的和为()A.46 B.47 C.48 D.没有符合条件的数【考点】质数【难度】☆☆☆【答案】D【分析】由已知条件,4 个质数中一定有11,那么则满足11a b c a b c⨯⨯=+++,其中a、b、c都是质数.若a、b、c都是奇数,那么等式左边是奇数,右边为偶数,矛盾.若a、b、c中有1 个偶数,那么一定是2.即2211a b a b⨯⨯=+++此时,根据奇偶性,a、b中也必有一个偶数为2,解得a、b、c、d为2、2、5、11.和为20.选项中ABC均不符合条件,故选D.10.把11块相同的长方体砖如图拼成一个大长方体,已知每块砖的体积是288立方厘米,大长方体的表面积是( )平方厘米.A.1944 B.1974 C.2014 D.2054【考点】立体几何公式 【难度】☆☆ 【答案】1368【分析】根据正视图和侧视图,不难得到32b a =,4a h =,进而根据每块砖体积列出方程:3322883h =,解出3h =,于是大长方体的长、宽、高分别为24,11,12,于是求出表面积为2412+2411+12112=1368⨯⨯⨯⨯()11.4个选项之中各有4个碎片,用碎片将下图铺满选项( )是不能将下图恰好不重不漏地铺满的(碎片可以旋转、翻转)【考点】复合图形分拆 【难度】☆☆☆ 【答案】D【分析】A 、B 、C 如图:D 中的长条只有5种位置可放,但无论是哪种,T 字形总是无法给其他碎片留出合适的位置.12.17个圆如图相切排列,一只青蛙从中央大圆出发,每次只能跳到相邻圆上,五次后回到中央大圆的情况有( )种.A .20B .24C .28D .32 【考点】计数 【难度】☆☆☆ 【答案】B【分析】不难发现,只有下列两种情况可以五步走回起点.前一种情况共24=8⨯种走法,后一种情况28=16⨯种走法,因此共有8+16=24种走法.起点13.A 在B 地西边60千米处.甲乙从A 地,丙丁从B 地同时出发.甲、乙、丁都向东行驶,丙向西行驶.已知甲乙丙丁的速度依次成为一个等差数列,甲的速度最快.出发后经过n 小时乙丙相遇,再过n 小时甲在C 地追上丁.则B 、C 两地相距( )千米. A .15 B .30 C .60 D .90 【考点】行程、等差数列 【难度】☆☆☆ 【答案】B【分析】由n 小时乙丙相遇,知n 小时内60S S +=乙丙千米,因此在2n 小时内=120S S +乙丙千米.由2n 小时甲追上丁,知2n 小时内=60S S -甲丁.由于甲乙丙丁的速度成等差数列,因此甲乙丙丁在2n 小时内的路程也成等差数列,于是由=60S S -甲丁知路程的公差为603=20÷千米.再由+120S S =乙丙容易解出=70S 乙,=50S 丙千米,进而求出=30S 丁千米.而S 丁恰为BC 两地之间的距离.14.在面积为360的正方形ABCD 中,E 是AD 中点,H 是FG 中点,且DF CG =,那么三角形AGH 的面积是( )A .70B .72C .75D .90 【考点】比例模型 【难度】★★★ 【答案】A【分析】连结EG ,EF ,设正方形边长为1份,GC DF x ==份.由风筝模型知::1:1EGC ECFS SGH HF ==,故列出方程11(1)2x x ⨯=-⨯,解出13x =.连结AF ,11171139618AGFABGCGFADFSSSS=---=---=故117360702218AGHAGFSS ==⨯⨯=15.老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话: 甲:我不知道这个完全平方数是多少. 乙:不用你说,我也知道你一定不知道. 丙:我已经知道这个数是多少了.甲:听了丙的话,我也知道这个数是多少了. 乙:听了甲的话,我也知道这个数是多少了. 请问这个数是( )的平方.A .14B .17C .28D .29 【考点】逻辑推理 【难度】★★★★ 【答案】B【分析】通过枚举不难发现,百位是6,8,9的满足条件的平方数分别只有625,841,961,因此第一句说明百位不是6,8,9;进而得知第二句说明十位不是2,4,6;第三句说明这个数的个位在剩下所有可能中是唯一的,而只有当个位是4或9,228=784,217=729是唯一满足之前所有条件的数;第四句说明甲在丙说话之前还不知道结果,而若百位是 7,而228=784,217=729,于是甲听完乙说话后已经知道结果了,因此百位只能是2.从而这个数为217=729.九年级英语期中考试卷第二部分 笔试部分二、单项填空(本题有15小题,每小题1分,共15分) 16.--- How do you study a test?--- I study working a group.精品好文档,推荐学习交流A. for, in, withB. for, by, atC. for, by, withD. of, in, by17. --- Hey! Don’t you remember me?--- Wow! Paula? You used to ________ curly hair.A. beB. areC. haveD. has18. Sixteen-years-olds shouldn’t ______ to go to an Internet bar.A. be allowedB. be allowC. allowD. are allowed19. -– Do you feel tired?--- No, I don’t. If I were tired, I ______a rest.A hadB would haveC will haveD have20. --- Tom, where is your father?--- I’m not sure. He_______ in his office.A. isB. may beC. maybeD. may21. I don’t like people ______ talk much but do little.A. whoB. thatC. whichD. whose22. ---Where would you like to go ?---I’d like to go ________.A. warm somewhereB. place warmC. somewhere warmD. warm place23. ---You look so , don't you?--- Yes, I've got a birthday present.A. sadB. happyC. tiredD. worried24. ---Mom, ________ is my MP4?---I put it in your backpack.A. whatB. howC. whoseD. where25. ---I’m not hungry but thirsty.---________A. I’m hungry, too.B. What about some cakes?C. I’m happy to hear that.D. How about a glass of water?26. —________are you talking about?—The Olympic Games in Beijing.A. WhatB. WhomC. HowD. Where27. ---Why not come and join us in the game?---_______. But I must meet Mr Smith at his office now..A. I’d like to .B. Let’s goC. Yes,pleaseD. No, problem.28. —My clock doesn’t .— Let me have a look. Maybe I can help you.A. workB. stopC. openD. answer29. — We can use QQ to talk with each other online.仅供学习与交流,如有侵权请联系网站删除谢谢11。

【最新】数学花园探秘六年级初赛讲义

【最新】数学花园探秘六年级初赛讲义

第一讲计算与计数常用公式1、()21321+=++n n n Λ 末项=首项+(项数一1) ×公差;数列和=(首项+末项)×项数÷2;项数=(末项-首项)÷公差+1;公差=(末项-首项)÷(项数-1);2、()()612121222++=+++n n n n Λ 3、()()412121222333+=++=+++n n n n ΛΛ 4、131171001⨯⨯⨯=⨯=abc abc abcabc 6006610016131177877=⨯=⨯⨯⨯=⨯⇒如: 5、()()b a b a b a -+=-226、()()212311321n n n n =+++++++-++++ΛΛ7、1211111=⨯ 12321111111=⨯ 112345654321111112=8、111111111912345679=⨯9、()kn n k n n k +-=+⨯11 10、()()()112231123n n n n n ⨯+⨯++⨯+=++L11、完全平方和公式:()2222b ab a b a ++=+ 12、完全平方差公式:()2222b ab a b a +-=- 循环小数一、把循环小数的小数部分化成分数的规则①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。

②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。

【1】(2010年迎春杯初赛六年级第1题){{{10015022541112224442010个个个…+…+…+计算结果的数字和是 .【2】(2011年迎春杯初赛六年级第7题) 定义运算:a b a b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥L 144444424444443共颗“”的计算结果是 .【3】(2009年迎春杯初赛六年级第6题) 计算:89109101110111211121378910111178910++++++++-+-=-+-________.【4】(2015年迎春杯初赛六年级第1题) 算式2015143199163135115131⨯⎪⎭⎫ ⎝⎛+++++的计算结果是 .【5】(2009年迎春杯初赛五年级第9题) 5717191155(+)234345891091011⨯+++⨯⨯⨯⨯⨯⨯⨯⨯…= .【6】(2010年迎春杯初赛六年级第3题)满足图中算式的三位数abc 最小值是______.【7】(2012年迎春杯初赛六年级第4题)在右图中的除法竖式中,被除数为 .a b c21⨯【8】(2015年迎春杯初赛六年级第2题)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是 .【9】(2011年迎春杯初赛六年级第15题)已知算式19.1220102=-+-I GHF DE ABC 中的A ,B ,C ,D ,E ,F ,G ,H ,I 表示1~9中各不相同的数字.那么,五位数ABCDE = .【10】(2013年迎春杯初赛六年级第6题)在3×3的九宫格内填入数字1至9(每个数字都恰好使用一次),满足圆圈内的数恰好为它周围四个方格的数字之和,例如A +B +D +E =28,那么ACEGI 组成的五位数是 .【11】(2013年迎春杯初赛六年级第4题)由2、0、1、3四个数字组成(可重复使用)的比2013小的四位数有个.【12】(2015年迎春杯初赛六年级第8题)甲、乙、丙三户人家打算订阅报纸,共有7种不同的报纸可供选择,已知每户人家都订三份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有种不同的订阅方式.【13】(2009年迎春杯初赛六年级第7题)将5枚棋子放入下图编号的4×4表格的格子中,每个格子最多放一枚,如果要求每行,每列都有棋子,那么共有_____种不同放法.1 2 3 45 6 7 89 10 11 1213 14 15 16【14】(2012年迎春杯初赛六年级第10题)如果自然数a 的各位数字之和等于5,那么称a 为“龙腾数”。

迎春杯六年级讲义(6讲)迎春杯第 1 讲应用题学生版

迎春杯六年级讲义(6讲)迎春杯第 1 讲应用题学生版

第一讲应用题行程问题行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

例题1.甲、乙两辆汽车同时从两城相对开出,甲车每小时行55千米,乙车每小时行45千米,经过3小时相遇,问两城之间相距多少千米?例题2.一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?例题3.甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。

甲车行几小时后与乙车相遇?例题4。

李明和王亮同时分别从两地骑车相向而行,李明每小时行18千米,王亮每小时行16千米,两人相遇时距全程中点3千米。

问全程长多少千米?例题5.两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?例题6.一个圆形操场跑道的周长是500米,两个学生同时同地相背而行。

甲每分钟走66米,乙每分钟走59米。

经过几分钟才能相遇?工程问题在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。

2008-2016迎春杯初赛真题高清汇编

2008-2016迎春杯初赛真题高清汇编

多对一道题,超越1000人
第 9 页
兴趣是最好的老师
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
2010 迎春杯六年级初赛真题
(测评时间:2010 年 1 月 3 日 9:00—10:00)
一、填空题Ⅰ(每题 8 分,共 32 分)
1.
11 1 22
100 个1 50个 2
多对一道题,超越1000人
第 2 页
兴趣是最好的老师
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
9.
A、B 两地相距 22.4 千米.有一支游行队伍从 A 出发,向 B 匀速前进;当游行队伍队 尾离开 A 时,甲、乙两人分别从 A、B 两地同时出发.乙向 A 步行;甲骑车先追向队 头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向 队尾……当甲第 5 次追上队头时恰与乙相遇在距 B 地 5.6 千米处; 当甲第 7 次追上队头 时,甲恰好第一次到达 B 地,那么此时乙距 A 地还有 千米.
关注“帅帅思维”公众号,回复“六年级迎春杯”获取详解!
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
2008 迎春杯六年级初赛真题
(测评时间:2007 年 12 月 2 日 11:00—12:00)
一、填空题Ⅰ(每题 8 分,共 40 分)
1. 计算: 2007 8.5 8.5 1.5 1.5 10 160 0.3 = .
12. 国际象棋中 “马” 的走法如图 1 所示, 位于○位置的 “马” 只能走到标有×的格中,类似于中国象棋中的“马走 日” .如果“马”在 8×8 的国际象棋棋盘中位于第一行 第二列 (图 2 中标有△的位置) , 要走到第八行第五列 (图 2 中标有★的位置) ,最短路线有 条.

2016年迎春杯网考六年级解析12月18日2015年与知识点总结

2016年迎春杯网考六年级解析12月18日2015年与知识点总结

99,总箱子数是 100 . 5.将右图中的乘法竖式补充完整后,两个乘数的和是_______.

2 0 1 6 5
【答案】 935 【解析】因为 abc 2 的计算结果是四位数, abc d 的计算结果是一位数,所以可得 b=1,d=1,c=3 或 8.最高位 a 只能取 5、 6、 7、 8、 9 中的一种.因为积的万位是 5, 千位相加的进位只能是 0、 1、 2, 因此 a 只能取 7. 71c e f 0 gi , 可推出 e=7,c=8.因此上式为 718 217 155806 ,因此 718 217 935 . a b c 2 d e
事先的约定,这个数是去掉那箱毒品后,其他各箱号的平均数,那么那箱毒品的号码是________ 【答案】 19
9 559 50.8 ,所以去掉该箱后箱子数量必为 11 的倍数.箱数平均数是 50.8, 11 11 (1 100) 100 x 559 ,因此,毒 所以箱子数可估算为 99,设毒品箱编号为 x,根据题意,可列方程: 2 , x 19 99 11
【答案】2275 【解析】图中每段圆弧的圆心都是 O,对应的角度也一样,所以各种颜色“圆环”的面积都可以表示出来. 设 OD= r , 每种颜色宽度都是 a, 可得: ① 紫色面积为: [(r a) r ] π n 360
2 2
② 蓝色面积为: [(r 2a) (r a) ] π n 360
2 2
两者相比可得出: r
19 a ; 2
2 2
③ 红色面积为: [(r 7a) (r 6a) ] π n 360 = (2r 13a) π n 360 =400 ④“彩虹”面积为: [(r 7a) r ] π n 360 = (14r 49a) π n 360

六年级迎春杯 第五讲

六年级迎春杯 第五讲

【例11】 甲、乙两人在周长为400米的环形跑道上训练。甲、 乙两人从同一地点同时背向出发,从出发到相遇乙跑的距离是甲 跑距离的 。相遇后甲继续向前跑,而乙则反向跑,当甲追上 乙后训练结束。那么,在这次训练中,甲一共跑了 米。
【例12】 10.乙两车分别从 A, B两地出发,相向而行.出发 时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的 速度增加20%,这样,当甲到达B地时,乙离A地还有10千 米.问:A,B两地相距多少千米?
六年级
数学解题能力展示
(迎春杯初赛)
应 用 题
【例1】 文具店有一批笔记本,按照30%的利润定价,当售出 这批笔记本的80%的时候,经理决定开展促销活动,按照 定价的一半出售剩余的笔记本,这样,当这批笔记本全部 卖出后,实际获得利润的百分比是______________
【例2】 公园水池每周需换一次水.水池有甲、乙、丙三根进 水管.第一周小李按甲、乙、丙、甲、乙、丙、……的顺 序轮流打开1小时,恰好在打开水管整数小时后灌满空水 池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流 打开1小时,灌满一池水比第一周少用了15分钟;第三周他 按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比 第一周多用了15分钟.第四周他三个管同时打开,灌满一 池水用了2小时20分,第五周他只打开甲管,那么灌满一池 水需用________小时.
【例7】 甲班与乙班学生同时从学校出发去公园,甲班步行的速 度是每小时4千米,乙班步行的速度是每小时3千米。 学校有一辆汽车,它的速度是每小时48千米,这辆 汽车恰好能坐一个班的学生。为了使两班学生在最 短时间内到达公园,那么甲班学生与乙班学生需要 步行的距离之比是多少千米?
【例8】 在一点与两点之间,什么时刻时钟的两针重合?什么时 刻时钟的两针成一条直线?什么时刻成直角?

2016年迎春杯6年级初赛试题(全国卷)含答案及解析

2016年迎春杯6年级初赛试题(全国卷)含答案及解析

6.
A
B
7.
0 6 1 0 2 0
8.
三.填空题Ⅲ(每小题 12 分,共 48 分)
9. 如图,四边形 CDEF 是平行四边形.如果梯形 ABCD 的面积 是 320, 三角形 AFH 和三角形 GEB 的面积分别为 32 和 48. 那 么三角形 OCD 的面积是__________. A H E
D O M F
C
G B
10. 变形金刚擎天柱以机器人的形态从 A 地出发向 B 地,可按时到达 B 地;如果一开始就变形为汽车, 速度比机器人形态提高 25%,可以提前 1 小时到达 B 地;如果以机器人的形态行驶 150 千米后, 再变形为汽车,并且速度比机器人形态提高 20%,则可以提前 40 分钟到达.那么,A、B 两地相 距________题Ⅱ(每小题 10 分,共 40 分)
5. 小鑫参加了一个奇怪的数学考试. 一共 100 道题, 答对一题得 1 分, 答错一题扣 3 分, 不答扣 2 分. 已 知小鑫一共得了 50 分.那么,小鑫最多答对了__________道题. 如图,半径为 4 厘米的两个圆如图放置,长方形中两块阴影部分面积 相等,A、B 两点为两圆圆心,那么 AB 的长度为__________厘米. (π 取 3) . 如图,一道除法竖式中已经填出了“2016”和“0” ,那么被除 数是__________. 对于自然数 N, 如果在 1~9 这九个自然数中至少有八个数是 N 的因数, 则称 N 是一个 “八仙数” , 则在大于 2000 的自然数中, 最小的“八仙数”是___________.
2016 年“数学花园探秘”科普活动 六年级组初试试卷 C
(测评时间: 2015 年 12 月 19 日 8:30— 9:30) 学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我

迎春杯六年级讲义(6讲)迎春杯第 3 讲数论教师版讲义

迎春杯六年级讲义(6讲)迎春杯第 3 讲数论教师版讲义

第三讲数论综合数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

知识概要整除问题整除是我们很早接触的一个概念,对于它的性质我们也比较熟悉,不过它在题目表现出来的很大的灵活性和很强的技巧性,仍然是值得我们不断学习和思考的.下面我们先回顾一下相关知识:整除的概念a,b,c为整数,且,如果a÷b=c,即整数a除以整数b,得到的商是整数c且没有余数,那么称作n 能被b整除,或者是说b能整除a,记作;否则,称为a不能被b整除,或是说b不能整除n.如果整数a能够被整数b整除,则a叫做b的倍数,b叫做a的约数.整除的基本性质如果a,b都能够被c整除,那么它们的和与差也能够被c整除.即:如果,那么如果b与c的积能整除a,那么b与c都能整除a.即:如果,那么如果c能整除b,b能整除a,那么c能整除a.即:如果如果b,c都能够整除,且b与c互质,那么b与c的乘积能整除a.即:数的整除特征能被2整除的数的特征:个位数字是0,2,4,6,8;能被3(或9)整除的数的特征:各位的数字之和能够被3(或9)整除;能被4(或25)整除的数的特征:末两位数能够被4(或25)整除;能被5整除的数的特征:个位数字是0或5;能被7(或11、13)整除的数的特征:一个整数的末三位与末三位以前的数字所组成的数之差能够被7(或1、11、13)整除;能被8(或125)整除的数的特征:末三位数能够被8(或125)整除;能被11整除的数的特征:奇数位上的数字之和与偶数位上的数字之和的差能够被11整除.1.质数与合数一个数除了l 和它本身,不再有别的约数,那么这个数叫做质数.比如2,3,7,37,….一个数除了1和它本身,还有别的约数,那么这个数是合数.比如4,8,14,48,….特别的:1既不是质数也不是合数.2. 质因数与分解质因数(算术基本定理)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.把一个合数用质因数相乘的形式表示出来,叫做分解质因数.比如:把42分解质因数应该是42=2×3×7,其中2,3,7是42的质因数.又如:35423=⨯ ,其中2和3都是54的质因数.3. 利用分解质因数求约数的个数一般地,如果分解质因数有下列形式:其中都是质因数,而是指数,即对应A 包含各个质因数的个数.1) 那么A 的所有约数的个数为比如:,那么300的所有约数共有(2+1)(1+1)(2+1)=18个.2) 那么A 的所有约数的和为()[],,ab a b a b =约数与倍数约数与倍数的关系很简单,其实就是整除关系的另外一种称谓;当然也有概念的延伸,就是在多个数之间去研究公约数和公倍数,经常地应用最大公约数与最小公倍数解题.下面我们就先回顾基本的概念:1. 公约数与最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1,2,3,4,6,12.18的约数有l ,2,3,6,9,18 那么它们的公约数有l ,2,3,6;其中最大公约数为6.2. 公倍数与最小公倍数 几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数.例如:15的倍数有:15,30,45,60,75,90, 105,120,…. 10的倍数有:10,20,30,40,50,60,70, 80。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


第 4 页
兴趣是最好的老师
学习有意思
快乐思维
v1 24 v2 2 s 24 s 21 s v1 v1 14 v2 s ( 1 2v2 1 v2 ) 21 6 6 v2 2 v 20 1 v2 2s 20 1 2v 2 3
11. 在每个空格内填入数字 1~4,使得每行和每列的数字都不重复.表格外的数字表示该方向所在行或 列里第一个奇数或者第一个偶数.那么,第三行的四个格从左到右组成的四位数是__________.
【考点】组合,数独 【难度】☆☆☆ 【答案】4213
每个外提示数都是给了两个数在框内的左右或上下关系, 当两侧外提示数奇偶性相同时即信息 【分析】 相同,只看一个即可,把剩余信息汇总至一侧,如下左图; 提示的两个数靠外的数不能在最内侧,靠内的数不能在最外侧,标好提示,如下中图; 根据标好的提示进行填数即可, 注意上下两行填完后利用纵列的外提示顺序做题. 完整图如下右图
三.填空题Ⅲ(每小题 12 分,共 48 分)
9. 如图,四边形 EFCD 是平行四边形.如果梯形 ABCD 的面积是 320,四边形 ABGH 的面积是 80, 那么三角形 OCD 的面积是__________. D C O

H A E F
G B
【考点】几何,比例模型 【难度】☆☆☆ 【答案】45
【考点】行程,比例方程解行程
【分析】注意两人同时减速的话速度比不变,分别设出两人的速度与半程(即全程 2s) ,有
帅帅思维公众号:shuaiteacher

1 (a b)h 320 S 9 a 5 a2 9 2 , SOCD 320 45 ,从而由蝴蝶模型 OCD 2 64 b 3 S ABCD (a b) 64 1 (b a)h 80 2

【考点】数字谜,竖式数字谜 【难度】☆ 【答案】83720 【分析】后两次乘法末尾是 0,而第一次末尾是 6,这说明商的末两位是 5,从而得到答案
帅帅思维公众号:shuaiteacher

学习有意思
快乐思维
5 5
0 6 1 0 9 1 2 0 2 0 2 0 0
4 1 8 4 8 7 1 3 3 0 9 7 6 1 2 9 9
A B
【考点】几何,圆与扇形 【难度】☆☆ 【答案】912 【分析】每块阴影部分是一个扇形面积减一个小扇形面积再减去三角形面积,
帅帅思维公众号:shuaiteacher
兴趣是最好的老师
学习有意思
快乐思维
1 1 1 2 2 2 2 8 π (40 40 ) 4 π (20 20 ) 2 40 20 4 800π 1600 912
5 2 2 0
5 0
0 6 1 0 9 1 2 0 2 0 2 0 0
2 0 2 0 0
4.
每场篮球比赛都分为四节, 在某场比赛中, 加西亚在前两节中投篮 20 次, 命中 12 次, 在第三节中,
1 所回升,比第三节提高了 ,最后全场命中率为 46%.那么,加西亚在第四节一共投中____ 【难度】☆ 【答案】8 【分析】第三节中 10
12 50% 3 ,第四节投 x 中 y,有 20
二.填空题Ⅱ(每小题 10 分,共 40 分)
5.
如图,正方形边长为 80 厘米,A 为 OB 中点,在正方形内以 A 点为圆心,OA 为半径的圆,以 B 点为圆心,OB 为半径的圆与正方形的一边围成了一个特殊的图形.将这个图形绕 O 点顺时针旋转 三次能够得到一个风车的形状. 那么这个风车 (阴影部分) 的面积是________平方厘米. (π 取 3.14)
【难度】☆ 【答案】66
x6 1 x 30 y6 3 【分析】 y 66 x2 1 y2 2
3.
如图,一道除法竖式中已经填出了“2016”和“0” ,那么被除数是__________.


0 6 1 0 2 0
第 1 页 兴趣是最好的老师
【考点】应用题,分比应用题


1 y 3 (1 ) x 20 23 x 10 3 (由于 46% ,由整除性很容易猜得 x 20 ) 12 3 y y 8 50 46% 20 10 x

第 2 页

O
他一共投篮 10 次,但命中率有所下降,只有前两节总体命中率的 50%,在最后一节中,命中率有
6.
对于自然数 N,如果在 1~9 这九个自然数中至少有六个数是 N 的因数,则称 N 是一个“六合 数” ,则在大于 2000 的自然数中,最小的“六合数”是__________.
【考点】数论,整除 【难度】☆☆ 【答案】2016 【分析】显然一定被 2 整除,否则 2/4/6/8 都不满足了,所以以下只列偶数 最多只能有 3 个数不整除,研究 5~9 的倍数: ⑤:2010、2020、2030、2040、2050、2060、…… ⑦:2002、2016、2030、2044、2058、2072、…… ⑧:2008、2016、2024、2032、2040、2048、…… ⑨:2016、2034、2052、2070、2088、2106、……
【考点】几何,立体几何 【难度】☆☆ 【答案】88

8.
a 3k 2a 3b 【分析】 a : b : h 3 : 2 :1 b 2k , S 2 (6 3 6 3 3 3)k 2 360 k 2 a 3h c k
学习有意思
快乐思维
2016 年“数学花园探秘”科普活动 六年级组初试试卷 A 解析
一.填空题Ⅰ(每小题 8 分,共 32 分)
1. 算式: 2016
1 的计算结果是__________. 1 1 1 1 1 1 2 4 8 16 32
【考点】计算,分数计算 【难度】☆ 【答案】1024 【分析】 2016
【分析】 S AHGB S AHE SGHE SGHF SGBF 等积变形S AHE SCHE S DHF SGBF S ACE S DBF
等积变形S ADE S BCF
即 AHGB 的面积相当于一个底是 AE BF AB EF AB CD ,高是梯形的高的三角形面积
1 32 2016 1024 1 1 1 1 1 63 1 2 4 8 16 32
2.
彤彤和林林分别有若干张卡片,如果彤彤拿出 6 张给林林,林林的卡片数将变为彤彤的 3 倍,如果 林林给彤彤 2 张,林林的卡片数将变为彤彤的 2 倍.那么,林林原有__________张卡片.
34 12 2-4 3-1 4-2 4-2 41 23 23 41 4 2
34 41 23 12 23 41 2× 3× 1× 2-4 2× 4× 3-1 1× 4-2 2× 4-2 2× 3-1 4 2 2× 3× 4× 4×

3-1
帅帅思维公众号:shuaiteacher
12. 请参考《2016 年“数学花园探秘”科普活动初赛试题评选方法》作答.
S小 2 (3 2 3 1 2 1)k 2 88 (其实也可以不求 k,用比也可以)
跑跑家族七人要分别通过下图中的七个门完成挑战, 第一个人可以任选一个门激活, 完成挑战后将 会激活相邻的门, 下一个人可以在已激活的门中任选一个挑战. 按照他们完成挑战的次序将七个门 的编号排序将会得到一个七位数.这个七位数一共有________种不同可能.


4× 4×3× 1× 3× 1×4× 2×3× 2×
第 5 页

兴趣是最好的老师
10. 某城市早 7:00 到 8:00 是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上 6:50,甲、乙 两人从这城市的 A、B 两地同时出发,相向而行,在距离 A 地 24 千米的地方相遇.如果甲晚出发

【难度】☆☆☆ 【答案】42
20 分钟,两人恰好在 AB 中点相遇;如果乙早出发 20 分钟,两人将在距离 A 地 20 千米的地方相 遇.那么,AB 两地相距__________千米.
帅帅思维公众号:shuaiteacher


第 3 页

⑥:2004、2010、2016、2022、2028、2034、……
兴趣是最好的老师
学习有意思
快乐思维
【考点】计数,加乘原理 【难度】☆☆☆ 【答案】64 【分析】每种选择情况一定对应一个七位数,第一人选完后,后六人只需要选择“左”还是“右” ,而 第一个人的门可以完全由后六个人的“左” “右”总情况逆推出来, 26 64
不难发现 2016 频繁出现,而 2016 25 32 7 可以被 1/2/3/4/6/7/8/9 整除,而比 2016 小的数在上方 表格没出现过的肯定不满足题目条件,经验证 2002、2004、2008、2010 都不满足条件 7. 右图是由 9 块相同的长方体摆放而成的大长方体, 已知大长方体的表面积是 360 平方厘米, 那么一 个小长方体的表面积是___________平方厘米.
相关文档
最新文档