实验原理图
转子动平衡实验原理与方法

实验原理与方法实验采用的CS-DP-10型动平衡试验机的简图如图1所示。
待平衡的试件1安放在框形摆架的支承滚轮上,摆架的左端与工字形板簧3固结,右端呈悬臂。
电动机4通过皮带带动试件旋转,当试件有不平衡质量存在时,则产生的离心惯性力将使摆架绕工字形板簧做上下周期性的微幅振动,通过百分表5可观察振幅的大小。
1. 转子试件2. 摆架3. 工字形板簧4. 电动机5. 百分表6. 补偿盘7. 差速器8. 蜗杆图1 CS-DP-10型动平衡试验机简图试件的不平衡质量的大小和相位可通过安装在摆架右端的测量系统获得。
这个测量系统由补偿盘6和差速器7组成。
差速器的左端为转动输入端(n1)通过柔性联轴器与试件联接,右端为输出端(n3)与补偿盘联接。
差速器由齿数和模数相同的三个圆锥齿轮和一个蜗轮(转臂H)组成。
当转臂蜗轮不转动时:n3=-n1,即补偿盘的转速n3与试件的转速n1大小相等转向相反;当通过手柄摇动蜗杆8从而带动蜗轮以n H转动时,可得出:n3=2n H-n1,即n3≠-n1,所以摇动蜗杆可改变补偿盘与试件之间的相对角位移。
图2所示为动平衡机工作原理图,试件转动后不平衡质量产生的离心惯性力F =ω2mr,它可分解为垂直分力F y和水平分力F x,由于平衡机的工字形板簧在水平方向(绕y轴)的抗弯刚度很大,所以水平分力F x对摆架的振动影响很小,可忽略不计。
而在垂直方向(绕x轴)的抗弯刚度小,因此在垂直分力产生的力矩M = F y·l =ω2mrlsinφ的作用下,摆架产生周期性上下振动。
1图2 动平衡机工作原理图由动平衡原理可知,任一转子上诸多不平衡质量,都可以用分别处于两个任选平面Ⅰ、Ⅱ内,回转半径分别为r Ⅰ、r Ⅱ,相位角分别为θⅠ、θⅡ,的两个不平衡质量来等效。
只要这两个不平衡质量得到平衡,则该转子即达到动平衡。
找出这两个不平衡质量并相应的加上平衡质量(或减去不平衡质量)就是本试验要解决的问题。
分子实验原理和流程图

分子实验原理和流程图1.1.实验原理1.1.1.重组质粒构建酶切时首先要了解目的基因的酶切图谱,选用的限制性内切酶不能目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源工体DNA时不能得到完整的目的基因。
其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子。
常用的酶切方法有双酶切法和单酶切法两种。
本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。
在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA片段以相反方向插入载体分子中,或目的DNA串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象。
单酶切法简单易行单是后期筛选工作比较复杂。
各种限制性内切酶都有去最佳反应条件,最主要的因素是反应温度和缓冲液的组成,在双酶切体系中,限制性内切酶在使用时应遵循“先低盐后高盐,先低温后高温”的原则进行反应。
要达到高效率的连接,必须酶切完全,酶切的DNA数量要适当。
另外,酶切反应的规模也取决于需要酶切的DNA的量,以及相应的所需酶的量。
可以适当增加酶的用量,但是最高不能超过反应总体积的10%,因为限制性核酸内切酶一般是保存在50%甘油的缓冲液中,如果酶切反应体系中甘油的含量超过5%,就会抑制酶的活性。
连接反应总是紧跟酶切反应,外源DNA片段与载体分子连接的方法即DNA分子体外重组技术主要依赖限制性核算内切酶和DNA连接酶催化完成的。
DNA连接酶催化两双链DNA 片段相邻的5’-磷酸和3’-OH间形成磷酸二酯键。
在分子克隆中最有用的DNA连接酶是来自T4噬菌体的T4 DNA连接酶,它可以连接黏性末端和平末端。
连接反应时,载体DNA和外源DNA的摩尔数之比控制在1:(1-3)之间,可以有效地解决DNA多拷贝插入的现象。
反应温度介于酶作用速率和末端结合速率之间,一般是16℃,用常用的连接时间为12-16h。
实验1 原理图输入设计8位全加器

实验1 原理图输入设计8位全加器11电子2班 邓嘉明 学号:201124121228实验目的:熟悉利用Quartus Ⅱ的原理图输入方法设计简单组合电路,掌握层次化设计的方法,并通过一个8位全加器的设计把握利用EDA 软件进行电子线路设计的详细流程 实验工具:Quartus Ⅱ8.0 实验步骤:(1)工程设计步骤:(2)八位全加器设计步骤:实验内容:一、一位半加器(1)原理图设计:如图1-1图1-1一位半加器原理图(2)综合一位半加器综合报告:如图1-2图1-2 一位半加器综合报告图流动状态 软件版本 修复名称 顶层文件 器件系列所有逻辑资源所有寄存器 所有引脚 所有虚拟引脚 所有存储器 器件型号 时间模型(3)功能仿真半加器功能仿真波形图:如图1-3图1-3半加器波形仿真图半加器理论的结果:如表1-1结论:图所以波形图仿真时成功的。
(4)时序仿真半加器时序仿真波形图:如图1-4图1-4 半加器时序仿真波形图结论:时序仿真没有出现毛刺,只能说明这次试验比较幸运。
延时情况:如图1-5注:tsu(建立时间),th(保持时间),tco(时钟至输出延时),tpd(引脚至引脚延时)图1-5 半加器时序仿真延时情况(5)封装一位半加器的封装:如图1-6图1-6 一位半加器封装二、一位全加器(1)一位全加器原理图设计:如图2-1图2-1 一位全加器原理图(2)综合一位全加器综合报告:如图2-2图2-2 一位全加器综合报告(3)功能仿真一位全加器功能仿真波形图:如图2-3果,所以波形图仿真时成功的。
(4)时序仿真一位全加器时序仿真波形图:如图2-4图2-4 一位全加器时序仿真波形图结论:一位全加器时序仿真结果没有出现毛刺,只能说明这次试验比较幸运。
延时情况:如图2-5图2-5 一位全加器时序仿真延时情况(5)封装一位全加器封装:如图2-6图2-6 一位全加器封装三、八位全加器(1)原理图设计一个8位全加器可以由8个1位全加器构成,加法器间的进位可以串行方式实现。
微机原理实验4-逐次比较式ADC0809

实验三 逐次比较式A/D 转换器0809的原理及编程一、实验目的1. 熟悉逐次逼近式A/D 转换器芯片的工作原理。
2. 了解A/D 转换芯片0809的接口设计方法。
3. 掌握A/D 转换器0809简单的应用编程。
二、实验任务1. 分析本实验模板的电路原理,它与EPP 接口数据传送的方法,所使用的端口地址。
2. 编写出逐次逼近式A/D 转换器芯片0809的转换与显示的控制程序。
三、实验原理1.电路组成及转换原理ADC0809是带有8位A/D 转换器、8路多路开关,以及与微型计算机兼容的控制逻辑的CMOS 组件。
8位A/D 转换器的转换方法为逐次逼近法。
在A/D 转换器内部含有一个高阻抗斩波稳定比较器,一个带有模拟开关数组的256电阻分压器,以及一个逐次逼近的寄存器。
8路的模拟开关由地址锁存器和译码器控制,可以在8个通道中任意访问一个单边的模拟信号。
其原理图如图3-1所示。
8通道多路模拟开关5432128272625242322地址锁存器和译码器W 1W 2逐次逼近型寄存器SAR控制逻辑开关树组256R 电阻分压器610V x V c7输出缓冲锁存器三态212019188151417916111312模拟量输入A B CA L E地址选择地址锁存允许V cc G N D V R E F (+)V R E F (-)E N A B L E数字量输出转换结束(中断)E O CS TA R TC L O C KD 7D 6D 5D 4D 3D 2D 1D 0IN 7IN 6IN 5IN 4IN 3IN 2IN 1IN 0图3-1 ADC0809内部原理图从图中可以看出,ADC0809由两部分组成,第一部分为八通道多路模拟开关,控制C 、B 、A 和地址锁存允许端子,可使其中一个通道被选中。
第二部分为一个逐次逼近型A/D 转换器,它由比较器、控制逻辑、输出锁存缓冲器、逐次逼近寄存器以及开关数组和256R 梯型解码网络组成,由后两种电路(开关数组和256R 梯型电阻)组成D/A 转换器。
通信原理实验2

①以9号模块“NRZ-I”为触发,观测“I”;以9号模块 “NRZ-Q”为触发,观测“Q”。
②以9号模块“基带信号”为触发,观测“调制输出”。 ③以9号模块的“基带信号”为触发,观测13号模块的 “SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复 出载波。 ④以9号模块的“基带信号”为触发观测“DBPSK解调输 出”,多次单击13号模块的“复位”按键。观测“DBPSK解 调输出”的变化。
⑤以信号源的CLK为触发,测9号模块LPF-FSK,观测眼 图。
实验项目三 2PSK调制及解调实验
1、实验原理框图
256K
信号源
PN15
载波1 基带信号
256K
载波2
BPSK解调 输出
门限
低通
判决 LPF-BPSK 滤波
9# 数字调制解调模块
反相
I NRZ_I
取反
NRZ_Q Q
相干载波
13# 载波同步及位同步模块
模块9:TH4(调制输出) 模块13:TH2(载波同步输入) 载波同步信号输入
模块13:TH1(SIN)
模块9:TH10(相干载波输入) 用于解调的载波
模块9:TH4(调制输出) 模块9:TH7(解调输入)
解调信号输入
模块9:TH12(BPSK输出) 模块13:TH7(锁相环输入) 锁相环信号输入
模块13:TH5(BS2)
(4)波形观测 ①示波器CH1接9号模块TH1基带信号,CH2接9号模块 TH4调制输出,以CH1为触发对比观测FSK调制输入及输出, 验证FSK调制原理。 ②将PN序列输出频率改为64KHz,观察载波个数是否发 生变化。 ③尝试以学号作为基带信号,观测调制输出波形。
④以9号模块TH1为触发,用示波器分别观测9号模块 TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、 TH8(FSK 解调输出),验证FSK解调原理。
ChIP、RIP、RNA-pull-down、EMSA、Luciferase原理

ChIP、RIP、RNA-pull-down、EMSA、Luciferase原理1 ChIP实验通过与染色质片段共沉淀和PCR技术,在体内检测与特异蛋白质结合的DNA片段。
将处于适当生长时期的活细胞用甲醛交联后将细胞裂解, 染色体分离并打碎为一定大小的片段200bp-1000bp;然后用特异性抗体免疫沉淀目标蛋白与 DNA交联的复合物, 对特定靶蛋白与DNA片段进行富集。
采用低pH值条件反交联, DNA 与蛋白质之间的 Schiff键水解, 释放DNA片段。
通过对目标片段的纯化与检测,获得DNA与蛋白质相互作用的序列信息。
图2 ChIP实验流程2 RIP实验RIP技术(RNA Binding Protein Immunoprecipitation,RNA结合蛋白免疫沉淀),是研究细胞内RNA与蛋白结合情况的技术。
运用针对目标蛋白的抗体把相应的RNA-蛋白复合物沉淀下来,然后经过分离纯化就可以对结合在复合物上的RNA进行分析;即用抗体或表位标记物捕获细胞核内或细胞质中内源性的RNA结合蛋白,防止非特异性的RNA的结合,免疫沉淀把RNA结合蛋白及其结合的RNA一起分离出来,结合的RNA序列通过microarray(RIP-Chip),定量RT-PCR或高通量测序(RIP-Seq)方法来鉴定。
是了解转录后调控网络动态过程的有力工具,能帮助我们发现miRNA的调节靶点。
图3 RIP实验流程3 RNA pull-down实验使用体外转录法标记生物素RNA探针,然后与胞浆蛋白提取液孵育,形成RNA-蛋白质复合物。
该复合物可与链霉亲和素标记的磁珠结合,从而与孵育液中的其他成分分离。
复合物洗脱后,通过western blot实验检测特定的RNA结合蛋白是否与RNA相互作用。
图4 RNA pull-down实验流程4 EMSA实验凝胶迁移或电泳迁移率实验(EMSA-electrophoretic mobility shift assay)是一种研究DNA结合蛋白和其相关的DNA 结合序列相互作用的技术,可用于研究DNA结合蛋白和其相关的DNA结合序列相互作用、DNA定性和定量分析。
数电实验报告:计数器及其应用-计数器应用实验报告

数字电子技术实验报告实验四:计数器及其应用一、实验目的:1、熟悉常用中规模计数器的逻辑功能。
2、掌握二进制计数器和十进制计数器的工作原理和使用方法。
二、实验设备:1、数字电路实验箱;2、74LS90。
三、实验原理:1、计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时具有分频功能。
计数器按计数进制分有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。
2、74LS90是一块二-五-十进制异步计数器,外形为双列直插,NC表示空脚,不接线,它由四个主从JK触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。
在74LS90计数器电路中,设有专用置“0”端R0(1),R0(2)和置“9”端S9(1)S9(2)。
其中前两个为异步清0端,后两个为异步置9端。
CP1, CP2为两个时钟输入端;Q0~Q3为计数输出端。
当R1=R2=S1=S2=0时,时钟从CP1引入,Q0输出为二进制;从CP2引入,Q3输出为五进制。
时钟从CP1引入,二Q0接CP1,则Q3Q2Q1Q0输出为十进制(8421码);时钟从CP2引入,而Q3接CP1,则Q0Q3Q2Q1输出为十进制(5421码)。
四、实验原理图及实验结果:1、实现0~9十进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~9十个数字。
2、实现六进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~5六个数字。
3、实现0、2、4、6、8、1、3、5、7、9计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0、2、4、6、8、1、3、5、7、9十个数字。
实验3 SSB信号的调制与解调

2022年4月28日 北京邮电大学信息工程 SSB 信号的调制与解调 姓名: ××× 学 号: ×××指导教师:×××一、实验目的 (3)二、实验原理 (3)1、原理框图 (3)Ⅰ:SSB信号调制 (3)Ⅱ:SSB信号解调 (3)2、实验连接图 (4)Ⅰ:SSB信号调制 (4)Ⅱ:SSB信号解调 (4)三、实验内容 (5)四、试验设备 (5)五、实验步骤 (5)六、实验结果 (6)1、SSB调制 (6)七、实验分析 (6)1、上边带or下边带 (6)八、实验体会 (7)一、实验目的①掌握单边带(SSB)调制的基本原理;②掌握单边带(SSB)解调的基本原理;③测试SSB调制器的特性。
二、实验原理1、原理框图Ⅰ:SSB信号调制图一:SSB信号调制原理框图m(t):均值为零的模拟基带信号(低频);c(t):正弦载波信号(高频);QPS:正交分相器,其输出为两路正交信号。
Ⅱ:SSB信号解调图二:SSB信号解调原理框图2、实验连接图Ⅰ:SSB信号调制图三:SSB信号调制实验连接图Ⅱ:SSB信号解调图四:SSB信号解调实物连接图三、实验内容(一)掌握SSB信号的调制方法;(二)掌握SSB信号的解调方法;(三)掌握调制系数的含义。
四、试验设备音频振荡器(Audio Oscillator),主振荡器(Master Signals),加法器(Adder),乘法器(Multiplier),移相器(Phase Shifer),正交分相器(Quadrature Phase Splitter),可调低通滤波器(Tunable LPF)。
五、实验步骤(一)采用音频振荡器产生一个基带信号,记录信号的幅度和频率。
载波可由主振荡器输出一个高频信号。
(二)通过移相器使载波相移π/2。
(三)注意检查移相器的性能。
六、实验结果1、SSB调制图五:SSB调制蓝色:模拟基带信号m(t);黄色:已调信号s(t)。