电磁兼容技术-电磁干扰案例分析报告
纯电动汽车电磁兼容分析与电磁干扰抑制

纯电动汽车电磁兼容分析与电磁干扰抑制随着环保意识的逐渐增强,纯电动汽车已经成为未来汽车发展的趋势。
与传统燃油车相比,在能源效率和环保方面,纯电动汽车有着明显的优势。
但是,作为一种新兴的技术,纯电动汽车也存在着一些问题,其中电磁兼容性和电磁干扰抑制是非常重要的问题。
电磁兼容性是指在电磁工作环境下,各种电气和电子设备之间都能够协调和共存。
纯电动汽车内部有着大量的电气和电子设备,这些设备之间的电磁干扰会影响彼此的正常工作,甚至影响车辆的整体稳定性和安全性。
因此,为了保证纯电动汽车的正常工作,必须对其电磁兼容性进行分析和测试。
电磁干扰抑制是指对电磁干扰源发出的电磁波进行有效的抑制,以减小对周围电子设备的干扰。
在纯电动汽车中,电机是电磁干扰的主要源头。
电机产生的高频电磁波会对车载电子设备产生干扰,从而导致设备功能失效或工作异常。
因此,需要采取有效的电磁干扰抑制措施,对电机发出的干扰进行有效的限制。
为了保证纯电动汽车具有良好的电磁兼容性和电磁干扰抑制能力,可以采取以下措施:1、采用屏蔽技术:纯电动汽车内部的电子设备应该采用屏蔽技术,以减小设备之间的电磁干扰,保证设备正常工作。
2、采用滤波器:在电磁干扰源处增加合适的滤波器,可以有效地过滤电磁波,降低其对周围设备的干扰。
3、增加隔离手段:使用光耦、磁耦等隔离手段,在电路之间增加一定的隔离,可以有效地抑制电磁干扰的传播。
4、优化布线:优化纯电动汽车内部的布线,减少电路之间的交叉和相邻,可以最大程度地减小电磁干扰的产生和传播。
综上所述,纯电动汽车的电磁兼容性和电磁干扰抑制是一项重要且复杂的工作。
需要对车辆内部的电气和电子设备进行合理的布置和设计,采取有效的兼容性和抑制措施,以保证车辆的安全性和稳定性。
随着电子技术的不断发展和应用,在未来,纯电动汽车的电磁兼容性和电磁干扰抑制能力也将得到不断的提高和完善。
要列出相关数据,需要先确定研究的对象和目的。
在纯电动汽车电磁兼容性和电磁干扰抑制方面,可以收集以下数据:1、电磁兼容性测试数据:对纯电动汽车内部的电气和电子设备进行电磁兼容性测试,分析不同设备之间的干扰程度和兼容性。
装备电磁兼容性试验及电磁干扰分析

装备电磁兼容性试验及电磁干扰分析随着当代科技的迅猛发展,电子设备在我们的日常生活和各个行业中扮演着越来越重要的角色。
然而,电子设备的大规模普及也引发了一个棘手的问题,即电磁干扰。
为了确保各类装备可以在电磁环境良好的情况下正常工作,装备电磁兼容性试验及电磁干扰分析成为必要的一环。
装备电磁兼容性试验主要旨在验证装备在电磁环境下能否正常工作,并且不对周围的其他设备产生任何干扰。
试验的目标是确保装备能够有效抵御外部电磁辐射的干扰,同时不对其他设备产生电磁辐射。
通过进行充分的试验,可以评估装备在其周围复杂电磁环境中的稳定性和可靠性。
试验通常包括以下几个方面的内容:电磁辐射试验、电磁抗扰度试验和电磁传导干扰试验。
其中,电磁辐射试验是通过模拟不同频率和强度的电磁辐射场来评估装备的辐射抗干扰能力。
电磁抗扰度试验则是通过模拟不同频率和强度的电磁辐射场来评估装备的敏感性和抗干扰能力。
电磁传导干扰试验是通过模拟各类电磁场干扰源来评估装备对来自其他设备的电磁干扰的抵抗能力。
电磁干扰分析是一项重要的任务,旨在确定电磁干扰的来源、传播路径和影响范围。
通过详细的干扰分析,可以识别出可能导致装备性能下降或故障的电磁干扰源,并采取相应的措施来减少或消除这些干扰。
电磁干扰分析通常需要对装备和周围电磁环境进行测量和监测,收集相关数据并进行分析。
基于该分析结果,可以制定出相应的干扰控制策略,以确保装备的正常运行和系统的稳定性。
装备电磁兼容性试验及电磁干扰分析的意义重大。
首先,它有助于提高装备的稳定性和可靠性,确保其在严苛的电磁环境下仍然能够正常工作。
其次,它有助于保护其他设备不受到电磁干扰的影响,提高整个系统的工作效率和可用性。
最后,它可以提前发现潜在的电磁干扰问题,并采取相应的措施对其进行控制,从而避免未来可能发生的设备故障和安全事故。
在进行装备电磁兼容性试验及电磁干扰分析时,需要注意以下几点:首先,试验和分析过程中要尽可能模拟真实的工作场景,确保结果具有一定的可靠性。
【开关电源设计】电磁兼容设计和测试的案例分析

2009-8-15
QIANZHENYU
20
为了说明变压器屏蔽层对抑制共模骚扰的作用,做以下试 验:
根据前图所示结构绕制变压器,并在交流整流滤波后增设 13mH差模滤波电感和6.8uF差模滤波电容,对开关电源 进行传导EMI测试,结果如下图所示。可见,传导EMI非 常严重,不能通过电磁干扰测试。
2009-8-15
处理意见:①将金属螺柱改成塑料螺柱,但存在一个强度 问题;②在塑料机壳的结构上作点变化,以便将金属螺柱 缩短。以上两个处理意见都能满足辐射测试要求 ,但从结 构的强度看,第一个意见稍为差些。
2009-8-15
QIANZHENYU
18
案例4:开关电源高频变压器的屏蔽问题 开关电源中产生电磁骚扰的根本原因在于存在着电流、电 压的高频急剧变化,其通过导线的传导以及电感、电容的 耦合形成传导的电磁骚扰。 以反激式变换器为例,其的主电路如图所示。输入整流后 的电流为尖脉冲电流,开关开通和关断时变换器中电压、 电流变化率很高,这些波形中含有丰富的高频谐波。另 外,在主开关管开关过程和整流二极管反向恢复过程中, 电路的寄生电感、电容会发生高频振荡,以上这些都是电 磁干扰的来源。
QIANZHENYU
21
进一步试验,在交流整流前增设35mH共模滤波电感,传 导EMI测试结果如下图所示,产品可以通过测试。比较测 试结果,可以得出结论:开关电源主要是由于在工作过程 中产生大量共模传导电磁骚扰才使得电源不能通过测试。
2009-8-15
QIANZHENYU
22
去掉共模滤波电感,并在变压器中增设如图所示的初级屏 蔽绕组,并将屏蔽绕组抽头与A点(电容Cin正极)相连。 测试结果见后图左。由于在共模传导EMI的模型中输入滤 波电容Cin是短路的,所以将屏蔽绕组抽头与电容Cin负极 (E点)相连,则屏蔽绕组对传导EMI的抑制效果接E点与 A点相连的情况应该是一样的,测试结果如后图右所示。
电磁兼容性与抗干扰技术研究

电磁兼容性与抗干扰技术研究摘要:电磁兼容性(EMC)与抗干扰技术是当今电子设备和通信系统领域中的重要研究方向。
随着电子产品种类的日益增多和无线通信技术的迅速发展,电磁兼容性问题日益突出。
本文从电磁兼容性问题的背景和意义开始,介绍了电磁兼容性与抗干扰技术的基本概念和原理,并针对电磁兼容性和抗干扰技术研究的主要内容进行了详细阐述。
最后,对电磁兼容性与抗干扰技术研究的未来发展趋势和挑战进行了展望。
1. 引言随着现代电子设备和通信系统的广泛应用,电磁兼容性问题日益引起人们的关注。
电磁兼容性是指电子设备在特定的电磁环境下,能够正常工作而不受到不必要的干扰或产生不必要的干扰的能力。
而抗干扰技术是为了提高电子设备和通信系统的电磁兼容性,减少或消除电磁干扰,以确保系统的可靠性和稳定性。
2. 电磁兼容性与抗干扰技术的基本概念和原理2.1 电磁兼容性的基本概念电磁兼容性是指电子设备在特定电磁环境中,能够实现协同工作,互不干扰的能力。
它涉及到电磁场的相互影响、电磁传输的影响、电磁辐射的影响等多个方面。
2.2 抗干扰技术的基本原理抗干扰技术通过采用合适的设计、接地、屏蔽、滤波、地线技术等手段,来减少或消除电磁干扰对系统正常工作的影响。
其中,屏蔽技术是最常用的一种方法,它可以通过用屏蔽材料将电磁波阻挡在设备内或外部,从而减少电磁干扰。
3. 电磁兼容性与抗干扰技术研究的主要内容3.1 电磁兼容性评估与测试电磁兼容性评估与测试是电磁兼容性与抗干扰技术研究的重要内容之一。
它通过测量电子设备的电磁辐射和敏感度,评估设备在电磁环境中的兼容性,并找出存在的问题以及改进措施。
3.2 抗干扰技术设计与分析抗干扰技术设计与分析是为了提高电子设备的抗干扰能力,减少干扰源对系统的影响,从而保证系统的正常工作。
它涉及到抗干扰电路的设计、电磁辐射的抑制、敏感电路的保护等。
3.3 电磁兼容性与抗干扰技术标准电磁兼容性与抗干扰技术标准为电子设备和通信系统的开发、生产和使用提供了指导。
电磁兼容案例

电磁兼容案例电磁兼容(Electromagnetic Compatibility,简称EMC)是指在电磁环境中,各种电子设备和系统能够在不相互干扰的情况下正常工作的能力。
下面列举几个电磁兼容案例:1. 医疗设备和无线通信设备的干扰医院使用的医疗设备对电磁干扰非常敏感,而无线通信设备(如手机、无线网络等)产生的电磁辐射会干扰医疗设备的正常工作。
为了保证医疗设备的安全和有效性,需要进行电磁兼容测试和干扰抑制措施。
2. 汽车电子设备的电磁兼容问题汽车内部的各种电子设备(如发动机控制单元、车载娱乐系统、导航系统等)需要在复杂的电磁环境中正常工作。
然而,汽车发动机的高电压放电、无线电台的电磁辐射等都会对汽车电子设备造成干扰。
因此,需要对汽车电子设备进行电磁兼容测试和抗干扰设计。
3. 家用电器的电磁兼容问题家用电器(如电视、空调、冰箱等)在工作过程中会产生电磁辐射,并且容易受到其他电子设备(如手机、电脑等)的干扰。
为了避免电磁干扰对家用电器的影响,需要对其进行电磁兼容测试和干扰抑制设计。
4. 电力设备的电磁兼容问题电力设备(如变压器、电力电容器、高压开关等)在工作过程中会产生强烈的电磁场,如果没有采取相应的电磁屏蔽措施,容易对周围的电子设备产生干扰。
因此,电力设备需要进行电磁兼容测试和电磁屏蔽设计。
5. 航空航天设备的电磁兼容问题航空航天设备(如飞机、卫星、导弹等)在高速运动和复杂电磁环境中工作,其电磁兼容性要求非常高。
因为电磁干扰可能导致设备故障和通信中断,甚至对安全产生严重影响。
因此,航空航天设备需要进行严格的电磁兼容测试和屏蔽设计。
6. 工业自动化设备的电磁兼容问题工业自动化设备(如PLC、传感器、伺服驱动器等)在工业生产环境中工作,受到电磁干扰的可能性较大。
电磁干扰可能导致设备故障、数据传输错误等问题,对工业生产造成严重影响。
因此,工业自动化设备需要进行电磁兼容测试和干扰抑制措施。
7. 电子产品的电磁兼容问题各种电子产品(如手机、电脑、摄像机等)在使用过程中会产生电磁辐射,并且容易受到其他电子设备的干扰。
电磁兼容性与干扰抑制技术研究

电磁兼容性与干扰抑制技术研究随着现代电子设备的快速发展和普及,电磁兼容性(Electromagnetic Compatibility,简称EMC)和干扰抑制技术成为了电子工程领域中的一个重要研究方向。
在电子设备密集、高频、高速的工作条件下,电磁兼容性问题越发显著,影响到设备的可靠性和性能。
因此,研究电磁兼容性与干扰抑制技术对于确保电子设备的正常运行具有重要意义。
首先,对于电磁兼容性技术的研究来说,了解电磁辐射和敏感性是至关重要的。
电磁辐射是指电子设备在工作过程中产生的电磁波的传播,它可以通过空气、导线等媒介传递。
而电子设备的敏感性则表示了其容易受到来自外部电磁场中的干扰。
为了提高电磁兼容性,需要通过设计合理的电路和原理,改善设备的辐射特性,同时增加设备对干扰的抵抗能力。
其次,干扰抑制技术的研究涉及到对电磁干扰的分析和抑制。
电磁干扰是指电子设备之间或设备与外部环境之间发生的相互干扰现象。
这种干扰可能导致设备的失效、数据错误或性能下降。
因此,需要通过设计合适的滤波器、隔离器和屏蔽措施等,来抑制干扰的传播和影响。
在电磁兼容性和干扰抑制技术的研究中,有几个关键的方面需要考虑。
首先是电磁兼容性的测试与评估。
通过对设备进行电磁兼容性测试,可以评估设备的性能和耐受能力。
这些测试包括辐射发射、辐射抗扰度、传导发射和传导抗扰度等。
其次是电磁干扰的起源和传播机制的研究。
了解干扰的来源和传播途径,可以采取相应的措施降低电磁干扰的影响。
此外,研究电磁兼容性和干扰抑制技术还需要考虑设备的工作环境和使用条件,以便对相应的问题进行针对性的研究和解决。
在电磁兼容性和干扰抑制技术的研究中,还存在一些挑战和难点。
首先是频率范围的扩展。
随着电子设备工作频率的不断增加,对电磁兼容性的要求也越来越高。
因此,需要研究和开发适用于高频率范围的电磁兼容性和干扰抑制技术。
其次是设备的尺寸和集成度。
现代电子设备趋向于小型化和集成化,但这也增加了电磁兼容性和干扰抑制的挑战。
emc电磁兼容设计与测试案例分析

emc电磁兼容设计与测试案例分析
电磁兼容性(EMC)设计和测试案例分析是指在设计、制造和入
网系统产品时,使用规范和测试方法,检测出其EMC行为。
本文将介
绍用于EMC设计和测试的常用方法和技术,以及常见的案例分析。
首先,要搞清楚EMC测试的目的。
有两个主要的方面需要考虑:
一是抑制电磁波的发射,以确保其周围环境或附近系统不受EMC污染;二是防止EMC干扰自身系统。
为了做到这一点,需要考虑系统的整体
结构,特别是各组件之间的共性与局部信号分布特性,以及由各组件
信号导致的EMC干扰和故障影响。
其次是EMC设计方法。
EMC设计流程主要包括总体设计、EMC抑制、EMC测试、仿真分析和调试调试等等。
具体的步骤就是可用性分析、选择民用和兼容的电子元器件、排列电子元器件、降低EMC/EMI噪声源、分离电源和电路、抑制电缆电磁感应、引入EMI抑制组件、使用EMC封装等等。
最后是EMC测试案例分析。
常见的EMC案例分析包括测试电源线
的EMC性能、测试产品的电磁干扰抑制治理能力等。
通常,测试主要
通过发射测量等标准EMC测试方法来完成,以确定产品能够在EMC环
境中正常运行,减少EMC/EMI干扰对其他系统的损害。
电磁兼容分析报告

电磁兼容分析报告1. 引言本报告旨在对电磁兼容性进行分析和评估。
电磁兼容性是指电子设备在电磁环境中能够正常工作,且不对其它设备和环境造成不可接受的干扰。
为了保证设备的正常运行,必须进行电磁兼容性的分析和测试。
2. 问题描述在进行电磁兼容性分析之前,首先需要了解电磁兼容性问题的来源。
电磁兼容性问题主要包括电磁辐射和电磁干扰两方面。
2.1 电磁辐射电磁辐射是指电子设备在工作过程中产生的电磁波向周围空间传播的过程。
电子设备在使用过程中,会产生一定的辐射电磁场。
这些辐射电磁场可能会对附近设备和环境产生干扰。
2.2 电磁干扰电磁干扰是指外界电磁场对电子设备造成的干扰。
外界电磁场可能来自其它设备的辐射,也可能来自电力线、雷电等。
这些外界电磁场如果强度足够大,就会对设备的正常运行产生干扰。
3. 分析方法为了准确评估电磁兼容性,我们采用了以下分析方法:3.1 电磁辐射分析通过对设备进行电磁辐射测试,可以获取设备在工作过程中产生的辐射电磁场的强度和频率分布。
我们使用电磁场测试仪器来测量设备周围的电磁辐射水平。
通过分析测试结果,可以判断辐射是否超过规定的限值,从而评估设备的辐射兼容性。
3.2 电磁干扰分析通过对设备进行电磁干扰测试,可以评估设备对外界电磁场的抗干扰能力。
我们使用电磁兼容性测试仪器来模拟外界电磁场对设备的干扰,并观察设备的工作状态。
通过分析测试结果,可以判断设备是否能够正常工作,从而评估设备的干扰兼容性。
4. 结果分析4.1 电磁辐射分析结果经过测试,我们得到设备产生的辐射电磁场强度和频率分布情况。
根据相关标准,我们将测试结果与规定的限值进行对比。
结果显示,设备的辐射水平在规定的限值范围内,因此设备在辐射兼容性方面符合要求。
4.2 电磁干扰分析结果经过测试,我们模拟了外界电磁场对设备的干扰情况,并观察设备的工作状态。
结果显示,设备在受到一定强度的干扰时,仍能够正常工作。
因此,设备在干扰兼容性方面也符合要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ECL
VCC
VOH
VOL
VIH
VIL
0V
≥-5.2V ≤-0.88V ≥-1.72V ≤-1.36V
电感,变压器,芯片, 发射天线
电容,浮件,晶振,发射 天线
电感耦合
公共 阻抗 耦合
电容 耦合
电阻耦合
变压器耦合 电感与线缆耦合 电容与线缆耦合 器件与线缆耦合 滤波输入与输出耦合 PCB平行耦合与相邻层耦合
Vi Vcc
ViH
ViL 0V
5V TTL器件
VCC
VOH
VOL
VIH
5V
≥2.4V ≤0.5V ≥2V
VIL ≤0.8V
3.3V TTL器件
VCC 3.3V
VOH
VOL
VIH
≥2.4V ≤0.4V ≥2V
2.5V TTL器件
VCC 2.5V
VOH
VOL
VIH
VIL
≥2.0V ≤0.2V ≥1.7V ≤0.7V
dBuV与dBm如何相互转换?
首先我们要假设基准的
阻抗,例如测试仪器一般为50
欧姆,这样,P与U的关系就
建立起来了,P=U2/R。
最后得出,
0dBm
107dBuV
1dBm
108dBuV
30dBm
138dBuV
Z(jw)ຫໍສະໝຸດ UIRj(wL
1) wC
Z(
jw) (
jw)
当 wL 1 0 时,即 ( jw) 0 ,w w0 wC
S80
MINI USB
屏蔽层
USB Female
U盘
USB外
壳与屏 蔽层的 搭接
线缆双绞,屏
蔽,接地,紧 密程度
问题描述:
D210在待机的时候,磁头出现刷卡错误。其出线概率为较小,有 时候几分钟,有时候一两小时。
问题分析:
待机模式中磁头检测是打开的,D210使用的是兆讯方案的磁头。 使用之前IDTECH的磁头不会出现刷卡错误,新磁头方案抗扰性比较 差。
• 材料 • 铜箔 • 铝箔 • 导电布 • 导电橡胶
分地
• 数字与模拟 • 高速与低速 • 敏感电路 • 强扰电路 • 传导发射 • 安全考虑
组件滤波 器件滤波 瞬态防护
磁环
•铁 • 锰锌 • 镍锌
磁夹
电容 电阻 磁珠 电感 组合器件
TVS 压敏 半导体防雷管 气体放电管
问题描述:
S80工程样机在USB通讯时,使用对讲机对其干扰,USB通讯立刻 失败。
IDTECH采用三对差分信号输入,而兆讯采用三根单端信号输入, 抗干扰性能较差。从敏感体来改善,将单端信号的阈值增大,但同时 也造成了兼容性问题,滤除了噪声的同时也同时造成了较微弱信号无 法识别。从源头来改善,发现是7.4V充电时造成,将7.4V走线移向远 离磁头的PCB内部,问题得到圆满解决。
风险分析:
Q w0L 1 ,其数值等于谐振时感抗或容抗与电阻之
比。
R w0RC R
PCB信号回路耦合, 变压器初次级耦合?
PCB信号走线耦合, 器件与线缆耦合?
混合接地用来干什 么?为什么?
Vo
Vcc VoH
VoL 0V
输出“1”
输入“1”
静态噪声容限,“1”
?
输出“0”
静态噪声容限,“0”
输入“0”
终确定为对讲机干扰所致。 对讲机的干扰频率为400MHz,通过在MESH上加100pF电容,可以解决
问题,另外也可通过 将MESH墙上增加铺铜减少MESH对对讲机干扰接 收效率也可以解决问题。 风险分析
Rarkii Liu, 2013.6 Email: LiuXW@
电磁干扰基本理论 电磁干扰三要素 电磁干扰防护原理 电磁干扰案例分析
dB(功率比值)
dB(电压比值)
上图中已经知道P/P0电压比值:V/V0 (dB为单位)应该怎么表示? 假使已经测得P=100dBm,那么它所对应的电压V=dBuV?
1 LC
时,Z( jw) R
,电压u(t)与
电流i(t)相位相同,电路发生谐振。式中 w0
1 为电路的固有谐振频率。 LC
电路谐振时的电流为
UL
jw0LI
j
w0 L R
I
US
Us
Z
Us ,电路谐振时的电压为 R
UR
jQUS ,UC
1 I j 1
jw0C
w0 RC
RI
US
US ,
jQUS
其中,Q为串联谐振电路的品质因数,
问题分析:
S80使用的MINI USB转USB线缆的两端USB外壳并没有相连,因此 信号的GND环路过大,且环路对外暴露程度很大,对干扰的接收效 率很高,最后导致了USB通讯失败。
使用其他三种MINI USB转USB线缆都不会造成通讯失败,因此是 USB转接线本身的质量问题。
风险分析:
客户在使用USB通讯下载应用发生故障需满足两个条件:一是使用 劣质转接线,二是有对讲机对其干扰。这种概率非常小,即使有,也 是可以接受的。因为程序也许几年才下载一次,不是安全触发或硬件 损伤的重大缺陷,因此该缺陷可以不用处理。
此问题属于内部干扰,且充电状态和磁头待机会同时存在,因此 需要重点解决,通过上述分析,有以下方案:
将7.4V电源走线走到PCB中央,并走在内层,并在两侧打地孔。
效率,环路,能量传递
兆讯方案
7.4V D210接口板
IDTECH方案
问题描述 客户在使用过程中,S90经常发生多台机器安全触发。
问题分析 经过对客户现场的模拟分析,进行了静电与对讲机干扰两种实验,最
噪声 路径
暴露 程度
接收 程度
敏感性
芯片电路 接收天线 磁头信号 控制信号
电场屏蔽 磁场屏蔽 电磁场屏蔽 电磁吸收
铜
铁
铁
铜
吸波材料
铝 硅钢片
金
银
铁
坡莫合金
导电玻璃
磁片
器件接地
• 电阻 • 电容 • 磁阻 • 电感 • 变压器 • 连接器
导体接地
• 金属 • 铜质弹片 • 钢质弹片 • 铝质弹片
5V CMOS
VCC
VOH
VOL
VIH
5V
≥2.4V ≤0.5V ≥2V
VIL ≤0.8V
VIL ≤0.8V
3.3V供电时的LVCMOS器件
2.5V供电时的LVCMOS器件
VCC 3.3V
VOH
VOL
VIH
VIL
VCC
≥3.2V ≤0.1V ≥2.0V ≤0.7V 2.5V
VOH
VOL
VIH
VIL
≥2.0V ≤0.1V ≥1.7V ≤0.7V
电压相关 60dBuV=1000uV=1mV 120dBuV=1000000uV=1V 126dBuV=2000000uV=2V 180dBuV=1000V=1KV
功率相关 0Bm=1mW=0.001W 4dBm=2.5mW=0.0025W 20dBm=100mW=0.1W 30dBm=1000mW=1W 33dBm=2000mW=2W