离散数学作业2

合集下载

电大离散数学作业

电大离散数学作业

电大离散数学作业 RUSER redacted on the night of December 17,2020离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 }, {2,3}} ,A B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈<>=y{B,,x,2yAx那么R-1= {<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c> ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2,b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g f)= {3,4} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.解:(1)错误,R 不是自反关系,因为没有有序对<3,3>.(2)错误,R 不是对称关系,因为没有有序对<2,1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:错误, 即R 不是等价关系.因为等价关系要求有自反性x R x, 但<3, 3>不在R 中.3.若偏序集<A ,R >的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在. 解:错误. 集合A 的最大元不存在,a 是极大元.4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2) f ={<1, 6>, <3, 4>, <2, 2>};(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) f 不能构成函数.因为A 中的元素3在f 中没有出现.(2) f 不能构成函数.因为A 中的元素4在f 中没有出现.(3) f 可以构成函数.因为f 的定义域就是A ,且A 中的每一个元素都有B 中的唯一一个元素与其对应,满足函数定义的条件.三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求:(1) (AB )~C ; (2) (AB )- (BA ) (3) P (A )-P (C ); (4) AB .解:(1)因为A ∩B={1,4}∩{1,2,5}={1},~C={1,2,3,4,5}-{2,4}={1,3,5}所以 (A ∩B ) ~C={1}{1,3,5}={1,3,5}(2)(AB )- (BA )= {1,2,4,5}-{1}={2,4,5}(3)因为P(A)={,{1}, {4}, {1,4}}P(C)={,{2},{4},{2,4}}所以 P(A)-P(C)={ ,{ 1},{ 4},{ 1,4}}-{,{ 2},{ 4},{2,4 }}(4) 因为 AB={ 1,2,4,5}, AB={ 1}所以 AB=AB-AB={1,2,4,5}-{1}={2,4,5}a b c d 图一g e f h2.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(AB ); (2)(A ∩B ); (3)A ×B .解:(1)AB ={{1},{2}}(2)A ∩B ={1,2}(3)A ×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}3.设A ={1,2,3,4,5},R ={<x ,y >|xA ,yA 且x +y 4},S ={<x ,y >|xA ,yA 且x +y <0},试求R ,S ,RS ,SR ,R -1,S -1,r (S ),s (R ).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}, \R -1={<1,1>,<2,1>,<3,1>,<1,2 >,<2,2>,<1, 3>}S=φ, S -1 =φr (S )={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s (R )= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}RS=φSR=φ4.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}.(1) 写出关系R 的表示式; (2 )画出关系R 的哈斯图;(3) 求出集合B 的最大元、最小元.解:R={<1,1>,<1,2>,<1,3>,<1,4,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)关系R 的哈斯图如图(3)集合B 没有最大元,最小元是:2 四、证明题1.试证明集合等式:A (BC )=(AB ) (AC ).证明:设,若x ∈A (BC ),则x ∈A 或x ∈BC ,即 x ∈A 或x ∈B 且 x ∈A 或x ∈C .即x ∈AB 且 x ∈AC ,即 x ∈T =(AB ) (AC ),所以A (BC ) (AB ) (AC ).反之,若x ∈(AB ) (AC ),则x ∈AB 且 x ∈AC ,即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,即x ∈A 或x ∈BC ,即x ∈A (BC ),所以(AB ) (AC ) A (BC ).因此.A (BC )=(AB ) (AC ).72.试证明集合等式A (BC)=(AB) (AC).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A且x∈B或 x∈A且x∈C,也即x∈A∩B或x∈A∩C,即x∈T,所以ST.反之,若x∈T,则x∈A∩B或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以TS.因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.证明:设xA,yB,则<x,y>AB,因为AB = AC,故<x,y> AC,则有yC,所以B C.设xA,zC,则<x,z> AC,因为AB = AC,故<x,z>AB,则有zB,所以CB.故得B=C.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:R1和R2是自反的,x A,<x, x> R1,<x, x> R2,则<x, x> R1∩R2,所以R1∩R2是自反的.。

离散数学第二次作业题及答案.doc

离散数学第二次作业题及答案.doc

第2次作业一、单项选择题(本大题共40分,共20小题,每小题2分)1.假设A={a, b, c, d},考虑子集S= {{a, b}, {b, c}, {d}},则下列选项正确的是()oA.S是A的覆盖B.S是A的划分C.s既不是划分也不是覆盖D.以上选项都不正确2.设h是群G上的一个同态,|G|二12,山(G)|二3,则|K| (K是h的核)二_________________ ()A.1B.2C.D.3.L23 ), 设G是连通(n,m)的平面图,有r个面,且每个面的次数至少为L( 则A.m>3n-6B.Hl <c.m+n-r=2D.m+r-n二24.如果小王和小张都不去,则小李去。

设P:小王去。

Q:小张去。

R:小李去。

则命题符号化为_________ oA.-I QA-i PVRB.(Q->P)ARC.(n PAn QLRD.(PAQ)-R5.没有不犯错误的人。

M(x): x为人。

F (x) : x犯错误。

则命题可表示为()OA.(Vx) (M(x) F (x)B.(3x) (M(x) AF(x)C.(Vx) (M(x)AF(x))D.(3x) (M(x)-F(x)6.(1)燕子北冋,春天来了。

设P:燕了北回。

Q:春天來了。

则(1)可以表示为___________ oP->QQ-PC.UQD.P VQ7.命题公式(P->QA-i P)的类型是___________ 。

A.重言式B.矛盾式C.可满足式D.永真式6.一阶逻辑公式Vx(F(x, y)AG(y, z) )—VzF(z, y)是()前束范式封闭公式C.永真式D.永假式7.谓词公式(3x)P(x, y) A (Vx) (Q(x, z)-> Gx) (Vy)R(x, y, z)中的量词Vx 的辖域是()。

A.(Vx)(Q(x,z)->(3 x)( Vy)R(x,y ,z)B.Q(x, z)-> (Vy)R(x, y, z)C.Q (x, z) —(3x) (Vy) R (x, y, z)D.Q(x, z)8.关于半群的性质,下面说法不正确的是()A.若〈S,*>S且*在8上是封闭的,那么匸是一个半群,B<B, *>也是一个半群。

2020年春季学期课程作业离散数学第2次13979-重庆大学网络教育学院-参考资料

2020年春季学期课程作业离散数学第2次13979-重庆大学网络教育学院-参考资料

重庆大学网络教育学院-2020年春季学期课程作业离散数学第2次-参考资料请认真阅读一下说明然后下载:题库有可能会换,不保证全部都有!请仔细核对是不是您需要的题目再下载!!!!本文档的说明:如果题目顺序和你的试卷不一样,按CTRL+F在题库中逐一搜索每一道题的答案,预祝您取得好成绩百!一、单项选择题 (共 30 题、0 / 90 分 )1、一棵有向树,如果恰有一个节点的入度为0,其余所有节点的入度都为1,则称为()。

A、根树B、普通树C、树根D、树节点参考答案是:A2、设有向图(a)、(b)、(c)、(d)如下图所示,则下列结论成的是()A、(a)是强连通的B、(b)是强连通的C、(c)是强连通的D、(d)是强连通的参考答案是:A3、P:今天下雨。

Q:明天下雨。

上述命题的合取为()。

(符号表示)A、┐P∧┐QB、┐P∨QC、┐P∨┐QD、P∧Q参考答案是:D4、设有向图D为欧拉图,则图D中每个结点的入度()出度。

A、等于B、大于C、小于D、不能确定参考答案是:A5、下列关系中哪些能构成函数?()A、{〈x,y〉|x,y∈ N,x+y<10}B、{〈x,y〉|x,y∈ N,x+y=10}C、{〈x,y〉|x,y∈ R,|x|=y}D、{〈x,y〉|x,y∈ R,x=|y|}参考答案是:C6、设〈G , *〉是一个独异点, 并且对于G中的每一个元素a都有( ),则〈G , * 〉是一个阿贝尔群。

A、a * a= aB、a * a= eC、a * e= eD、e* a= e参考答案是:B7、张三或李四都可以做这件事。

设P:张三可以做这件事。

Q:李四可以做这件事。

则命题符号化为()。

A、┐P∧┐QB、┐P∨QC、┐P∨┐QD、参考答案是:D8、在一个具有n个节点的图中,则任何简单路的长度均不大于()。

A、nB、n-1C、n+1D、2n参考答案是:B9、欧拉公式的原型为()。

A、v+e+r=2B、v-e+r=2C、v-e-r=2D、v+e-r=2参考答案是:B10、下面关于广群,半群,独异点,群的关系正确的是()。

奥鹏地大21年春季 《离散数学》在线作业二.doc

奥鹏地大21年春季 《离散数学》在线作业二.doc

1.A.(1)正确B.(2)正确C.(3)正确D.(4)正确【参考答案】: D2.设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点A.10B.4C.8D.16【参考答案】: D3.若一棵完全二元(叉)树有2n-1个顶点,则它()片树叶A.nB.2nC.2n-1D.2【参考答案】: A4.A.(1)正确B.(2)正确C.(3)正确D.都不正确【参考答案】: A5.设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式x(P(x)Q(x))在哪个个体域中为真?( )A.自然数B.实数C.复数D.(1)--(3)均成立【参考答案】: A6.A.选项A对B.选项B对C.选项C对D.选项D对【参考答案】: A7.A.(1)正确B.(2)正确C.(3)正确D.(4)正确【参考答案】: D8.下列哪一种图不一定是树()A.无简单回路的连通图B.有n个顶点n-1条边的连通图C.每对顶点间都有通路的图D.连通但删去一条边便不连通的图【参考答案】: C9.A.(1)正确B.(2)正确C.(3)正确D.(4)正确【参考答案】: B10.每个无限循环群有()个生成元A.1B.2C.3D.4【参考答案】: B11.集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y A},则R 的性质为()A.自反的B.对称的C.传递的,对称的D.传递的【参考答案】: B12.A.单射而非满射B.满射而非单射C.双射D.既不是单射也不是满射【参考答案】: D13.图的构成要素是()A.结点B.边C.结点与边D.结点、边和面【参考答案】: C14.A.(1)正确B.(2)正确C.(3)正确D.(4)正确【参考答案】: A15.每个非平凡的无向树至少有()片树叶A.1B.2C.3D.4【参考答案】: B16.A.(1)正确B.(2)正确C.(3)正确D.(4)正确【参考答案】: D17.A.(1)正确B.(2)正确C.(3)正确D.(4)正确【参考答案】: B18.量词的约束范围称为量词的()A.定义域B.个体域C.辖域D.值域【参考答案】: C19.A.A正确B.B正确C.C正确D.D正确【参考答案】: D20.设G是连通简单平面图,G中有11个定点,5个面,则G中的边是()A.10B.12C.14D.16【参考答案】: C21.判断下列命题哪个为真?( )A.A-B=B-A => A=BB.空集是任何集合的真子集C.空集只是非空集合的子集D.若A的一个元素属于B,则A=B【参考答案】: A22.下面给出的集合中,哪一个是前缀码?( )A.{0,10,110,101111}B.{01,001,000,1}C.{b,c,aa,ab,aba}D.{1,11,101,001,0011}【参考答案】: B23.A.(1)正确B.(2)正确C.(3)正确D.(4)正确【参考答案】: D24.A.选项A正确B.选项B正确C.选项C正确D.选项D正确【参考答案】: D25.设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点A.10B.4C.8D.12【参考答案】: D26.A.文字B.短语C.子句D.合取范式E.析取范式【参考答案】: CDE27.设R是任意集合A上的空关系,则R是()A.自反的B.反自反的C.对称的D.反对称的E.传递的【参考答案】: ABCDE28.存在欧拉通路的有向欧拉图都是单向连通图( )A.错误B.正确【参考答案】: B29.同一谓词公式,指定不同的论域,其真值不一定相同( )A.错误B.正确【参考答案】: B30.A.错误B.正确【参考答案】: B31.若无向图中恰有两个度为奇数的结点,则这两个结点必连通( )A.错误B.正确【参考答案】: B32.设G为简单平面图,则n-m+r=2,其中n,m,r分别为G的顶点数、边数和面数( )A.错误B.正确【参考答案】: A33.“北京与天津的距离很近”是复合命题( )A.错误B.正确【参考答案】: A34.A.错误B.正确【参考答案】: A35.A.错误B.正确【参考答案】: B。

离散数学第2次作业参考答案

离散数学第2次作业参考答案
1
1
0
0
1
1
1
0
0
1
1
1
1
1
1
0
1
0
1
(3-2)主析取范式:
(4)由真值表和主析取范式分别可以验证该推理正确。
6、(每题12分,共24分)
(1)如果今天是星期六,我们就要到颐和园或圆明园去玩。如果颐和园游人太多,我们就不去颐和园。今天是星期六。颐和园游人太多。所以我们去圆明园玩。
解:
(1)令p:今天是星期六; q:我们要到颐和园玩; r:我们要到圆明园玩; s:颐和园游人太多.
5、(20分)用2种方法(真值表法、主析取范式法)判断下面推理是否正确。
若 是奇数,则 不能被2整除。若 是偶数,则 能被2整除。因此,如果 是偶数,则 不是奇数。
解:(1)简单命题符号化:
p: 是奇数,q: 能被2整除,r: 是偶数。
(2)前提和结论分别符号化为:
若 是奇数,则 不能被2整除: p→ q。
2018级离散数学第二次作业参考答案
学号:姓名:班级:总分:
1、(每空5分,共30分)
(1)已知公式A含有3个命题变项p,q,r,并且它的成真赋值为000,011,110,那么命题公式A的成假赋值为001,010,100,101,111,主析取范式为 ,主合取范式为M1∧M2∧M4∧M5∧M7。
(2)已知公式A含有3个命题变项,并且公式A的主合取范式为 ,那么公式A的成真赋值为000, 010,101,110,111,成假赋值为001, 011, 100,公式A的主析取范式为 。
解:
令p:小王是理科生, q:小王是文科生, r:小王的数学成绩很好.
前提: p→r, ¬q→p, ¬r

离散数学第一第二次作业

离散数学第一第二次作业

第1部分命题逻辑一、单项选择题1. 下列哪个语句是真命题( )。

(A)我正在说谎(B)如果1+2 = 3,则雪是黑色的(C)如果1+2 = 5,则雪是黑色的(D)上网了吗2 .命题公式为P > (Q > P)( )。

(A)重言式(B)可满足式(C)矛盾式(D)等值式3. 设命题公式P (Q厂P),记作G,则使G的真值指派为1的P, Q 的取值是( )。

(A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1)4. 与命题公式P > (Q > R)等值的公式是( )。

(A) (P Q) > R (B)(P Qp R (C)(P > Q) > R (D)P》(Q R)5 .命题公式(P Q) > P是( )。

(A)永真式(B)永假式(C)可满足式(D)合取范式二、填空题1. ____________________________________________ P, Q为两个命题,当且仅当 _________________________________________ 时,P Q的真值为1,当且仅当_______________________ 时,P Q的真值为0。

2. 给定两个命题公式A, B,若 ________________________________ 时,则称A和B是等值的,记为A= B。

3. ________________________________ 任意两个不同极小项的合取为_______ 式。

4 .设P:天下雨,Q:我们去郊游。

贝S⑴命题如果天不下雨,我们就去郊游”可符号化为_______ 。

第1页(共16页)⑵命题只有天不下雨,我们才去郊游”可符号化为_______ 。

⑶命题我们去郊游,仅当天不下雨”可符号化为_________ 。

5 .设命题公式G = P (-Q R),则使G取真值为1的指派6. 已知命题公式为G = (-P Q) > R,则命题公式G的析取范式是三、计算题1.将下列命题符号化:⑴ 李强不是不聪明,而是不用功;⑵ 如果天不下雨,我们就去郊游;⑶ 只有不下雨,我们才去郊游。

离散数学集合论部分形成性考核书面作业2答案

离散数学集合论部分形成性考核书面作业2答案

离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。

一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 },A B{2,3}} ,A⨯B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈∈R⋂x∈>且=且y<{BA,,}yxAyBx则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3>.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=>x∈<,,x,2{ByA那么R-1={<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1, a >, <2, b >},或{<1, b >, <2, a >}二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.(1) R 不是自反关系,因为没有有序对<3,3>. (2) R 不是对称关系,因为没有有序对<2,1>2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由.解:成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2。

离散数学练习题(含答案2)

离散数学练习题(含答案2)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是(C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( D )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是(C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是(A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)1 / 72 / 7D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射CDACCDAADADB第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档