一元一次方程应用题提高练习(含答案)

合集下载

完整版)一元一次方程应用题及答案

完整版)一元一次方程应用题及答案

完整版)一元一次方程应用题及答案1.某商店开业,为了吸引顾客,所有商品均以八折优惠出售。

已知某种皮鞋进价为60元一双,商家以40%的利润率出售。

问这种皮鞋的标价和优惠价分别是多少元?2.某商品在加价20%后的价格为120元,求它的进价是多少?3.一家商店将某种服装的标价提高40%,并以八折优惠卖出。

结果每件服装仍可获得15元的利润。

问这种服装每件的进价是多少?4.一家商店将一种自行车的标价提高45%,并以八折优惠卖出。

结果每辆自行车仍可获得50元的利润。

问这种自行车每辆的进价是多少元?5.某商品的进价为800元,出售时标价为1200元。

由于该商品积压,商店准备打折出售。

但要保持利润率不低于5%,则至多可以打几折?6.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。

经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。

求每台彩电的原售价是多少?7.甲乙两件衣服的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。

在实际销售时,两件服装均按9折出售。

这样商店共获利157元。

求甲乙两件服装的成本各是多少元?8.某同学在A、B两家超市发现他看中的随身听和书包的单价和为452元,且随身听的单价比书包的单价的4倍少8元。

某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物券30元。

但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱?知识点2:方案选择问题1.某蔬菜公司有一种绿色蔬菜,直接销售每吨利润为1000元,经粗加工后销售每吨利润可达4500元,经精加工后销售每吨利润涨至7500元。

当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行粗加工,每天可加工6吨。

但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕。

(完整)列一元一次方程解应用题专项练习180题(有答案)

(完整)列一元一次方程解应用题专项练习180题(有答案)

列一元一次方程解应用题专项练习180题(有答案)1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采用一种高新技术后,每天多生产10台,结果用12天,不但完成任务,而且超额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区"募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3。

6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际按照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6。

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)

初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要细心,慢慢做,要做对。

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

2、小华从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。

4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。

超经典一元一次方程中考应用题专练(含答案)

超经典一元一次方程中考应用题专练(含答案)

第六章一元一次方程(应用题)专练1.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.2.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米解:3.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场4.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元(2)如不使用分时电价结算,5月份小明家将多支付电费多少元6.一件商品按成本价提高20%后标价,又以9折销售,售价为270元,则这件商品的成本价是多少7. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m,则应收水费______元;(2)若该户居民3、4月份共用水315m(4月份用水量超过3月份),共交水费8. 2007年5月19日起,中国人民银行上调存款利率.人民币存款利率调整表储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.(1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率%计息,本金与实得利息收益的和为元,问他这笔存款的本金是多少元(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存请说明理由.约定:①存款天数按整数天计算,一年按360天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).9.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元10. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元11. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元12. 列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次13. 目前我省小学和初中在校生共136万人,其中小学在校生人数比初中在校生人数的2倍少2万人,问目前我省小学和初中在校生各有多少万人16. 为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶17. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天(2)甲队施工一天,需付工程款万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱19. 某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1-分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.参考答案1、解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1)(15)114x+-=+%%.5分解得:1205x==%.答:这个月的石油价格相对上个月的增长率为20%.8分2.解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(40)x+千米.1分依题意,得3061(40)602x x+=+.3分解得200x=.4分答:这次试车时,由北京到天津的平均速度是每小时200千米.5分3、解:设这个队胜了x场,依题意得:3(145)19x x+--=(4分)解得:5x=(6分)答:这个队胜了5场.(7分)4、(1)设原销售电价为每千瓦时x元,根据题意得: ……………………………1分40(0.03)60(0.25)42.73x x⨯++⨯-=………………………………3分40 1.2601542.73x x ++-= 10042.7313.8x =+0.5653x =. ………………………………4分∴当0.5653x =时,0.030.5953x +=;0.250.3153x -=.答:小明家该月支付平段电价为每千瓦时元、谷段电价每千瓦时元.……6分 (2) 1000.565342.7313.8⨯-=(元)答:如不使用分时电价结算,小明家5月份将多支付元. ……………………8分 5、解:(1)1533(h)45604⨯==(分钟),4542>Q , ∴不能在限定时间内到达考场. 4分(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场. 5分先将4人用车送到考场所需时间为150.25(h)1560==(分钟). 小时另外4人步行了1.25km ,此时他们与考场的距离为15 1.2513.75-=(km )7分设汽车返回(h)t 后先步行的4人相遇,56013.75t t +=,解得 2.7513t =.汽车由相遇点再去考场所需时间也是2.75h 13.9分所以用这一方案送这8人到考场共需 2.751526040.44213+⨯⨯≈<.所以这8个个能在截止进考场的时刻前赶到. 10分方案2:8人同时出发,4人步行,先将4人用车送到离出发点km x 的A 处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场. 6分由A 处步行前考场需15(h)5x -,汽车从出发点到A 处需(h)60x 先步行的4人走了5(km)60x⨯,设汽车返回t (h )后与先步行的4人相遇,则有605560x t t x +=-⨯,解得11780xt =,8分所以相遇点与考场的距离为112156015(km)78013x xx -+⨯=-. 由相遇点坐车到考场需1(h)4390x ⎛⎫-⎪⎝⎭. 所以先步行的4人到考场的总时间为111(h)607804390x x x ⎛⎫++-⎪⎝⎭, 先坐车的4人到考场的总时间为15(h)605x x -⎛⎫+ ⎪⎝⎭,他们同时到达,则有11115607804390605x x x x x-++-=+,解得13x =. 将13x =代入上式,可得他们赶到考场所需时间为1326037605⎛⎫+⨯= ⎪⎝⎭(分钟). 3742<Q .∴他们能在截止进考场的时刻前到达考场. 10分其他方案没有计算说明可行性的不给分.6、解:设这种商品的成本价为x 元,依题意得,270%90%)201(=⨯+x , (4分)解以上方程,得250=x . (5分) 答:这种商品的成本价是250元. (6分)7、(1)应收水费264(106)8(12.510)48⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则226448(1510)44x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则264(6)26448(1510)44x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .8、解:(1)3500×%×80%=(元),∴到期时他实得利息收益是85.68元. 2分 (2)设他这笔存款的本金是x 元, 则x (1+%×80%)=, 4分 解得x =2500,∴这笔存款的本金是2500元.6分(3)设小明爸爸的这笔存款转存前已存了x 天,由题意得l0000×360x ×%+10000×360360x -×%>10000×%, 8分 解得x <41713,9分当他这笔存款转存前已存天数不超过41天时;他应该转存;否则不需转存. 10分 9、(1)设2007职业中专的在校生为x 万 人根据题意得:1500× -1500x =600 ………………………………………3分解得:2x = ………………………………5分所以.()2 1.2 2.4⨯=万人()2.415003600⨯=万元 ……………………………7分答:略. …………………………………8分10、解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000.解得x =88.∴31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部. ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.11、解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台).(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000.解得x =88.∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部. ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.12、解法一:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为(469)x -万人次.依题意,得(469)1696x x +-=. 解得353x =.4694353691343x -=⨯-=.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.解法二:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次. 依题意,得1696469.x y y x +=⎧⎨=-⎩,解得3531343.x y =⎧⎨=⎩,答:轨道交通日均客运量为353万人次,地面公交日均客运量为1 343万人次.13、解:设初中在校生为x 万人,依题意得(22)136x x +-=解得46x =于是22246290x -=⨯-=(万人).答:目前我省小学在校生为90万人,初中在校生为46万人.14、解:设该公司今年到台湾采购苹果的成本价格为x 元/公斤根据题意列方程得100000100000200002x x += 解得 2.5x =经检验 2.5x =是原方程的根. 当 2.5x =时,25x =答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.15、解:设每个中国结的原价为x 元,根据题意得16016020.8x x-= 解得 20x =.经检验,20x =是原方程的根.答:每个中国结的原价为20元.16、(1)解法一:设甲种消毒液购买x 瓶,则乙种消毒液购买(100)x -瓶.依题意,得69(100)780x x +-=.解得:40x =.∴1001004060x -=-=(瓶).答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.解法二:设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶.依题意,得10069780x y x y +=⎧⎨+=⎩,.解得:4060x y =⎧⎨=⎩,.答:甲种消毒液购买40瓶,乙种消毒液购买60瓶.(2)设再次购买甲种消毒液y 瓶,刚购买乙种消毒液2y 瓶. 依题意,得6921200y y +⨯≤. 解得:50y ≤.答:甲种消毒液最多再购买50瓶.17、解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯= 解这个方程,得x =90经检验,x =90是原方程的解∴乙队单独完成需90天(2)设甲、乙合作完成需y 天,则有11()16090y += 解得36y =(天)甲单独完成需付工程款为60×=210(万元)乙单独完成超过计划天数不符题意(若不写此行不扣分). 甲、乙合作完成需付工程款为36(+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.18、解:(1)设试销时这种苹果的进货价是每千克x 元,依题意,得)11000500020.5x x =⨯+解之,得 x =5经检验,x =5是原方程的解. (2)试销时进苹果的数量为:500010005= 第二次进苹果的数量为:2×=(千克)盈利为: 2600×7+400×7×-5000-=0(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.19、解: (1)设该班胜x 场,则该班负)10(x -场.依题意得: 14)10(3=--x x解之得: 6=x所以该班胜6场,负4场.(2)设甲班胜了x 场,乙班胜了y 场,依题意有: )]10(3[3)10(3y y x x --=--化简得:53+=x y 即35+=x y 由于y x , 是非负整数,且05x ≤≤,y x > ∴4=x ,3=y .所以甲班胜4场,乙班胜3场. 答:(1)该班胜6场,负4场.(2)甲班胜4场,乙班胜3场.。

一元一次方程应用题专项(解析)

一元一次方程应用题专项(解析)

一元一次方程应用题专项练习1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?1.设有x人种树,则有(10x+6)棵树,由题意得:10x+6=12x﹣6,解得:x=6,∴10x+6=66.故有6人种树,有66棵树.2.某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班级有多少名学生?一共展出了多少张邮票?2.设这个班级有x名学生,那么邮票共有(3x+24)或(4x﹣26),则3x+24=4x﹣26,解得x=50,∴3x+24=3×50+24=174.答:这个班级有50名学生,一共展出了174张邮票.3.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?3.(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生,这批图书共有155本4.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?4.设羽毛球的进价为x元,由题意列方程得:x(1+40%)×0.8=x+15解得:x=125,答:羽毛球的进价为125元5.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?5.设该商品的进价为x元,根据题意得:20%x=1000×85%﹣40﹣x.解得:x=675.答:这种服装的进价为675元6.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?6.设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.7.某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?7.(1)设该用户5月份用去x吨水,依题意得1.8x=6×1.2+2(x﹣6),解得:x=24.答:该用户5月份用去24吨水;(2)该用户5月份应交水费:1.8×24=43.2元8.某城区居民用水实行阶梯收费、每户每月用水量如果未超过20吨,按每吨1.9元收费;如果超过20吨,未超过部分按每吨1.9元收费,超过部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?8.∵5月份水费平均为每吨2.2元,用水量如果未超过20吨,按每吨1.9元收费.∴用水量超过了20吨.设5月份用水x吨,由题意得:1.9×20+2.8×(x﹣20)=2.2x,解得x=30.答:该户5月份用水30吨9.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)9.设分配x人生产甲零件,则有(60﹣x)人生产乙零件,根据题意可列方程:10x=2×25(60﹣x),解得:x=50.则60﹣x=10.即分配50人生产甲零件,10人生产乙零件10.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?10.设可设分配x名工人生产螺栓,(28﹣x)名工人生产螺母.由题意得:2×1200x=1800(28﹣x)解得:x=12.则28﹣x=16.答:应该分配12名工人生产螺栓,16人生产螺母,才能使每天的产品刚好配套.11.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?11.设电气机车的速度为x千米/时,则磁悬浮列车的速度为(5x+20)千米/时,依题意得:(5x+20+x)=298,解得:x=96,∴5x+20=500.故电气机车的速度为96千米/时,磁悬浮列车的速度为500千米/时12.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?12.由题意得:50x+15﹣40x=30解得:x=1.5.答:经过1.5小时,两车相距30千米.13.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?13.(1)设经过x小时两车相距540千米,由题意得:80x+120x=540﹣240解得:x=(小时),答:经过小时两车相距540千米.(2)设经过x小时快车可追上慢车:由题意得:120x﹣80x=240解得:x=6(小时),答:经过6小时快车可追上慢车.(3)设经过x小时,两车相距300千米.由题意得;120x﹣80x=300﹣240.解得:x=(小时),答:经过小时两车相距300千米.14.在一条铁路上有甲、乙两个站,相距408千米,一列慢车从甲站开出每小时行72千米,一列快车从乙站开出,每小时行96千米,问:(1)若两车背向而行,几小时后相距660千米?(2)若两车相向而行,慢车先开1小时,快车开出几小时后两车相遇?(3)若两车同向而行,几小时后快车与慢车相距60千米?14.(1)设x小时后相距660千米,由题意得,72x+96x=660﹣408,解得:x=1.5,答:1.5小时后相距660千米;(2)设快车开出y小时后两车相遇,由题意得,72(y+1)+96y=408,解得:y=2,答:快车开出2小时后两车相遇;(3)设z小时后两车相距60千米,由题意得,72x+408﹣96x=60,解得:x=14.5;答:14.5小时后,快车与慢车相距60千米15.一艘船从甲码头到乙码头顺流行驶,用了3小时;从乙码头返回甲码头逆流行驶,用了4.5小时.已知船在静水中的平均速度为25千米/时,求水流的速度与两个码头之间的距离.15.设水流的速度每小时行x千米,(25+x)×3=(25﹣x)×4.5,解得:x=5;两个码头之间的距离为:3×(25+5)=90(千米),答:水流的速度每小时行5千米,两个码头之间的距离为90千米,16.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?16.设还需x天完成,由题意得:,解得:x=6.答:乙还需6天完成.17.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班帮忙和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?17.设甲、乙两班合作x小时后可完成任务,根据题意,得×4+(+)x=1,解得x=2.答:甲、乙两班合作2小时后可完成任务.18.整理一批图书,由一人做要40小时完成.先安排一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安排了多少人整理图书?18.设先安排了x人整理图书,根据题意,得:,解得:x=8.答:先安排了8人整理图书.19.学校组织了一次“迎世博”知识竞赛,初赛共有40道选择题,竞赛规则规定:每题选对得4分,选错或不选倒扣3分.已知小明得了62分,问:小明答对几道题?19.设答对了x道题,则答错或不答(40﹣x)道题,根据题意得:4x﹣3(40﹣x)=62解得:x=26答:答对了26道题.20.某同学在中百、家乐福两家超市发现他看中的随身听单价相同,书包的单价也相同.已知随身听和书包的单价之和为580元,且随身听的单价比书包单价的4倍少20元.(1)求随身听和书包的单价各是多少元?(2)某天该同学上街,恰好两家超市都进行促销活动:中百超市所有商品八折销售;家乐福超市全场购物满100元返30元销售(不足100元不返回),请问这个同学想买这两件商品,请你帮他设计出最佳的购买方案,并求出他所付的费用.20.(1)设随身听的单价为x元,则书包的单价是(580﹣x)元.(1分)依题意,列方程,得:x=4(580﹣x)﹣20(4分)解之得:x=460∴580﹣x=120(6分)答:随身听的单价为460元,则书包的单价是120元.(7分)(2)方案①:全部在中百超市购买:580×0.8=464元;方案②:全部在家乐福超市购买:580﹣30×5=430元;方案③:随身听在中百超市购买,书包在家乐福超市购买:460×0.8+120﹣30=458元;方案④:随身听在家乐福购买,书包在中百超市超市购买:460﹣30×4+120×0.8=436元;所以,选择方案②,全部在家乐福超市购买,购买所付费用为430元21.某商场计划从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(2)若甲、乙、丙三种型号的电视机的数量比为3:2:5,则该商场共需投资多少元?(2)若该商场同时购进两种不同型号的电视机共50台,恰好用去9万元,请你设计一下商场的进货方案.21.解:(1)设甲、乙、丙三种型号电视机的台数分别为3x,2x,5x3x+2x+5x=50解得:x=5∴3x=15;2x=10;5x=25∴需投资为15×1500+10×2100+25×2500=106000(2)①若购进甲x台,乙(50-x)台1500x+(50-x)×2100=90000,解得x=25,50-x=25②若购进乙x台,丙(50-x)台2100x+(50-x)×2500=90000,解得x=87.5,(不合题意,舍去)③若购进甲x台,丙(50-x)台1500x+(50-x)×2500=90000,解得x=35,50-x=15答:购进甲25台,乙25台。

一元一次方程应用题-含答案

一元一次方程应用题-含答案

一元一次方程应用题1.小刚在 A,B两家体育用品商店都发现了他看中的羽毛球拍和篮球,两家商店的羽毛球拍和篮球的单价都是相同的,羽毛球拍和篮球单价之和是426元,且篮球的单价是羽毛球拍的单价的4倍少9元.(1)求小刚看中的羽毛球拍和篮球的单价各是多少元?(2)小刚在元旦这一天上街,恰好赶上商店促销,A商店所有商品打八五折销售,B商店全场购物满100元返购物券20元(不足100元不返券,购物券全场通用,用购物券购物不再返券),但他只带了380元钱,如果他只在一家商店购买看中的这两样商品,你能说明他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【答案】(1)羽毛球拍单价为87元,则篮球的单价是339元;(2)在A商场购物更省钱【解析】试题分析:(1)设羽毛球拍单价为x元,则篮球的单价是(4x﹣9)元,根据羽毛球拍和篮球单价之和是426元,可得方程求解即可;(2)根据(1)知两件商品单价之和是542元,首先计算A商场,打八折的价格是433.6元,故在A商场可以买到;再根据B全场购物满100元返购物券30元销售,则先拿432元购买运动服,返还120元购物券,再拿120元即可购买运动鞋.然后比较两个商场的价钱,进行判断.解:(1)设羽毛球拍单价为x元,则篮球的单价是(4x﹣9)元,依题意得:x+4x﹣9=426,解得x=87,则426﹣87=339.答:羽毛球拍单价为87元,则篮球的单价是339元;(2)在A商场购物更省钱;理由:∵A商场所有商品打八五折销售,∴A商场所付金额为:426×0.85=362.1(元),∵B商场全场满100元返购物卷20元(不足100元不反卷,购物卷全场通用),∴先购买篮球339元,赠购物卷60元,故此次只需要339+27=366(元),故在A商场购物更省钱.2.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?【答案】(1)每天能组装48套GH型电子产品;(2)至少应招聘30名新工人.【解析】试题分析:(1)设有x名工人加工G型装置,则有( 80-x)名工人加工H型装置,利用每台GH型产品由4个G型装置和3个H型装置配套组成得出等式求出答案;(2)设招聘 a名新工人加工G型装置,设 x名工人加工G型装置,(80-x)名工人加工H型装置,进而利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.试题解析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,根据题意,6x 380 x,4 3解得x=32,则80-32=48(套),答:每天能组装48套GH型电子产品;(2)设招聘 a名新工人加工G型装置试卷第1页,总15页仍设x名工人加工G型装置,(80-x)名工人加工H型装置,根据题意,6x4a 380x,4 3整理可得,x=1602a,5另外,注意到80-x≥1200,即x≤20,20于是1602a≤20,5解得:a≥30,答:至少应招聘30名新工人,考点:1. 一元一次不等式的应用;2.一元一次方程的应用.3.某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【答案】乙班的达标率为90%.【解析】试题分析:设乙班的达标率是x,则甲班的达标率为(x+6%),根据“甲、乙两班的学生数相同”列出方程,解方程即可.试题解析:设乙班的达标率是x,则甲班的达标率为( x+6%),依题意得:48 45,x 6% x解这个方程,得x=0.9,经检验,x=0.9 是所列方程的根,并符合题意.答:乙班的达标率为90%.考点:分式方程的应用 .4.甲、乙两个工程队准备铺设一条长650米的地下供热管道,由甲乙两个工程队从两端相向施工,甲队每天铺设48米,乙队比甲队每天多铺设22米,如果乙队比甲队晚开工1天,那么乙队开工多少天,两队能完成整个铺设任务的80%?【答案】乙队开工4天两队能完成整个铺设任务的80%.【解析】试题分析:设乙队开工x天两队能完成整个铺设任务的80%,根据题意所述等量关系得出方程,解出即可.试题解析:设乙队开工x天两队能完成整个铺设任务的80%,由题意得,甲队每天铺设48米,乙队每天铺设70米,则48(x+1)+70x=650×80%,解得:x=4.答:乙队开工 4天两队能完成整个铺设任务的80%.考点:一元一次方程的应用.5.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的1,这时增加了乙队,两队共同工作了3半个月,总工程全部完成 .哪个队的施工速度快?【答案】乙队的施工进度快.【解析】试题分析:如果设乙的工作效率为x.先由“甲队单独施工1个月完成总工程的三分之一”可知甲的工作效率为1,3 再由“两队又共同工作了半个月,总工程全部完成”,可得等量关系:(甲的工作效率 +乙的工作效率)×1=1-1,2 3 列出方程,求解即可.试卷第2页,总15页试题解析:设乙的工作效率为 x . 依题意列方程:(1+x )×1=1-1.3 2 3解方程得:x=1.∵1>1,3∴乙效率>甲效率,答:乙队单独施工 1个月可以完成总工程,所以乙队的施工进度快.考点:分式方程的应用.6.某中学库存若干套桌椅,准备修理后支援贫困山区学校。

一元一次方程解应用题-行程问题专项练习 含答案)

一元一次方程解应用题-行程问题专项练习 含答案)

一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用题
1、某班做一次行军训练,限定在3.5小时内完成,其间休息21分钟,去时速度为每小时5公里,回来时速度为每小时4公里,问学生最远走多少公里?
2、甲、乙两个工程队分别有188人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1,问应从甲、乙两队各抽出多少人?
3、整理一批数据,由一个人做需80小时完成任务。

现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。

怎样安排参与整理数据的具体人数?
4、一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。

问:①若已知队长320米,则通讯员几分钟返回?②若已知通讯员用了25分钟,则队长为多少米?
5、现对某商品降价10%促销,为了使销售总额不变,销售量要比按原价销售时增加百分之几?
6、
7、一列客车和一列货车在平行的轨道上同向行驶,客车长200米,货车长310米,客货两车的速度比为4:3。

如果客车从后面追赶货车,从车头赶上到车尾超过的时间为2分钟.求两列火车的速度。

8、.四筐苹果共有46个,若第一筐增加1个,第二筐减少2个,第三筐增加一倍,第四筐减少一半,那么这四筐苹果的个数都相等。

问这四筐苹果原来各有多少个?
9、依法纳税是每个公民的义务,若按照下表中规定的税率交纳个人所得税:
别月应纳税所得额率(%)
超过500元部分
过500元至2000元部分
过2000元至5000元部分
1999年规定,上表中“全月应纳税所得额”是从收入中减除800元后的余额,例如某人月收入是1020元,减除800元,应纳税所得额为220元,应交个人所得税11元.
张老师每月收入是相同的,且1999年第四季度交纳个人所得税99元,问张老师每月收入是多少元?
10、.小张在水中逆流游泳,于A 处所带水壶丢失。

8分钟后发觉水壶丢失,此时壶正顺流而下,立即追赶,在A 处下游320米处将水壶追到,求水流的速度
11、.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里路程的二分之一就到达目的地了.问A 、B 两市相距多少千米?
12.甲、乙两人由A 地出发去B 地.甲骑自行车以6米/秒的速度先行,10分钟后,乙骑摩托车以15米/秒的速度追赶.设乙行驶的时间为t 秒,乙出发后甲、乙两人相距的路程为S 米. (1)当t 为何值时乙追上甲?
(2)求S 的值(用含t 的代数式表示); (3)当t 为何值时,S 为900米?
13、水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.
(1)据环保组织调查统计,全市至少有5
106⨯个水龙头、4
102⨯个抽水马桶漏水.若一万个漏水的水龙头一个月能漏掉a 立方米水;一万个漏水的马桶一个月漏掉b 立方米水,则全市一个月仅这两项所造成的水流失量是多少? (2)针对居民用水浪费现象,市政府将制定居民用水标准:规定每个三口之家每月的标准用水量,超过标准部分加价收费.若不超标部分的水价为每立方米3.5元;超标部分为每立方米4.2元.某家庭某月用水12立方米,交水费44.8元,请你通过列方程求出我市规定的三口之家每月的标准用水量为多少立方米.
(3)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:每天8:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日8:00为用水低谷期,水价可定为每立方米3.2元.若某三口之家按照此方案需支付的水费与(2)问所交水费相同,又知该家庭用水高峰期的用水量比低谷期少20%.请计算哪种方案下的用水量较少?少多少?
1 2
3 5
4
6
7
8
9
10
11
13.解:⑴∵
b a b a 26010
102101064
4
45+=⋅⨯+⋅⨯ ∴全市一个月仅这两项所造成的水流失量是)260(b a +立方米. 2分
⑵∵
5.312
8
.44> ∴该家庭该月用水量超过标准用水量 3分 设我市规定的三口之家的每月标准用水量为x 立方米,由题意得:
8.44)12(2.45.3=-+x x
解得:8=x
答:我市规定的三口之家的每月标准用水量为8立方米. 6分 ⑶设用水低谷期的用水量为y 立方米,则用水高峰期的用水量
为y %)201(-立方米,由题意得: 8.44%)201(42.3=-⨯+y y 解得:7=y
∴6.12%)201(=-+y y (立方米)
∵6.0126.12=-(立方米)
∴问题⑵中的方案下的用水量较少,少0.6立方米. 10分。

相关文档
最新文档