正余弦的知识点

合集下载

正余弦定理知识点及题型归纳

正余弦定理知识点及题型归纳

正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。

下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。

2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。

3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。

二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。

2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。

3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。

三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。

2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。

3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。

4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。

正弦与余弦知识点总结

正弦与余弦知识点总结

正弦与余弦知识点总结正弦与余弦的定义在直角三角形中,如果一个锐角的对边和斜边的比值为正弦值,邻边和斜边的比值为余弦值。

假设在直角三角形ABC中,∠C为90°,AB为斜边,BC为对边,AC为邻边,那么正弦与余弦的定义如下:正弦值:sin∠A=对边/斜边=BC/AB余弦值:cos∠A=邻边/斜边=AC/AB在直角三角形中,正弦与余弦的值可以用来描述角度和三角形边长的关系。

在不同的三角形中,正弦与余弦的值并不相同,但其性质和图像是相似的。

正弦与余弦的性质1. 周期性:正弦与余弦函数都具有周期性,其周期为2π。

这意味着在一个周期内,函数值将重复出现。

在[-π, π]或[0, 2π]范围内,正弦与余弦的函数图像将呈现出周期性的特点。

2. 奇偶性:正弦函数是奇函数,余弦函数是偶函数。

奇函数具有对称中心原点,即f(-x)=-f(x),在图像上关于原点对称。

而偶函数则具有对称中心y轴,即f(-x)=f(x),在图像上关于y轴对称。

3. 交替性:正弦与余弦函数在图像上呈现出交替变化的特点。

在一个周期内,正弦函数的最大值为1,最小值为-1;余弦函数的最大值为1,最小值为-1。

两个函数的图像像是上下振荡的波形。

4. 相关性:正弦与余弦函数是相互关联的。

在直角三角形中,三角函数的相互关系可以由勾股定理推导出来。

sin²x + cos²x = 1是三角函数基本关系式,也称为三角恒等式。

正弦与余弦的图像正弦与余弦函数的图像是学习三角函数的重要内容之一。

它们的图像形状、周期性、奇偶性等特点对于理解三角函数的性质至关重要。

正弦函数的图像是一条连续的波纹状曲线,具有周期性、奇函数特点。

其图像在[-π, π]或[0, 2π]范围内呈现出从最小值-1到最大值1的振荡变化。

正弦函数的图像具有对称性,关于原点对称。

余弦函数的图像也是一条连续的波纹状曲线,具有周期性、偶函数特点。

其图像在[-π, π]或[0, 2π]范围内同样呈现出从最大值1到最小值-1的振荡变化。

高一正弦余弦知识点

高一正弦余弦知识点

高一正弦余弦知识点【高一正弦余弦知识点】一、正弦和余弦的定义正弦和余弦是三角函数中最基本的两个函数。

在直角三角形中,对于一个锐角A,定义如下:1. 正弦(sine):正弦是一个角的对边与斜边的比值,通常用sin(A)表示。

2. 余弦(cosine):余弦是一个角的邻边与斜边的比值,通常用cos(A)表示。

二、正弦和余弦的性质1. 范围:正弦和余弦的值域都在闭区间[-1, 1]内。

2. 周期性:正弦和余弦的图像都是周期函数,其周期为2π(或360°)。

3. 关系:正弦和余弦是互余关系,即sin(A) = cos(90° - A)。

4. 奇偶性:正弦函数是奇函数,即sin(-A) = -sin(A);余弦函数是偶函数,即cos(-A) = cos(A)。

5. 三角恒等式:正弦和余弦满足一系列重要的三角恒等式,如sin^2(A) + cos^2(A) = 1等。

三、正弦和余弦的应用正弦和余弦在数学和物理中有广泛的应用,以下列举其中几个常见的应用场景:1. 测量角度:利用正弦和余弦函数可以计算角度的大小,例如利用正弦定理和余弦定理来解决三角形中的边长和角度问题。

2. 周期性问题:许多自然现象都具有周期性,正弦和余弦函数可以用来描述周期性变化的规律,如天体运动、电流震荡等。

3. 振动和波动:正弦和余弦函数可以表示物体的振动和波动过程,如机械振动、光和声波的传播等。

4. 信号处理:在电子工程中,正弦和余弦函数常用于信号的分析和处理,如调频调幅信号的解调、滤波等。

四、注意事项1. 角度单位:正弦和余弦函数的输入角度可以使用弧度制或角度制,要根据问题给出的要求进行选择和转换。

2. 反函数:正弦和余弦函数可以通过计算器或查表得到特定角度的值,也可以通过反函数(反正弦和反余弦)来计算特定值所对应的角度。

五、总结正弦和余弦是高中数学中重要的知识点,它们的定义、性质和应用都需要我们深入理解。

掌握正弦和余弦函数可以帮助我们解决各类与角度、周期性和波动相关的问题,并在物理、工程等领域中有广泛的应用。

正弦余弦知识点总结

正弦余弦知识点总结

正弦余弦知识点总结一、正弦和余弦函数的定义1. 正弦函数的定义正弦函数是周期函数,它的周期是2π。

正弦函数的定义域是整个实数集,值域是区间[-1, 1]。

正弦函数的定义如下:y = sin(x) = A * sin(ωx + φ)其中,A 是振幅,ω 是角速度,φ 是初相位。

在一般情况下,A=1,ω=1,φ=0。

2. 余弦函数的定义余弦函数也是周期函数,它的周期也是2π。

余弦函数的定义域是整个实数集,值域是区间[-1, 1]。

余弦函数的定义如下:y = cos(x) = A * cos(ωx + φ)同样,A 是振幅,ω 是角速度,φ 是初相位。

在一般情况下,A=1,ω=1,φ=0。

二、正弦函数和余弦函数的性质1. 周期性正弦函数和余弦函数都是周期函数,它们的周期都是2π,即在一个周期内,函数值会重复出现。

2. 奇偶性正弦函数是奇函数,即sin(-x)=-sin(x),图像关于原点对称;余弦函数是偶函数,即cos(-x)=cos(x),图像关于y轴对称。

3. 极值正弦函数的最大值是 1,最小值是 -1;余弦函数的最大值是 1,最小值是 -1。

4. 函数图像正弦函数的图像是一条周期为2π的波浪线,而余弦函数的图像也是一条周期为2π的波浪线,但相位不同,形状相似但位置不同。

三、正弦和余弦函数的图像特点1. 正弦函数的图像正弦函数的图像是一条周期为2π的波浪线,在区间[0, 2π]上,它的图像从原点开始,向右上方偏移,并不断震荡上下,形成波浪状的曲线。

2. 余弦函数的图像余弦函数的图像也是一条周期为2π的波浪线,但它的图像在区间[0, 2π]上,从最大值1开始,并向下偏移,然后不断震荡上下,形成波浪状的曲线。

四、正弦和余弦函数的导数和积分1. 正弦函数的导数和积分正弦函数的导数是余弦函数,即(sin(x))' = cos(x);正弦函数的积分是-余弦函数,即∫sin(x)dx=-cos(x)。

正余弦函数知识点总结

正余弦函数知识点总结

正余弦函数知识点总结一、正余弦函数的定义正弦函数和余弦函数都是圆的点在坐标轴上的投影,它们通常用来表示一个角的正弦和余弦值。

正弦函数和余弦函数分别由下面的公式所定义:sin(θ) = opp/hypcos(θ) = adj/hyp在上面的公式中,θ是角的大小,opp是对边的长度,adj是邻边的长度,hyp是斜边的长度。

这些定义和公式都是从直角三角形中得到的,因此在使用正弦函数和余弦函数的时候,我们通常需要先将问题转化成三角形来求解。

二、正余弦函数的性质1. 周期性:正弦函数和余弦函数都是周期函数,它们的周期都是2π。

这意味着在一个周期内,这两个函数的值会不断重复。

2. 奇偶性:正弦函数是奇函数,而余弦函数是偶函数。

这意味着sin(-θ) = -sin(θ),cos(-θ) = cos(θ)。

这是通过函数图像的对称性可以得到的。

3. 值域:正弦函数和余弦函数的值域都是[-1,1]。

这说明它们的取值范围都是有限的,并且是相同的。

4. 同一角的正弦和余弦的关系:在一个直角三角形中,我们可以用正弦和余弦函数来表示同一个角的两个边的关系。

如果我们知道一个角的正弦值,可以通过反正弦函数来求出这个角的大小;同样,如果我们知道一个角的余弦值,也可以通过反余弦函数来求出这个角的大小。

三、正余弦函数的图像正弦函数和余弦函数的图像是非常典型的周期函数的图像。

正弦函数的图像是一条波浪线,而余弦函数的图像是一条钟形曲线。

这两个函数的图像有着一些非常明显的特点:1. 周期性:这两个函数的图像都是在一个周期内不断重复的,因此整个图像是无限延伸的。

2. 对称性:正弦函数是奇函数,所以它的图像具有原点对称的性质;而余弦函数是偶函数,所以它的图像具有y轴对称的性质。

3. 值域:这两个函数的值域都是[-1,1],因此它们的图像都在y轴上有一个水平的渐近线。

四、正余弦函数的应用正弦函数和余弦函数在数学、物理、工程等领域都有着广泛的应用。

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。

本文将对这两个定理进行详细总结与讲解。

一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。

1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。

二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。

这个过程较为繁琐,这里就不做详细讲解。

2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。

三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。

3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。

3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。

3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。

而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C 变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A为钝角或直角时,a ≤b ,无解.2、三角形常用面积公式1.S =a •h a (h a 表示边a 上的高);2.S =ab sin C =ac sin B =bc sin A .3.S =r (a +b +c )(r 为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1C.2D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,若sin B =b sin A ,则a =()A.B .C .1D .三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A ,b 2=a 2+c 2﹣2ac cos B ,c 2=a 2+b 2﹣2ab cos C变形形式①a =2R sin A ,b =2R sin B ,c =2R sin C ;②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos A =,cos B =,cos C =解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba≥ba >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A 为钝角或直角时,a ≤b ,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,且(a +b )2=c 2+ab ,B =30°,a =4,则△ABC 的面积为()A .4B .3C .4D .6例2.设△ABC 的三个内角A ,B ,C 成等差数列,其外接圆半径为2,且有,则三角形的面积为()A .B .C .或D .或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;的最大值.(2)若D为AC的中点,且BD=1,求S△ABC'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

正弦定理、余弦定理知识点

正弦定理、余弦定理1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ;2.三角形中的边角不等关系:A>B ⇔a>b,a+b>c,a-b<c ;; 3.正弦定理:A asin =Bb sin =Ccsin =2R (外接圆直径);正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 2;a ∶b ∶c =sin A ∶sin B ∶sinC .4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况: (1)A 为锐角a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角 当a>b 时有一解.5.余弦定理 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB . 若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边.知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状. 【答案】解法1:由扩充的正弦定理:代入已知式 2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bca cb b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a = 即△ABC 为等腰三角形.巩固练习1.在中,若2222sin sin 2cos cos b C c B b B C +=,试判断三角形的形状.2.在ABC ∆中,已知a 2tanB=b 2tanA,试判断这个三角形的形状.3.已知ABC ∆中,有cos 2cos sin cos 2cos sin A C BA B C+=+,判断三角形形状.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理:①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角. 例题2 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【答案】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BC b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理 B ac c a b cos 2222-+=将已知条件代入,整理:0162=+-x x 解之:226±=x当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒ ,C=75︒ 当226-=c 时同理可求得:A=120︒ 巩固练习1.已知在ABC ∆中,2,6,45==︒=∠BC AB A在ABC ∆中,213,2tan tan +=-=c b bb c B A ,求三内角2.在ABC ∆中,已知B C A 2=+,32tan tan +=⋅C A ,求A 、B 、C 的大小,又知顶点C 的对边C 上的高等于34,求三角形各边a 、b 、c 的长.知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值.【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【答案】 A B C 、、为锐角 ∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=πsin sin sin sin cos cos cos cos 2222221336ααββααββ-++-+=221336-+=(cos cos sin sin )αβαβ --=-25936cos()αβ∴-=cos()αβ5972巩固练习1.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c=2b,A-C=3π,求sinB 的值.2.在中,a ,b ,c 分别是的对边长,已知a ,b ,c 成等比数列,且,求的大小及的值.3.在ABC ∆中,若4,5==b a且3231)cos(=-B A ,求这个三角形的面积.例题4 在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c,证明:C B A cb a sin )sin(222-=-.【分析】在用三角式的恒等变形证明三角形中的三角等式时,其解题的一般规律是:二项化积、倍角公式,提取公因式,再化积.遇有三角式的平方项,则利用半角公式降次.【答案】证法一:由正弦定理得C A B C B A c b a 2222222sin 22cos 2cos sin sin sin -=-=-=C A B A B 2sin 2)sin()sin(2-+-=CB AC 2sin )sin(sin -=C B A sin )sin(-.证法二:由余弦定理得a 2=b 2+c 2-2bccosA,则222c b a -=22cos 2cA bc c -=1-c b 2∙cosA,又由正弦定理得c b =C Bsin sin ,∴222cb a -=1-C B sin sin 2∙cosA=C A B C sin cos sin 2sin -=C A B B A sin cos sin 2)sin(-+=C A B B A sin cos sin cos sin -=C B A sin )sin(-. 证法三:C B A sin )sin(-=CAB B A sin cos sin cos sin -. 由正弦定理得cbC B c a C A ==sin sin ,sin sin ,∴CB A sin )sin(-=cAb B a cos cos -,又由余弦定理得C B A sin )sin(-=cbc a c b b ac b c a a 22222222-+⋅--+⋅=22222222)()(c a c b b c a -+--+=222c b a -.巩固练习1.已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (1)求证tan 2tan A B =;(2)设3AB =,求AB 边上的高.参考答案课堂互动例题1 巩固练习1.【答案】[解法1]:由正弦定理2sin sin sin a b cR A B C===,R 为外接圆的半径,将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =,sin sin 0B C ≠,sin sin cos cos B C B C ∴=. 即cos()0B C +=,90B C ∴+=,90A =.故为直角三角形[解法2]:将已知等式变为2222(1cos )(1cos )2cos cos b C c B b B C -+-=,由余弦定理可得22222222222222a b c a c b b c b c ab ac ⎛⎫⎛⎫+-+-+-⋅-⋅ ⎪ ⎪⎝⎭⎝⎭222222222a c b a b c bc ac ab+-+-=⋅⋅,即22b c +22222222()()4a b c a c b a ⎡⎤+-++-⎣⎦=也即222b c a +=,故为直角三角形.2.【答案】解法1:由已知得A A b B B a cos sin cos sin 22=,由正弦定理得AAB B B A cos sin sin cos sin sin 22=,∵sinAsinB ≠0,∴sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B 或2A=1800-2B,即A=B 或A+B=900.∴ABC ∆是等腰三角形或直角三角形.解法2: 由已知得A A bB B a cos sin cos sin 22=,由正弦定理得A a b b a cos cosB 22=,即Ab a cos cosB =,又由余弦定理得bcac b b a 22ac b -c a 222222-+=+,整理得(a 2-b 2)(a 2+b 2-c 2)=0,∴a=b,或a 2+b 2=c 2, ∴ABC ∆是等腰三角形或直角三角形. 3.解:由已知得例题2 巩固练习1.【答案】解法1:由正弦定理,得2345sin 26sin =︒=C 因3226sin =⨯=⋅A AB 6,2==AB BC 由623<<,则有二解,即︒=∠60C 或︒=∠120C︒=︒-︒-︒=∠754560180B 或︒=︒-︒-︒=∠1545120180B故13sin sin +=⇒⋅=AC B ABC AC 或13-=AC ,︒=∠︒=∠15,120B C ︒=∠︒=∠75,60B C 解法2:令AC=b ,则由余弦定理222245cos 62)6(=︒-+b b 1302322±=⇒=+-b b b又C b b cos 222)6(222⋅-+=︒=∠±=⇒60,21cos C C 或︒=∠120C ︒=︒+︒-︒=∠⇒75)6045(180B 或︒=︒+︒-︒=∠15)12045(180B . 2【答案】由已知有bc B A 21tan tan =+,化简并利用正弦定理:B C B A B A B A sin sin 2sin cos sin cos cos sin =+ BCB A B A sin sin 2sin cos )sin(=+0cos sin 2sin =-A C C由0sin ≠,故︒=⇒=6021cos A A 由213+=cb,可设k c k b 2,)13(=+=,由余弦定理,得 k a k k k a 6)13(24)13(22222=⇒+-++=由正弦定理Cc A a sin sin =得 226232sin sin =⋅==kk a A c C 由b c <则C 是锐角,故︒=--︒=︒=75180,45C A B C3.【答案】由已知,得2C A B +=,又由︒=++180C B A ︒=⇒60B 故4160cos sin sin 2=︒=C A ①又由B c a S ABC sin 2134⋅⋅==∆164334=⇒=⇒ac ac ② 故64)sin ()sin (sin sin 22===C c A a C A ac 8sin sin ==⇒Cc A a由3460sin 8sin 8sin sin =︒⋅=⋅==B AB a b 则21260cos cos 222=-+=︒=ac b c a B即964848)(3)(222=+=+⇒=-+c a ac b c a 64=+⇒c a ③ 把③与②联立,得)26(2),26(2-=+=c a 或)26(2),26(2+=-=c a4.【答案】由已知B C A 2=+,及︒=+︒=⇒︒=++120,60180C A B C B A由CA C A C A tan tan 1tan tan )tan(-+=+及32tan tan ,3)tan(+=⋅-=+C A C A得33tan tan +=+C A ,以C A tan ,tan 为一元二次方程032)33(2=+++-x x 的两个根,解方程,得⎩⎨⎧+==32tan 1tan C A 或⎩⎨⎧=+=1tan 32tan C A ⎩⎨⎧︒=︒=⇒7545C A 或⎩⎨⎧︒=︒=4575C A 若︒=︒=75,45C A ,则860sin 34=︒=a ,6445sin 34=︒=b ,)13(445sin 75sin 8sin sin +=︒︒==A C a c 若︒=︒=45,75C A ,则︒=60sin 34a ︒==75sin 34,8b )13(64-=)623(4-=)13(8sin sin -==B C b c 例题3 巩固练习1.【答案】由正弦定理和已知条件a+c=2b,得sinA+sinC=2sinB.由和差化积公式,得2sin 2C A +cos 2C A -=2sinB. 由A+B+C=π得sin2C A +=cos 2B .又A-C=3π,得2cos 23B =sinB.∴2cos 23B=2sin 2B cos 2B ,∵0<2B <2π,∴cos 2B ≠0,∴sin 2B =43.∴cos 2B =2sin 12B -=413,∴sinB=2sin 2B cos 2B =2∙43∙413=839. 2.【答案】(I )成等比数列 又 在中,由余弦定理得(II )在中,由正弦定理得 .3.【答案】解法1:由余弦定理得c c bc a c b A 892cos 2222-=-+= cc ac b c a B 1092cos 2222+=-+= 由正弦定理得:B A B A sin 45sin sin 4sin 5=⇒= 3231)cos 1(4510989222=-++⋅-⇒B c c c c 3231])109(1[4580812224=+-+-c c c c 63632318016282222=⇒=⇒=-⇒c c cc 故1694893689cos 2=-=-=c c A 7165sin =A 4715sin 21=⋅⋅=∆A c b S ABC解法2:如图,作B A CAD -=∠,AD 交BC 于D ,令x CD =则由5=a 知,x AD x BD -=-=5,5,在CAD ∆中 由余弦定理3231)5(84)5()cos(222=--+-=-x x x B A 化简得199=⇒=x x ,在CAD ∆中由正弦定理)sin(4)sin(sin )sin(sin B A B A CD AD C B A CD C AD -=-⋅=⇒-=783)(cos 142=--=B A 74158735421sin 21=⨯⨯⨯=⋅⋅=∆C BC AC S ABC例题4 巩固练习1.【答案】(1)证明:因为3sin()5A B +=,1sin()5A B -=, 所以3sin cos cos sin 51sin cos cos sin 5A B A B A B A B ⎧+=⎪⎪⎨⎪-=⎪⎩,2sin cos 51cos sin 5A B A B ⎧=⎪⎪⇒⎨⎪=⎪⎩,tan 2tan A B ⇒=.所以tan 2tan A B =(2)因为2A B ππ<+<,3sin()5A B +=, 所以3tan()4A B +=-,即tan tan 31tan tan 4A B A B +=--, 将tan 2tan A B =代入上式并整理得 22tan 4tan 10B B --=.解得2tan 2B =,舍去负值得2tan 2B +=,从而tan 2tan 2A B ==. 设AB 边上的高为CD.则tan tan CD CD AB AD DB A B =+=+=AB=3,得CD= 2AB 边上的高等于2。

正弦定理余弦定理知识点总结及最全证明

正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。

正弦定理可以用于求解任意三角形的边长或角度。

正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。

正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。

正弦定理的证明:可以使用数学推导来证明正弦定理。

这里给出一种较为详细的证明方法。

证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。

3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。

4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。

5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。

所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。

6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。

余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。

正弦定理余弦定理知识点

正弦定理余弦定理知识点正弦定理和余弦定理是三角形中常用的公式。

1.三角形中常用的公式包括:角度和公式A+B+C=π;海伦公式S=√(p(p-a)(p-b)(p-c)),其中 p=(a+b+c)/2;正弦定理a/sinA=b/sinB=c/sinC=2R,其中 R 为外接圆半径;余弦定理a²=b²+c²-2bccosA,b²=a²+c²-2accosB,c²=a²+b²-2abcosC。

2.三角形中的边角不等关系:A>B⟺a>b,a+b>c,a-b<c。

3.正弦定理可用于以下情况:①已知两角和任一边,求其他两边及一角;②已知两边和其中一边对角,求另一边的对角;③几何作图时,存在多种情况。

4.已知两边和其中一边的对角解三角形的情况:(1)A为锐角,有一解;(2)A为锐角或钝角,当a>b时有一解。

5.余弦定理可用于以下情况:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边。

6.三角形面积公式为 S=1/2absinC=1/2bcsinA=1/2casinB。

在解题时,可以利用正弦定理或余弦定理判断三角形的形状,从中找到三角形中的边角关系,判断出三角形的形状。

例如,在△ABC 中已知 acosB=bcosA,利用扩充的正弦定理可以得到 sin(A-B)=0,因此 A=B,即△ABC 为等腰三角形。

练题:1.在△ABC 中,若 XXX2bcosBcosC,可判断三角形的形状。

2.在△ABC 中,已知 atanB=btanA,可判断三角形的形状。

3.已知△ABC 中,有 cosA+2cosCsinB=2,可判断三角形的形状。

解:由题意可得tanA=1,tanB=2,tanC=3则tan(A+B)=tan(180°-C)=tanC=-3tan(A+B)+tanC=-3+3=0又因为A、B、C为锐角,所以A+B+C=180°而tan(A+B+C)=\frac{tan(A+B)+tanC}{1-tan(A+B)tanC}=0所以A+B+C=180°综上所述,A+B+C=180°.3.在三角形ABC中,a、b、c分别为角A、B、C的对边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正余弦函数是三角函数中最基本的两个函数之一,它们在数学和物理学中都有着广泛的应用。

正余弦函数的定义和性质是学习三角学的重要基础,本文将从基本定义
出发,逐步探讨正余弦函数的知识点。

一、正余弦函数的定义
正余弦函数分别记作sin和cos,它们是以单位圆为基础定义的。

单位圆是以
原点为中心,半径为1的圆,它的周长约为6.28(或2π)。

在单位圆上,对于任
意一个角度θ,我们可以定义该角度的正弦值和余弦值。

正弦值(sinθ)定义为角度θ对应的单位圆上的点在y轴上的坐标值,即正弦
值等于对边与斜边的比值。

余弦值(cosθ)定义为角度θ对应的单位圆上的点在x
轴上的坐标值,即余弦值等于邻边与斜边的比值。

通过这样的定义,我们可以得到任意角度θ的正弦值和余弦值。

二、正余弦函数的周期性
正余弦函数具有周期性,即在一个周期内,函数的值会以相同的规律重复出现。

正弦函数和余弦函数的周期都是2π,即在一个完整的周期内,函数的值会在0到
2π之间循环。

这意味着正弦函数和余弦函数的值在0到2π之外的区间也会以相
同的规律循环。

周期性是正余弦函数在实际应用中的重要特性,它使得我们能够预测和计算周
期性现象的变化规律。

三、正余弦函数的图像
正余弦函数的图像可以通过绘制函数在单位圆上的点来得到。

对于任意一个角
度θ,根据正余弦函数的定义,可以计算得到该角度的正弦值和余弦值,然后将这
个点绘制在坐标系中。

绘制的结果是一个波浪形的曲线,即正弦函数的图像。

该曲线在0到2π的范
围内循环,具有周期性。

余弦函数的图像与正弦函数的图像非常相似,只是在水平方向上偏移了π/2的角度。

通过观察正余弦函数的图像,我们可以获得一些直观的感受,比如函数的振幅、最大值、最小值等。

四、正余弦函数的性质
正余弦函数具有一些重要的性质,这些性质在求解三角方程、解析几何、波动
学等领域中起着重要的作用。

1.奇偶性:正弦函数是奇函数,即sin(-θ) = -sinθ;余弦函数是偶函数,
即cos(-θ) = cosθ。

这意味着正弦函数关于原点对称,而余弦函数关于y轴对
称。

2.周期性:正弦函数和余弦函数的周期都是2π。

这意味着如果θ是正
弦函数或余弦函数的一个解,那么θ+2π、θ-2π、θ+4π、θ-4π等也都是解。

3.平移性:正弦函数和余弦函数的图像可以通过水平或垂直方向的平移
得到。

例如,sin(θ+π)的图像相对于sinθ的图像向左平移π个单位。

4.三角恒等式:正弦函数和余弦函数之间存在一些重要的三角恒等式,
如sin^2θ + cos^2θ = 1和sin(θ±π/2) = ±cosθ等。

这些恒等式在求解方程和简化复杂表达式时非常有用。

以上仅是正余弦函数的一些基本知识点,正余弦函数在数学和物理学中还有更
多的应用和性质。

通过深入学习正余弦函数的定义、周期性、图像和性质,我们可以更好地理解和应用三角函数的知识。

相关文档
最新文档