高中数学选修主要内容

合集下载

高二选修一数学知识点每章

高二选修一数学知识点每章

高二选修一数学知识点每章高二选修一数学是高中数学课程的一部分,下面将按照每章的顺序,介绍该课程涉及的主要数学知识点。

第一章:函数与方程在这一章中,我们将学习函数的概念和性质,以及一些基本的函数类型,如线性函数、二次函数、指数函数和对数函数。

我们还将研究解方程的方法,包括一元一次方程、一元二次方程和一次不等式。

第二章:三角比与解三角形在这一章中,我们将深入研究三角函数,包括正弦、余弦和正切函数。

我们将学习如何应用三角函数解决实际问题,并探讨解三角形的方法,如正弦定理、余弦定理和正切定理。

第三章:数列与数学归纳法数列是一种有规律的数的排列,我们将学习如何表示和求解数列。

同时,我们也将学习数学归纳法的原理和应用,以证明一些数学命题。

第四章:数与式在这一章,我们将学习数与式的关系。

我们将研究一元二次不等式、绝对值不等式以及一次不等式与方程组的解法。

此外,我们也将学习一些基本的数学定理,如乘法定理和因式定理。

第五章:平面向量在这一章中,我们将学习平面向量的概念和运算法则。

我们将讨论向量的加减、数量积和向量积,以及应用向量解决几何问题。

第六章:立体几何这一章将介绍立体几何的基本概念和性质。

我们将学习各种立体图形的表达方式和计算方法,如立方体、棱柱、棱锥、圆锥和球体等。

第七章:三角函数与导数在这一章中,我们将进一步研究三角函数的性质和导数的概念。

我们将学习如何求解复合函数的导数,以及如何应用导数解决最值和曲线问题。

第八章:不等式与极值这一章将详细讨论不等式的性质和解法。

我们将学习绝对值不等式、多项式不等式和有理不等式的解法,以及极值问题的求解方法。

第九章:一元函数的积分学在这一章中,我们将学习函数的积分概念和基本性质。

我们将讨论定积分和不定积分的计算方法,以及应用积分解决面积、体积和曲线长度等问题。

第十章:统计与概率这一章将介绍统计学和概率论的基本概念。

我们将学习如何收集和整理数据,以及如何计算概率和统计指标,如均值、方差和标准差等。

高中数学选修内容

高中数学选修内容

高中数学选修内容一、函数与方程函数与方程是高中数学选修内容中的重要部分。

函数是数学中描述各种关系的工具,方程则是用来表示等式的数学式子。

函数与方程的研究可以帮助我们解决各种实际问题,如求解未知数、确定函数的性质等。

二、数列与数列的表示数列是一系列按照一定规律排列的数的集合。

数列的表示有多种方法,如通项公式、递推公式等。

通过研究数列,我们可以探索数的规律,理解数的性质,进而解决与数相关的问题。

三、三角函数与三角恒等式三角函数是描述角度与边长关系的函数,包括正弦、余弦、正切等。

三角恒等式是三角函数之间的等式关系,通过研究三角函数与三角恒等式,可以帮助我们解决各种与角度有关的问题,如测量高度、计算距离等。

四、数论与组合数学数论是研究整数性质的数学分支,主要包括质数、因数分解、最大公约数、最小公倍数等内容。

组合数学是研究对象的排列、组合、选择等问题的数学分支,主要包括排列组合、二项式定理等内容。

数论与组合数学的研究可以帮助我们解决各种离散型问题,如密码学、概率统计等。

五、解析几何与向量代数解析几何是研究几何图形与坐标系之间关系的数学分支,主要包括直线、圆、曲线等内容。

向量代数是研究向量的性质和运算的数学分支,主要包括向量的加减、数量积、向量积等内容。

解析几何与向量代数的研究可以帮助我们解决各种几何问题,如求解交点、确定方向等。

六、微积分与微分方程微积分是研究变化与极限的数学分支,主要包括导数、积分等内容。

微分方程是描述变化关系的方程,通过研究微积分与微分方程,可以帮助我们解决各种与变化有关的问题,如求解极值、模拟现象等。

七、概率与统计概率是研究随机事件发生可能性的数学分支,统计是研究数据收集和分析的数学分支。

通过研究概率与统计,我们可以了解随机事件发生的规律,分析和解释数据,做出合理的决策。

八、数学建模与应用数学建模是将实际问题抽象为数学模型,并通过数学方法进行求解和分析的过程。

通过数学建模,我们可以将抽象的数学理论应用到实际问题中,解决实际问题,提高问题解决能力。

高中数学选修知识点归纳

高中数学选修知识点归纳

高中数学选修知识点归纳
高中数学选修知识点包括以下内容:
1. 数列与数列极限:常数列、等差数列、等比数列、等差数列的前n项和、等比数列
的前n项和、数列极限、递推关系式。

2. 排列与组合:排列的定义、全排列、圆排列、组合的定义、二项式系数、二项式定理、组合数的性质。

3. 概率与统计:事件、概率的定义、概率的性质、条件概率、独立事件、贝叶斯公式、期望、方差、频率分布、参数估计。

4. 三角函数与图像:弧度制、角度制、正弦函数、余弦函数、正切函数、三角函数的
周期性、三角函数的图像和性质。

5. 平面向量与立体几何:平面向量的定义、向量的运算(加法、数乘、数量积、向量积)、向量的坐标表示、平面向量的共线性与垂直性、立体几何的基本概念(点、直线、平面、球面)。

6. 导数与微分:导数的定义、基本导数公式、导数的四则运算、导数的应用(切线与
法线、函数的单调性与极值、函数的凹凸性与拐点、变化率与边际效应)。

7. 不等式与线性规划:不等式的性质、不等式组的解法(图解法、代入法、分段讨论法)、线性规划的基本概念、线性规划的图解法和算法解法。

8. 微分方程:微分方程的定义、微分方程的求解方法(可分离变量法、齐次方程法、
一阶线性微分方程法)。

这些知识点是高中数学选修课程的主要内容,通过学习这些知识点,可以更深入地了解数学的应用与推导,为后续的学习和研究提供坚实的基础。

高中数学选修内容

高中数学选修内容

高中数学选修内容高中数学作为智力培养和学业提升的关键学科,在学生的学习过程中扮演着至关重要的角色。

数学选修课程则是在高中数学基础上的延伸和深化,涵盖了更加复杂和拓展的数学知识,为学生打开了更广阔的学习空间和思维视野。

本文将就高中数学选修课程的内容进行探讨,帮助读者更好地了解该领域的知识体系。

**一、微积分**微积分作为数学的一大支柱,在高中数学选修内容中占据着重要地位。

学生通过学习微积分,不仅能够深入理解数学规律,还可以应用于实际问题的求解。

微积分包括导数、积分、微分方程等内容,通过学习这些知识,学生可以更好地掌握数学分析和推理的方法,同时培养逻辑思维和问题解决能力。

**二、立体几何**立体几何是高中数学选修课程中的另一大亮点,涵盖了空间图形的性质和计算方法。

学生在学习立体几何过程中,需要掌握多面体的表面积、体积计算,以及几何体的旋转体、截面和投影等概念。

立体几何不仅培养了学生的空间想象能力,还拓展了他们对空间结构和几何形态的认识,为日后的学习和工作打下了坚实基础。

**三、数学分析**数学分析作为高等数学的重要组成部分,也是高中数学选修内容之一。

学生通过学习数学分析,不仅可以进一步深化对函数和极限的理解,还可以学习到级数、微分方程、曲线积分等进阶知识。

数学分析的学习过程虽然较为复杂,但可以帮助学生建立起完整的数学体系,提高其数学推理和分析问题的能力。

**四、概率论与数理统计**概率论与数理统计是高中数学选修课程中的一大难点,但也是学生必须掌握的重要内容。

学生通过学习概率论与数理统计,可以了解随机事件、概率分布、统计方法等相关知识,培养学生的逻辑思维和数据分析能力。

概率论与数理统计在现代社会中有着广泛应用,通过学习这一内容,学生不仅可以提高数学素养,还能为未来的学术研究和职业发展奠定基础。

**五、线性代数**线性代数是高中数学选修课程中的另一个重要组成模块,涉及了向量、矩阵、线性方程组等内容。

学生通过学习线性代数,可以理解多维线性空间结构和变换规律,掌握线性代数的基本定理和运算法则。

高中数学新课标考试大纲

高中数学新课标考试大纲

高中数学新课标考试大纲高中数学新课标考试大纲主要分为必修和选修两个部分,旨在培养学生的数学素养,提高学生解决实际问题的能力。

以下是大纲的主要内容:1. 必修内容:- 集合与简易逻辑:包括集合的概念、运算,以及简易逻辑的基本知识。

- 函数:函数的概念、性质、图像,以及基本初等函数。

- 三角函数:三角函数的定义、图像、性质和应用。

- 立体几何:空间几何体的性质、体积和表面积的计算。

- 解析几何:直线和圆的方程,以及它们的几何性质和应用。

- 概率与统计:概率的基本概念,随机事件的概率计算,以及统计的基础知识。

2. 选修内容:- 数学史与数学文化:介绍数学的发展历史,以及数学在文化中的作用。

- 微积分初步:导数、微分、积分的基本概念和计算方法。

- 线性代数初步:矩阵、行列式、向量空间的基础知识。

- 离散数学:包括组合数学、图论、逻辑和集合论等。

- 数学建模:数学建模的基本方法,以及如何应用数学解决实际问题。

- 算法初步:算法的概念,以及基本的算法设计和分析。

3. 考试要求:- 学生需要掌握数学基础知识和基本技能。

- 能够运用数学知识解决实际问题。

- 具备一定的数学思维能力和创新能力。

- 能够理解和运用数学概念、定理和公式。

- 能够进行数学推理和证明。

4. 考试形式:- 考试通常包括选择题、填空题和解答题。

- 选择题和填空题主要测试学生对基础知识的掌握。

- 解答题则更侧重于考察学生的综合应用能力和解题技巧。

5. 考试范围:- 考试内容将覆盖上述必修和选修内容。

- 考试难度将根据学生所学课程的深度和广度来设定。

6. 考试准备:- 学生应该系统地复习所学内容,加强对重点和难点的理解。

- 通过做历年真题和模拟题来提高解题速度和准确率。

- 注重培养数学思维,提高分析问题和解决问题的能力。

请注意,具体的考试大纲可能会根据不同地区的教育部门有所调整,因此建议学生和教师参考最新的官方文件和指导。

高中数学必修与选修教材目录

高中数学必修与选修教材目录

高中数学必修与选修教材目录
1.高中数学必修模块:
必修1
第一章集合与函数概念第二章基本初等函数(Ⅰ)
第三章函数的应用
必修2
第一章空间几何体第二章点、直线、平面之间的位置关系
第三章直线与方程第四章圆与方程
必修3
第一章算法初步第二章统计第三章概率
必修4
第一章三角函数第二章平面向量第三章三角恒等变换
必修5
第一章解三角形第二章数列第三章不等式2.高中数学选修模块(1):
选修1-1
第一章常用逻辑用语第二章圆锥曲线与方程第三章导数及其应用
选修1-2
第一章统计案例第二章推理与证明
第三章数系的扩充与复数的引入第四章框图
选修2-1
第一章常用逻辑用语第二章圆锥曲线与方程
选修2-2
第一章导数及其应用第二章推理与证明
第三章数系的扩充与复数的引入
选修2-3
第一章计数原理第二章随机变量及其分布第三章统计案例
2.高中数学选修模块(2):
选修3-1数学史选讲
选修3-2 信息安全与密码
选修3-3球面上的几何
选修3-4对称与群
选修3-5欧拉公式与闭曲面分类
选修3-6三等分角与数域扩充
2.高中数学选修模块(3):
选修4-1几何证明选讲
选修4-2矩阵和变换
选修4-3 数列与差分
选修4-4坐标系与参数方程
选修4-5不等式选讲
选修4-6初等数论初步
选修4-7优选法与试验设计初步选修4-8统筹法与图论初步
选修4-9风险与决策
选修4-10开关电路与布尔代数。

高中数学新课标选修内容

高中数学新课标选修内容

高中数学新课标选修内容高中数学新课标选修内容是高中数学教学的重要组成部分,旨在拓宽学生的数学视野,提高学生的数学素养,培养学生的创新能力和实践能力。

选修内容通常包括但不限于以下几个方面:1. 数学建模与应用:该部分内容强调数学知识在实际问题中的应用,通过数学建模的方式,让学生了解如何将现实问题转化为数学问题,并使用数学工具进行求解。

这不仅能够提高学生解决实际问题的能力,还能够加深学生对数学知识的理解。

2. 微积分初步:微积分是高等数学的基础,对于高中生来说,初步了解微积分的概念和应用是非常有益的。

这部分内容通常包括极限、导数、积分等基本概念,以及它们在物理、工程等领域的应用。

3. 线性代数基础:线性代数是研究向量空间和线性方程组的数学分支,对于培养高中生的抽象思维和逻辑推理能力具有重要作用。

选修内容可能包括矩阵运算、向量空间、线性变换等基础知识。

4. 概率论与数理统计:概率论与数理统计是研究随机现象的数学理论,对于培养学生的数据分析能力和逻辑思维能力具有重要意义。

选修内容可能涉及随机事件的概率计算、随机变量及其分布、统计推断等。

5. 组合数学与图论:组合数学与图论是研究离散结构的数学分支,它们在计算机科学、密码学、网络分析等领域有着广泛的应用。

选修内容可能包括排列组合、图的基本概念、图的算法等。

6. 数学史与数学文化:了解数学的历史和文化背景,可以帮助学生更好地理解数学知识的发展脉络,激发学生对数学的兴趣。

这部分内容可能包括数学史上的重要人物、重大发现、数学思想的演变等。

7. 计算机辅助数学:随着计算机技术的发展,计算机辅助数学已经成为数学研究和教学的重要工具。

选修内容可能包括计算机编程在数学中的应用、数学软件的使用、算法设计与分析等。

通过这些选修内容的学习,学生不仅能够加深对数学知识的理解,还能够提高解决实际问题的能力,为未来的学术研究或职业生涯打下坚实的基础。

新课标高二数学选修一

新课标高二数学选修一

新课标高二数学选修一新课标高二数学选修一课程是高中数学教育的重要组成部分,旨在培养学生的数学思维能力和解决实际问题的能力。

以下是本课程的一些主要内容和学习要点:一、课程目标1. 加深对数学概念的理解,掌握数学基础知识和基本技能。

2. 培养学生的抽象思维、逻辑推理和空间想象能力。

3. 通过解决实际问题,提高学生的数学应用能力。

二、课程内容1. 函数与方程:深入学习函数的性质,包括单调性、奇偶性、周期性等,以及方程的求解方法。

2. 不等式:掌握不等式的解法,包括线性不等式和非线性不等式的解法。

3. 数列:学习数列的基本概念,包括等差数列、等比数列、数列的极限等。

4. 解析几何:研究平面上的曲线和曲面,包括圆、椭圆、双曲线和抛物线等。

5. 立体几何:学习空间图形的性质,包括多面体、旋转体等。

6. 概率与统计:了解概率的基本概念,学习统计数据的收集、处理和分析方法。

三、学习方法1. 积极参与课堂讨论,主动思考问题。

2. 完成课后习题,巩固所学知识。

3. 定期复习,避免遗忘。

4. 利用网络资源,拓宽学习视野。

四、课程评估1. 课堂表现:包括课堂参与度和讨论的积极性。

2. 作业完成情况:作业的准确性和及时性。

3. 期中和期末考试:测试学生对课程内容的掌握程度。

五、课程总结通过本课程的学习,学生不仅能够掌握数学的理论知识,而且能够提高解决实际问题的能力。

数学选修一课程为学生提供了一个全面、深入的数学学习平台,有助于学生在未来的学术和职业生涯中取得成功。

希望每位同学都能在本课程中获得宝贵的知识和技能,为未来的学习和发展打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章常用逻辑用语1.1命题及其关系定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

命题的构成――条件和结论定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.四种命题:定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.形式:原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.四种命题间的相互关系:由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.1.2 充分条件与必要条件定义:如果命题“若p,则q”为真命题,即p q,那么我们就说p是q的充分条件;q 是p必要条件.一般地,如果既有p q ,又有q p 就记作 p ⇔ q.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p ⇔ q,那么p 与 q互为充要条件.一般地,若p q ,但q p,则称p是q的充分但不必要条件;若p q,但q p,则称p是q的必要但不充分条件;若p q,且q p,则称p是q的既不充分也不必要条件.1.3 简单的逻辑连接词一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q 读作“p且q”。

一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。

一般地,我们规定:当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p ∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。

一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p 的否定”。

若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定。

1.4全称量词与存在量词所有的”“任意一个”这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题。

“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。

并用符号“∃”表示。

含有存在量词的命题叫做特称命题(或存在命题)。

一般地,对于含有一个量词的全称命题的否定,有下面的结论:全称命题P:∀∈,()x M p x它的否定¬P¬P(x)特称命题P:x M p x∃∈,()它的否定¬P:∀x∈M,¬P(x)全称命题和否定是特称命题。

特称命题的否定是全称命题。

第二章圆锥曲线与方程2.1曲线与方程(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R 或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵k OM·k AM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P为线段AB的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成)由弦长公式得:即a 2b 2=4b 2-a 2.2.2 椭圆把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆(ellipse ).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=.焦点在x 轴上,中心在原点的椭圆的标准方程)0(12222>>=+b a by a x .焦点在y 轴上,中心在原点的椭圆的标准方程()222210y x a b a b+=>>.椭圆的简单几何性质①范围:由椭圆的标准方程可得,222210y x b a=-≥,进一步得:a x a -≤≤,同理可得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心; ③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率: 椭圆的焦距与长轴长的比ace =叫做椭圆的离心率(10<<e ),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆时当a,b ,c e 00 .椭圆的第二定义当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F -'的准线方程是c a x 2-=.对于椭圆12222=+bx a y 的准线方程是c a y 2±=.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.由椭圆的第二定义e dMF =∴||可得:右焦半径公式为ex a c a x e ed MF -=-==||||2右;左焦半径公式为ex a ca x e ed MF +=--==|)(|||2左定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。

性质一:已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆。

θcos 2)2(2122212212PF PF PF PF F F c -+==Θ)cos 1(2)(21221θ+-+=PF PF PF PF θθθcos 12)cos 1(244)cos 1(24)(222222121+=+-=+-+=∴b c a c PF PF PF PF 1222121sin sin tan 21cos 2F PF b S PF PF b θθθθ∆∴===+ 性质二:已知椭圆方程为),0(12222>>=+b a b y a x 左右两焦点分别为,,21F F 设焦点三角形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。

证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1 在21PF F ∆中,2122121212cos PF PF F F PF PF -+=θ21221221242)(PF PF c PF PF PF PF --+=1))((24124422122--+=--=o o ex a ex a b PF PF c a =122222--ox e a b a x a ≤≤-0Θ 22a x o≤∴性质三:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。

相关文档
最新文档