第六章静定平面桁架
合集下载
《静定平面桁架》课件

平面桁架的应用场景
01
桥梁工程
作为桥梁的主要受力结构,承载车辆和人群的重量。
02
建筑工程
用于大型工业厂房、仓库、展览馆等建筑的屋面结构。
03
景观工程
作为景观桥梁、廊道等结构,起到连接和支撑的作用。
平面桁架的基本组成
弦杆
主要承受轴向拉力或压 力,是平面桁架的主要 承载杆件。
腹杆
连接弦杆,主要承受剪 力和扭矩,分为斜腹杆 和竖腹杆两种。
静定平面桁架的研究成果总结
静定平面桁架是一种结构形式简 单、受力性能良好的结构体系, 在桥梁、建筑等领域得到了广泛
应用。
在过去的研究中,静定平面桁架 的静力性能、稳定性、优化设计 等方面得到了深入探讨,取得了
丰硕的成果。
静定平面桁架的承载能力、刚度 和稳定性等方面得到了充分验证 ,为实际工程应用提供了可靠的
静定平面桁架
目录
• 平面桁架概述 • 静定平面桁架的分类 • 静定平面桁架的力学特性 • 静定平面桁架的设计与优化 • 静定平面桁架的实例分析 • 总结与展望
01 平面桁架概述
定义与特点
定义
平面桁架是一种由杆件组成的结 构,其所有杆件都位于同一平面 内。
特点
具有结构简单、受力明确、计算 简便等优点,广泛应用于桥梁、 建筑等领域。
D
静定平面桁架的材料选择
钢材
高强度、轻质、耐腐蚀,广泛用于大型结构 和重载静定平面桁架。
复合材料
铝合金
质轻、耐腐蚀、美观,适用于对视觉要求较 高的场合。
如玻璃纤维和碳纤维,高强度、轻质,适用 于对重量要求极高的场合。
02
01
木质
自然、美观,适用于小型、低负载的静定平 面桁架或装饰性结构。
工程力学终于知识点

三、扭转轴的内力 扭矩 ——T 扭矩的正负规定:
按右手螺旋法则, 扭矩矢量沿截面外法线方
向为正;反之为负。
3、扭矩图
扭矩图——表示扭矩沿杆件轴线变化规律的图线。
要求:
①扭矩图和受力图对齐; ②扭矩图上标明扭矩的大小、正负和单位。
快速作扭矩图
上上下下
四、薄壁圆筒的扭转
r0/d≥10 时,称为薄壁圆筒。
作用于杆上的合外力的作用线与杆的轴线重合。
2、变形特点
杆件产生轴向的伸长或缩短。
二、 内力·截面法·轴力和轴力图 1、内力
指截面上分布内力系的合力。
2、截面法
截面法四部曲 —截开 —取出 —代替 —平衡
3、轴力FN
沿杆轴线方向作用的内力,称为轴力。
轴力正负规定:
以使脱离体受拉为正,使脱离体受压为负。
F N3
一定为零力杆。
F N2
3
3、两杆相结,不共线,且节点 处的载荷沿其中某一杆件, 则另一杆为零力杆。
2 A 1 FN1 F N2
2
F A 1 F N1
三、重心坐标的一般公式
xc
Pi xi P
yc
Pi yi P
zc
Pi zi P
四、组合形体的重心
1、分割法
如果一个物体由几个简单形状的物体组合而成,而
此法适合于求桁架部分杆件的内力。
注:
(1)所有杆件均假设受拉。 (2)每次对象只能列出三个方程。 (3)合理确定坐标方位、矩心位置及方程次序。
两种方法并不 相互独立,可 配合使用。
二、桁架零力杆的判断方法
F N2
1、两杆相结,不共线,且节点
2
处没载荷,则此两杆均为零力杆。
按右手螺旋法则, 扭矩矢量沿截面外法线方
向为正;反之为负。
3、扭矩图
扭矩图——表示扭矩沿杆件轴线变化规律的图线。
要求:
①扭矩图和受力图对齐; ②扭矩图上标明扭矩的大小、正负和单位。
快速作扭矩图
上上下下
四、薄壁圆筒的扭转
r0/d≥10 时,称为薄壁圆筒。
作用于杆上的合外力的作用线与杆的轴线重合。
2、变形特点
杆件产生轴向的伸长或缩短。
二、 内力·截面法·轴力和轴力图 1、内力
指截面上分布内力系的合力。
2、截面法
截面法四部曲 —截开 —取出 —代替 —平衡
3、轴力FN
沿杆轴线方向作用的内力,称为轴力。
轴力正负规定:
以使脱离体受拉为正,使脱离体受压为负。
F N3
一定为零力杆。
F N2
3
3、两杆相结,不共线,且节点 处的载荷沿其中某一杆件, 则另一杆为零力杆。
2 A 1 FN1 F N2
2
F A 1 F N1
三、重心坐标的一般公式
xc
Pi xi P
yc
Pi yi P
zc
Pi zi P
四、组合形体的重心
1、分割法
如果一个物体由几个简单形状的物体组合而成,而
此法适合于求桁架部分杆件的内力。
注:
(1)所有杆件均假设受拉。 (2)每次对象只能列出三个方程。 (3)合理确定坐标方位、矩心位置及方程次序。
两种方法并不 相互独立,可 配合使用。
二、桁架零力杆的判断方法
F N2
1、两杆相结,不共线,且节点
2
处没载荷,则此两杆均为零力杆。
《静定平面桁架》课件

直杆
桁架主要由直杆组成,通过节点连接。
节点
节点是直杆的连接点,用于传递力和分散荷载。
平面桁架的应用领域
1 桥梁工程
平面桁架是大跨度桥梁的重要组成部分,如悬索桥和斜拉桥。
2 建筑结构
平面桁架在建筑中用于支撑和分散荷载,如体育场馆和大厦。
3 机械工程
平面桁架被用于构建具有高刚度和轻质化要求的机械结构。
《静定平面桁架》PPT课 件
本课件将介绍《静定平面桁架》的概念、应用领域和基本力学分析要点,使 您能全面了解这一结构,并理解其独特的特点和优势。
什么是平面桁架?
平面桁架是由直杆和节点组成的简化结构,用于支撑和分散荷载。其具有均匀分布应力和高刚度的特点, 广泛应用于桥梁、建筑和机械等领域。
平面桁架在静力平衡条件下,完全确定的节点位置和荷载作用下, 桁架各杆件受力唯一确定的平面桁架。
静定平面桁架的特点及优点
特点
静定平面桁架具有稳定的结构形态和力学性能,能够在荷载作用下保持平衡。
优点
静定平面桁架具有高刚度、轻质化、适应性强的优点,广泛应用于各种工程领域。
静定平面桁架的支座类型
1 均布荷载
均布荷载是指荷载在整个桁架结构上均匀分布的载荷。
2 点荷载
点荷载是指荷载作用在结构的一个或多个点上的载荷。
3 变动荷载
变动荷载是指荷载随时间变化的载荷,如风荷载和地震荷载。
1 铰接支座
2 固定支座
铰接支座能够提供约束水平位移,但允许 承受垂直力。
固定支座能够提供约束水平位移和阻止垂 直力的传递。
静定平面桁架的节点类型
1 钢质节点
2 铝合金节点
钢质节点适用于大跨度和复杂结构,具有 高强度和稳定性。
桁架主要由直杆组成,通过节点连接。
节点
节点是直杆的连接点,用于传递力和分散荷载。
平面桁架的应用领域
1 桥梁工程
平面桁架是大跨度桥梁的重要组成部分,如悬索桥和斜拉桥。
2 建筑结构
平面桁架在建筑中用于支撑和分散荷载,如体育场馆和大厦。
3 机械工程
平面桁架被用于构建具有高刚度和轻质化要求的机械结构。
《静定平面桁架》PPT课 件
本课件将介绍《静定平面桁架》的概念、应用领域和基本力学分析要点,使 您能全面了解这一结构,并理解其独特的特点和优势。
什么是平面桁架?
平面桁架是由直杆和节点组成的简化结构,用于支撑和分散荷载。其具有均匀分布应力和高刚度的特点, 广泛应用于桥梁、建筑和机械等领域。
平面桁架在静力平衡条件下,完全确定的节点位置和荷载作用下, 桁架各杆件受力唯一确定的平面桁架。
静定平面桁架的特点及优点
特点
静定平面桁架具有稳定的结构形态和力学性能,能够在荷载作用下保持平衡。
优点
静定平面桁架具有高刚度、轻质化、适应性强的优点,广泛应用于各种工程领域。
静定平面桁架的支座类型
1 均布荷载
均布荷载是指荷载在整个桁架结构上均匀分布的载荷。
2 点荷载
点荷载是指荷载作用在结构的一个或多个点上的载荷。
3 变动荷载
变动荷载是指荷载随时间变化的载荷,如风荷载和地震荷载。
1 铰接支座
2 固定支座
铰接支座能够提供约束水平位移,但允许 承受垂直力。
固定支座能够提供约束水平位移和阻止垂 直力的传递。
静定平面桁架的节点类型
1 钢质节点
2 铝合金节点
钢质节点适用于大跨度和复杂结构,具有 高强度和稳定性。
第06章 静力学专题-桁架、重心

yili li
yi L
li
zC
zili li
zi li
L
极限为:
xdl
ydl
xC
C
L
,
yC
C
L
,
zdl
zC
C
L
z
O x
Pi zi
yi yC
C
P zC
xi
xC y
本章小结
1. 了解桁架的构成、结构特点以及桁架杆件内力的求解 方法;
§6.1 桁架 基本三角形 三个铰链为节点连接的三根杆构成的三角形 平面简单桁架
平面简单桁架节点和杆件数的关系 桁架节点数为n,杆件数为m,则 m-3=2(n-3) 即 m=2n-3 或 m+3=2n
§6.1 桁架 无冗杆桁架 从桁架中抽出任何一根杆,原有的几何形状不能保持, 没有多余杆件的桁架 有冗杆桁架 从桁架中抽出一根杆或几根杆件,原有的几何形状能 保持,桁架有多余杆件
S
xdS
ydS
xC
S
S
,
yC
S
S
,
zdS
zC
S
S
z ds
Pi
C
zi
PzC
O
yi
xi
xC y
x
yC
§6.3 重心
如果物体是均质等截面的细长线段,其截面尺寸与 其长度 L 相比是很小的,则重心公式为
xC
xili li
xi li
L
yC
(3)、节点连接三根杆,其中两根共线,并且在此节 点上无外载荷,则第三根杆件为零杆
静定平面桁架的内力计算——结点法课件最新实用版

⑷各杆的自重不计,或平均分配到杆两端的结点上。
静定平面桁架的内力计算——结点法
F =F =-30kN 5kN F7=0kN
静定平面桁架的8内力计算6——结点法
F9=F5=12.5kN
F =F =22.5kN 静定平面桁架的内力计算——结点法
静5kN定平F7面=0桁kN架的1内0力计算(4 结点法)
F =F =20kN F =F =22.5kN 桁架是指多个直杆在两端用适当的方式联结而成的结构。
C
D
6
8
F
1 3 5 7 9 11 12 4m
A
2 B4
10
13 H
E
G
F
3m
F
3m
F
3m
3m
5 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
解:(1)以整体为研究对象,求桁架的支座反力。
(2)以A结点为研究对象,求1、2杆的内力。
6 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
(3)以B结点为研究对象,求3、4杆的内力。
(4)以C、D结点为研究对象,求5、6、7杆的内力。
列出节点C的平衡方程,解得F5=12.5kN,F6=-30kN 列出节点D的平衡方程,解得 F7=0
7 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
⑵各杆轴线都求是直出线,左并都半位于部桁架分平面各内。杆件的内力后,可根据对称性得到右半部分各杆件的内力,即:
5静kN定平F7面=0桁kN架的内力计算⑷(结各点杆法)的自重不计,或平均分配到杆两端的结点上。
为了求得桁架各杆的内力,截取桁架的一个结点作为研究对象,用汇交力系的平衡方程 求解杆件内力,这种方法叫做结点法。
《静定桁架》课件

根据设计要求和工程实际情况 ,选择合适的固定方式,如预 埋件、膨胀螺栓等。
0 固定质量检测 4对固定后的静定桁架进行质量
检测,确保其位置、垂直度、 水平度等符合要求。
05
静定桁架的维护与检修
日常维护与保养
保持静定桁架的清洁
定期清除表面污垢、尘土和杂物,以防止 腐蚀和磨损。
检查紧固件
确保所有紧固件(如螺栓、螺母)都紧固 在位,无松动现象。
常见故障及处理方法
结构松动
对于结构松动问题,应立即停止 使用并进行紧固处理,或联系专
业人员进行维修。
轴承损坏
如发现轴承损坏,应立即更换, 并检查润滑系统是否正常。
电气故障
遇到电气故障时,应切断电源, 联系专业电工进行检查和修复。
谢谢您的聆听
THANKS
内力的计算方法
通过节点法和截面法计算杆件的内力 ,节点法是通过平衡方程计算节点所 受的力,截面法是通过截面将杆件分 为两部分计算内力。
静定桁架的稳定性分析
稳定性概念
稳定性是指静定桁架在受到外力 作用时,抵抗变形和失稳的能力
。
稳定性分析方法
通过计算临界载荷和安全系数等方 法评估静定桁架的稳定性。
提高稳定性的措施
施工现场准备
清理施工现场,做好四通一平 ,即水通、电通、路通、通讯
通和场地平整。
静定桁架的拼装与焊接
拼装
根据设计图纸,将各个杆件按照正确 的顺序和方向进行拼装,确保节点位 置准确无误。
焊接工艺选择
根据材料类型、厚度等因素,选择合 适的焊接工艺,如手工电弧焊、气体 保护焊等。
焊接质量保证
确保焊缝质量符合设计要求和相关标 准,对焊缝进行无损检测,如X射线 检测、超声波检测等。
0 固定质量检测 4对固定后的静定桁架进行质量
检测,确保其位置、垂直度、 水平度等符合要求。
05
静定桁架的维护与检修
日常维护与保养
保持静定桁架的清洁
定期清除表面污垢、尘土和杂物,以防止 腐蚀和磨损。
检查紧固件
确保所有紧固件(如螺栓、螺母)都紧固 在位,无松动现象。
常见故障及处理方法
结构松动
对于结构松动问题,应立即停止 使用并进行紧固处理,或联系专
业人员进行维修。
轴承损坏
如发现轴承损坏,应立即更换, 并检查润滑系统是否正常。
电气故障
遇到电气故障时,应切断电源, 联系专业电工进行检查和修复。
谢谢您的聆听
THANKS
内力的计算方法
通过节点法和截面法计算杆件的内力 ,节点法是通过平衡方程计算节点所 受的力,截面法是通过截面将杆件分 为两部分计算内力。
静定桁架的稳定性分析
稳定性概念
稳定性是指静定桁架在受到外力 作用时,抵抗变形和失稳的能力
。
稳定性分析方法
通过计算临界载荷和安全系数等方 法评估静定桁架的稳定性。
提高稳定性的措施
施工现场准备
清理施工现场,做好四通一平 ,即水通、电通、路通、通讯
通和场地平整。
静定桁架的拼装与焊接
拼装
根据设计图纸,将各个杆件按照正确 的顺序和方向进行拼装,确保节点位 置准确无误。
焊接工艺选择
根据材料类型、厚度等因素,选择合 适的焊接工艺,如手工电弧焊、气体 保护焊等。
焊接质量保证
确保焊缝质量符合设计要求和相关标 准,对焊缝进行无损检测,如X射线 检测、超声波检测等。
《静定平面桁架》PPT课件 (2)

截面法:
①所截杆件一般不超过三根 ——三个平衡方程可解
②截面多于三个未知力, 如其中除一根外,其余均交于一点、或平行 ——可解此杆——截面单杆
③几何组成相反次序求解
分析几何组成——确定求解步骤:
三、结点法和截面法联合应用
图5-13 图5-14
三、结点法和截面法联合应用 图5-15
三、结点法和截面法联合应用
②结点E: FNEC=FNDE ③Ⅱ−Ⅱ截面(右)∑mG=0
FNHC在C点分解为FXHC 、 FYHC(过G点)
④比例三角形
1 F XH C6[30 15112.56] 37.5
FNHC
34(37.5)40.4 5
5.3 静定组合结构计算
组合结构−−−链杆与梁式杆,组合而成结构 (轴力杆:FN)(受弯杆件:M、FS、FN)
五、基-附结构,基本部分受荷载,附属部分不受 力
(图3-24)a.几何可变部分——不适用 b.特殊几何可变部分——适用
三、荷载等效变换的影响
静力等效荷载——合力相同的荷载 (主矢和对同一点的主矩均相等)
等效变换 —— 一种荷载变换成另一种静力等效的荷载 影响——当静定结构
某一几何不变部分上的荷载作等效变换时, 则只有该部分上内力发生变化, 而其余部分内力保持不变(图3-25a、b)
《静定平面桁架》PPT课件 (2)
本课件PPT仅供学习使用 本课件PPT仅供学习使用 本课件PPT仅供学习间桁架—平面桁架 ——实际结构
结点刚性; 轴线不严格相交; 非结点荷载; 空间作用。 次应力影响不大-忽略 ——计算简图 理想桁架——主应力
桁架各部分名称
弦杆:上、下弦杆 腹杆:斜杆、竖杆 节间d:弦杆上,
相邻结点区间 跨度l、桁髙h
静定结构的内力—结点法求静定平面桁架内力(建筑力学)

20kN
FyDC FNDC
C
30 5
D A
FNDF
2m
F
FxDF
4m
FyDF
FNDF
51
2
Fy 0,
FyDC 30 20 FyDF 0
(FyDF 10kN )
FyDC 30 20 10 20kN
FNDC FyDC (l / l y ) 20( 5 / 1) 44.72kN (压)
FAy= FBy= 30kN (↑) FAx= 0KN
2)判断零杆: 见图中标注。 3)求各杆轴力:
20kN
D 0
0
AE
20kN
C
20kN
G
1m
0
1m
F
H
B
30kN 2m 2m 2m 2m 30kN
取结点隔离体的顺序为:A、E、D、C。
由于结构对称,荷载对称,只需计算半边结构。
结点A: Fy 0,
4) 运用比例关系:
FN Fx 。Fy l lx ly
结点受力的特殊情况:
1)
FN1
0。
90
0
FN2
s
结点上无荷载,则FN1=FN2=0。
由∑FS=0,可得FN2=0,故FN1=0。
2)
FN1
FN2
Fy 0, FN 3 0;
0
FN3
Fx 0,
FN 1
FN
。
2
3) FN1
FN4 FN3
结点C:
Fy 0,
FNCF 20 40 0, FNCF 20kN(拉)。
20 5
20k N
C
20 5
FNCF
20kN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构力学
2、桁架的分类
一、根据维数分类
1). 平面(二维)桁架(plane truss) ——所有组成桁架的杆件以及荷载的作用线都在同一
平面内
退出
01:30
§6-1 平面桁架的计算简图
结构力学
2). 空间(三维)桁架(space truss) ——组成桁架的杆件不都在同一平面内
退出
01:30
§6-1 平面桁架的计算简图
§6-2 结点法
结点法计算简化的途径:
结构力学
1. 对于一些特殊的结点,可以应用平衡条件直 接判断该结点的某些杆件的内力为零。 零杆
(1) 两杆交于一点,若结点无荷载,则两杆的内力都 为零。
F N1
F N2
F N1
=
F
N2=
0
退出
01:30
§6-2 结点法
通常假定未知的轴力为拉力,计算结果得负值表示轴力 为压力。
退出
01:30
§6-2 结点法
结构力学
例m
10 kN E
10 kN 10 kN
C 5 kN
F
A 20 kN
G
D
HB
2 m 4=8 m
20 kN
解: (1) 求支座反力。
FxA 0
FyA 20 kN (↑)
得
FNCD 10 kN 2
1 (22.36kN) 10 kN 5
FNCH FNCE 22.36 kN
退出
01:30
§6-2 结点法
10 kN
10 kN
10 kN
5 kN
C
5 kN
2m
E
F
A 20 kN
G
D
HB
2 m 4=8 m
20 kN
结构力学
可以看出,桁架在对称轴右边各杆的内力与左边 是对称相等的。
F
F NEA
FNED
A 20 kN
G
D
HB
2 m 4=8 m
20 kN
取E点为隔离体,由
X 0 FNEC cos FNED cos FNEA cos 0
FNEC FNED 33.54 kN
Y 0 FNEC sin - FNED sin FNEA sin 10 kN 0
FNEC FNED 10 5 33.5 联立解出 FNEC 22.36 kN , FNED 11.18 kN
空间桁架荷载传递途径:
结构力学
横梁 主桁架 纵梁
荷载传递: 轨枕-> 纵梁-> 结点横梁-> 主桁架
退出
01:30
§6-1 平面桁架的计算简图
结构力学
桁架各部分名称:
斜杆 Diagonal chard
弦杆
上弦杆 Top chard
竖杆Vertical chard
腹杆
下弦杆 Bottom chard
二、按外型分类
1. 平行弦桁架 2. 三角形桁架 3. 抛物线桁架
退出
结构力学
01:30
§6-1 平面桁架的计算简图
三、按几何组成分类
1. 简单桁架 (simple truss)
2. 联合桁架 (combined truss)
3. 复杂桁架 (complicated truss)
退出
结构力学
01:30
退出
01:30
§6-2 结点法
结构力学
5 kN 2m
10 kN E
10 kN 10 kN
C
F
A 20 kN
G
D
H
2 m 4=8 m
5 kN
B 20 kN
C F NCE
10 kN
FNCF FNCD
取C点为隔离体,由
X 0 , FNCE FNCH 0
Y 0 , 10kN 2FNCE sin FNCD 0
C 5 kN
F
A 20 kN
G
D
HB
2 m 4=8 m
20 kN
F NGE
结构力学
FNGA G FNGD
取G点为隔离体
X 0 Y 0
FNGD FNGA 30 kN FNGE 0
退出
01:30
§6-2 结点法
结构力学
10 kN E
FNEC
5 kN 2m
10 kN E
10 kN 10 kN
C 5 kN
(3) 荷载和支座反力都作用在结点上,其作用线都在桁架平面内。
思考: 实际桁架是否完全符合上述假定?
主内力: 按理想桁架算出的内力,各杆只有轴力。
次内力:实际桁架与理想桁架之间的差异引起的杆件弯曲, 由此引起的内力。
实际桁架不完全符合上述假定, 但次内力的影响是次要的。
退出
01:30
§6-1 平面桁架的计算简图
X 0 Y 0
FNAE cos FNAG 0 20 kN 5 kN FNAE cos 0
有 所以
FNAE 15 kN 5 33.54 kN(压)
FNAG FNAE cos 33.5
2 30 k(N 拉) 5
退出
01:30
§6-2 结点法
5 kN 2m
10 kN E
10 kN 10 kN
结论:对称结构,荷载也对称,则内力也是 对称的。
退出
01:30
§6-2 结点法
结构力学
小结:
•以结点作为平衡对象,结点承受汇交力系作用。 •按与“组成顺序相反”的原则,逐次建立各结点 的平衡方程,则桁架各结点未知内力数目一定不超 过独立平衡方程数。 •由结点平衡方程可求得桁架各杆内力。
退出
01:30
§6-1 平面桁架的计算简图
结构力学
桁架是由杆件相互连接组成的格构状体系,它的 结点均为完全铰结的结点,它受力合理用料省,在 建筑工程中得到广泛的应用。
1、桁架的计算简图(truss structure)
屋架
计算简图
128m
64m
武汉长江大桥所采用的桁架型式
退出
16m
01:30
§6-1 平面桁架的计算简图
FyB 20 kN (↑)
(2) 依次截取结点A,G,E,C,画出受力图, 由平衡条件求其未知轴力。
退出
01:30
§6-2 结点法
结构力学
5 kN
FNAE
A
FNAG
20 kN
10 kN
10 kN
10 kN
5 kN
C
5 kN
2m
E
F
A 20 kN
G
D
HB
2 m 4=8 m
20 kN
取A点为隔离体,由
§6-1 平面桁架的计算简图
四、按受力特点分类
1. 梁式桁架
结构力学
2. 拱式桁架
竖向荷载下将产 生水平反力
退出
01:30
§6-2 结点法 二、桁架的内力计算
结构力学
1. 结点法和截面法
结点法—最适用于计算简单桁架。
取结点为隔离体,建立(汇交力系)平衡方程求解。 原则上应使每一结点只有两根未知内力的杆件。
桁高
d 节间
跨度
经抽象简化后,杆轴交于一点,且“只受结点荷 载作用的直杆、铰结体系”的工程结构—桁架
退出
01:30
§6-1 平面桁架的计算简图
结构力学
桁架计算简图假定:
(1) 各杆在两端用绝对光滑而无摩擦的铰(理想铰)相互联结。
(2) 各杆的轴线都是直线,而且处在同一平面内,并且通过铰 的几何中心。