三角函数巧用1

合集下载

三角函数的应用(一)课件-高一上学期数学人教A版(2019)必修第一册

三角函数的应用(一)课件-高一上学期数学人教A版(2019)必修第一册

根据已知数据作出散点图,如下图所示.
y
由数据表和散点图可 22
知,振子振动时位移的最 20
18
大值为20mm,因此A=20;16
14
振子振动的周期为0.6s,


即 = 0.6 解得ω= ;


再由初始状态(t=0)振子
的位移为-20,可得sinφ

=-1,因此φ =- .

所以振子位移关于时间
的函数解析式为

y=20sin( t

-

),

12
10
8
6
4
2
–2 O
–4
–6
–8
–10
–12
–14
–16
–18
–20
–22
t∈[0,+∞).
x
现实生活中存在大量类似弹簧振子的运动,如钟摆
的摆动,水中浮标的上下浮动,琴弦的振动,等等.这
些都是物体在某一中心位置附近循环往复的运动.
在物理学中,把物体受到的力(总是指向平衡位置)正
然后进行函数拟合获得具体的函数模型,最
后利用这个函数模型来解决相应的实际问
题.
实际问题通常涉及复杂的数据,因此往
往需要使用信息技术.
课堂
小结
1.知识清单:
(1)简谐运动.
(2)函数的“拟合”.
(3)三角函数在物理中的应用.
2.方法归纳:数学建模、数形结合.
3.常见误区:选择三角函数模型时,最后结果忘记回归
6
7
8
9
10
11

5.00 6.21 7.12 7.49 7.24 6.42 5.25 4.01 3.02 2.52 2.65 3.37

浅议“1”在三角函数中的作用

浅议“1”在三角函数中的作用

浅议“1”在三角函数中的作用作者:赵春燕来源:《散文百家·下旬刊》2016年第01期在数学中,数字“1”可以说是无处不在,无时不有。

尽管它只是一个普通的小数字,但在解决某些数学问题中却起着不可忽视的大作用。

尤其是在三角函数问题中,如果能够巧妙、合理地使用“1”,那么在解题中就能化繁为简,化难为易。

当你在题海中“山重水复疑无路”时,它就可让你“柳暗花明又一村”,从而思路豁然开朗,效果事半功倍。

下面就结合我个人的教学实践,谈谈“1”在三角函数中的作用。

一、直接利用sin2α+cos2α=1进行解题在题中如果出现了sin2α+cos2α或1,可以根据需要互相替换,从而迅速解决问题。

例1:已知α是第一象限角,化简:1+2sinαcosα解析:对于根式的化简,思路主要是去根号,而对这个题目首先要考虑根号下是否能够配成完全平方式,沿着这个思路我们可以联想到把“1”化成“sin2α+cos2α”,根号下就成了完全平方式,然后再根据α是第一象限角,即sinα+cosα>0,从而得出结果。

解:1+2sinαcosα=sin2α+2sinαcosα+cos2α=(sinα+cosα)2=sinα+cosαΘα是第一象限角∴sinα+cosα>0∴1+2sinαcosα=sinα+cosα例2:已知sinx=m-3[]m+5,cosx=4-2m[]m+5求m的值。

解析:本题要求的结果是m的值,而含有m的式子分别表示了sinx和cosx,利用sin2α+cos2α=1就可以把含有m的两个式子联系在一起,从而得到一个关于m的一元二次方程,解方程就可以得到m。

解:Θsin2α+cos2α=1 ∴(m-3[]m+5)2+(4-2m[]m+5)2=1即m(m-8)=0 ∴m=0或m=8二、利用特殊角的三角函数值为1进行解题在有些三角题中,1会直接出现在题目中,而1=tan45°=cos0°=sin90°=…,能否将1恰当地换成上述的这些量,将对我们的解题大有帮助。

浅谈三角函数中“1”的妙用

浅谈三角函数中“1”的妙用

浅谈三角函数中“1”的妙用三角函数内容是新课程标准中删减、变化最大的内容之一,但是它仍然是高考的重点。

许多同学在学习三角函数的时候感到很吃力,认为计算量很大,公式很多。

下面笔者就从下面几道题为例,谈谈“1”在解某些三角函数问题时的妙用。

一 巧用sin 2a+cos 2a=12tan 3,2sin 3sin cos a a a a =-例1:已知求的值本题有多种解法,最常见的是根据tana 的值,求出sina 和cosa 的值,然后代入计算,但是这里要注意到a 所在的象限。

这里介绍如何巧用“1”来求值。

222222222sin 3sin cos 12sin 3sin cos sin cos 2tan 3tan tan 1233331910a a aa a aa a a aa -=-=+-=+⨯-⨯=+=解:原式这里用到了平方关系sin 2a+cos 2a=1,就不用考虑a 所在的象限,计算也比较简便。

221,1a b+=+=例2:已知求证22101011baa b -≥-≥≤≤由于,,得,,根究结构特点,可考虑利用三角代换来解答本题。

证明:由已知可得221010b a -≥-≥,,所以11a b ≤≤,, 设a=cos ,b=cos 00αβαπβπ≤≤≤≤,且,,由已知得22222222cos cos 1,cos sin cos sin 1,sin()10222cos cos cos cos sin cos 12a bαβαββααβππαβπαββαπαβαααα+=+=+=≤+≤+==-+=+=+-=+=即所以又,所以,即所以()二 巧用tan450=1000003(1tan 1)(1tan 2)(1tan 3)...(1tan 44)(1tan 45)+++++例计算2345(1tan )(1tan )1tan tan tan tan 1tan 1tan tan tan tan 2[(1tan 1)(1tan 44)][(1tan 2)(1tan 43)]...[(1tan 22)(1tan 23)](1tan 45)2αβαβαβαβαβαβαβ=++=+++=++-+==+++++++=解:当+时,()()所以原式 三 巧用tanacota=14tan 6730'tan 2230'-例计算本题看似无从下手,但如果我们能够发现0006730'2230'45-=,解本题也就不难了。

三角函数中1的妙用

三角函数中1的妙用

三角函数中“1”的妙用宁夏银川市高级中学 王波 750004在我们学习三角函数这一部分内容的时候,我们会发现经常会与“1”有些合作,下面我就自己在教学中,利用“1”进行解题的体会与大家共同探讨。

理论一:sin 2α+cos 2α=1应用举例例1. 已知α是第一象限角,化简下式ααcos sin 21+解析:对于根式的化简,思路主要是去根号,而对这个题目首先要考虑根式下的ααcos sin 21+是否能够配成完全平方式,沿着这个思路我们可以联想到221b a +=,自然会想到ααcos sin 21+=αα22cos sin ++ααcos sin 2,到此时解题思路豁然开朗 解:ααcos s in 21+=ααααcos sin 2cos sin 22++=2)cos (sin αα+=ααcos sin +∵α是第一象限角∴0cos ,0sin >>αα ∴ααcos sin 21+=ααcos sin +例2:已知3tan =α,求ααcossin 的值 解析:这道题目是一个齐次式,这类题目的特点是已知角α的正切值,求含有正弦和余弦的三角多项式的值,解题的方法是化弦为切,而这道题目要用化弦为切有困难,所以我们就要观察它的特点,没有分母是它无法直接利用传统方法解题。

我们发现ααcos sin 的分母是1,而1=αα22cos sin +,这样题目就迎刃而解了解:∵3tan =α∵ααcos sin =1cos sin αα=αααα22cos sin cos sin +=ααααcos sin cos sin 122+=ααtan 1tan 1+ ∴ααcos sin =3131+=103 理论二:14tan=π(145tan 0=)应用举例 例3:求值015tan 115tan 1-+ 解析:题目的形式是分式,联想到两角和的正切公式,而两角和的正切公式)tan(βα+=βαβαtan tan 1tan tan -+与题目给出的形式有区别,这时我们观察到公式中的αtan 与题目中1的位置相同,则自然会想到令1=tan450,后面的问题自然容易解决 解:0015tan 115tan 1-+=000015tan 45tan 115tan 45tan -+=)1545tan(00+=3 理论三:形如θθcos sin b a +的三角函数式的化简与求最值问题θθcos sin b a +=)cos sin (222222θθb a b ba ab a ++++ ∵1)()(222222=+++b a b b a a∴可以联想到1cos sin 22=+ϕϕ 则由此可设ϕcos 22=+b a a ,ϕsin 22=+b a b 或设ϕs in 22=+b a a ,ϕcos 22=+b a b此时可得θθcos sin b a +=)sin(ϕθ+ 或θθcos sin b a +=)cos(ϕθ- 应用举例 例4:化简x x cos sin 3+解析:化简x x c o s s i n 3+,就意味着将原式化成)s in (ϕ+xa 或)cos(ϕ+x a 的形式,由理论三我们可得解题方法 解:x x cos s in 3+=)cos 21sin 23(13x x ++ =2(x x cos 6sin sin 6cos ππ+) =2)6sin(π+x例5:求函数x x x x x f 22cos 3cos s in 2s in )(++=的最大值,并求出此时的x 的值解:x x x x y 22cos 3cos s in 2s in ++= =212cos 22sin cos sin 22++++x x x x =22cos 2sin ++x x =2)42sin(2++πx , 当2242πππ+=+k x , 即)(8Z k k x ∈+=ππ时,22m a x +=y理论四:单位圆中的三角函数线的应用单位圆中,令半径1=r ,给出了任意角的三角函数的几何形式,为后面推倒两角差的余弦公式做了很好的铺垫;同时三角函数线也是精确作出正弦函数,余弦函数,正切函数图象的理论依据,这为后面的学习打下了很好的基础。

三角函数诀窍

三角函数诀窍

三角函数诀窍三角函数是高中数学中的重要内容,也是后续学习数学和物理领域中的基础。

它们在解决几何问题、分析问题以及工程应用中都有着广泛的应用。

掌握好三角函数的性质和技巧,对于提高数学水平和解决实际问题都非常有帮助。

下面我将介绍一些三角函数的诀窍,希望能对大家的学习有所帮助。

诀窍一:记住常用角度的三角函数值。

我们在学习三角函数的时候,经常会遇到一些特殊的角度。

例如,30°、45°、60°等,这些角度的三角函数值是非常常用的。

要牢记这些特殊角度的正弦、余弦和正切的值,不仅可以避免频繁计算,还可以方便地应用到各种问题中。

诀窍二:运用“合并”和“拆分”的技巧。

合并是指将多个三角函数的和差进行合并,转化为一个三角函数。

例如,sin(A + B) = sinAcosB + cosAsinB。

拆分则是将一个三角函数分解成两个三角函数的和差。

通过合并和拆分的技巧,我们可以简化计算,转化复杂的题目为简单的计算。

诀窍三:掌握半角公式和倍角公式。

半角公式和倍角公式是三角函数运算中常用的重要公式。

半角公式有sin(A/2)、cos(A/2)和tan(A/2)的表达式,通过这些公式,我们可以将一个三角函数的半角值表示为角度A的三角函数的表达式。

倍角公式则是将一个三角函数的倍角值表示为角度A的三角函数的表达式,如sin2A、cos2A和tan2A。

对于复杂的三角函数运算,半角公式和倍角公式可以大大简化计算过程。

诀窍四:利用图形直观理解三角函数的性质。

三角函数与单位圆的关系是高中三角函数的重点内容。

通过绘制单位圆和三角函数图像,我们可以直观地理解三角函数的周期性、周期、奇偶性和单调性等性质。

通过观察图形,我们可以更好地理解三角函数的性质,从而更灵活地运用到问题中。

诀窍五:多做题、多总结。

三角函数的学习需要大量的练习和巩固。

多做题可以加深对知识点的理解和掌握,同时也可以提高解题的速度和准确性。

在做题的过程中,及时总结解题的方法和技巧,形成自己的解题思路和方法,从而可以更好地解决类似的问题。

“1”在三角函数中的灵活运用

“1”在三角函数中的灵活运用

、。… ,


以上是作者关于 … ’ 三角函数计算中的一点想 法, … ’ 1在 1 起着 很 神奇的作用 , “”的灵活运 用不仅能减少计算 量 ,而且使解题变 l 伯剧 ’ ~ 眦~ 一 ’。 Ⅲ一 一 卫
… … 一一
3o = CS ,然后根据 例1 cs - O 中解 法l 的思 想就 可以解题 。
参考文献 【】 丁孝林. l 高校优秀学生干部培养教育研 究. 新西部 ,20 ,1 07 2 f 李鹏飞,陈露. 2 1 高校学生干部培养探 究. 人教两。2 0. .7 080 0 4 【 李雪. 3 】 论高校学生干部 的角色定位 与认 知… 培 养学生干部的 “ 己与 宽人 ”意 识. 宁行政 学 院学报 ,20 ,0 律 辽 09 8 【 王 敏 丽 . 学生 干部 的 选拔 、 培养 与 管理初 探 . 4 】 高校 中国科 教创 新 导
解 2 ̄S 她 . SC iO 1 1
c0
C 而n ; O S 2t 2 tt a
… 1 。 .+
一 i 一 ■

cs 0 点评 : 以上两种方法的解题过程 ,我们不难看 出,用 1 s 2, 从 =ia n +
一+ " ( -) 丁 I' -' 1 4 4 3 3
2s n . O i C S
的 ,后 入 求 ;二思 : ln来 解 值 然 代 兰 等中 值 第 种路 用=4 求 。 t5 a’
解法1 t l =a 6" 4 ) n 0 丽n 5 =J - : a S t ( - 5 =t t 4 ・ n " n 0 " a6" a " , 1 - 3
作者简介
翟会会 ( 95 18 一),研究方向:体育教 育训练学。

三角变换中“1”的妙用

三角变换中“1”的妙用

三角变换中“1”的妙用作者:陈秀娟来源:《中学教学参考·理科版》2010年第07期三角式的变形问题,包括三角式的简化、求三角式的值、证明恒等式、条件等式和三角不等式内容.特别是三角式的求值、化简是三角函数的重要内容.在三角函数中“1”的变换有--等等.在具体变换中根据题目的不同特征选择不同的变换,在三角函数的变形时,若能把常数“1”恰当处理,并灵活运用三角基本公式,变形起来就比较顺利.现举例说明.第一,三角函数式如含有1时可将1变换为【例1】已知-1=-1,求的值.分析:由已知可以求出再由同角三角函数关系式可以求得和进而求出关系式的值,但实际操作中,往往借助题目条件的特殊性来整体考虑使用条件.解析=135.评析:形如的式子称为关于、的二次齐次式,对涉及它们的三角式通常利用进行变换.【例2】若、是关于方程的两个实根,求k的值.解:由题意知-6k8=-3k4,∵-4×8×(2k+1)≥0,∴k≥8+2349或k≤8-2349.又∵---2×2k+18,∴-8k-20=0,解得k=-109或k=2(舍去),∴k=-109.第二,三角式中有1和、时,则利用-进行变换.【例3】化简-解--------第三,在含有根号的三角函数等式的变形中、时1可以不变,但为“脱”去根号常借助三角函数的平方关系.【例4】化简三角函数式--1--1--分析:利用同角三角函数平方关系式化简.原式-(1----1----1-4(当α在第一、三象限时-4(当α在第二、四象限时).评析:解该题时易犯的错误是缺少对、正负的讨论,直接“脱去”分母中的绝对值符号,或是不注意正、余函数的有界性,盲目对、的正负进行讨论.第四,三角式中有1和有时把1换成【例5】化简-解:原式-第五,三角式中含有则有时不宜变动1,而将化为将1-化为【例6】化简-解:原式-----又∵00.∴上式-=-第六的妙用.【例7】已知实数x,y满足-若对满足条件的任意x,y都有x+y-c≤0恒成立,求参数c的取值范围.解:设-即则x+y-c≤0恒成立转化为-c≤0恒成立,即恒成立.设则恒成立等价于下面我们求函数的最大值.由正弦函数的有界性知当时,函数取得最大值,即所以c≥2+1.即c取值范围是[2+1,+∞).评析:本题考查不等式的恒成立问题中参数范围的确定,集圆的参数方程、二元不等式、三角函数的性质等于一体,是一道好题,利用圆的参数方程(即是解决问题的关键.(责任编辑金铃)。

三角函数中“1”的妙用

三角函数中“1”的妙用

三角函数中“1”的妙用宁夏银川市高级中学 王波 750004在我们学习三角函数这一部分内容的时候,我们会发现经常会与“1”有些合作,下面我就自己在教学中,利用“1”进行解题的体会与大家共同探讨。

理论一:sin 2α+cos 2α=1应用举例例1. 已知α是第一象限角,化简下式ααcos sin 21+解析:对于根式的化简,思路主要是去根号,而对这个题目首先要考虑根式下的ααcos sin 21+是否能够配成完全平方式,沿着这个思路我们可以联想到221b a +=,自然会想到ααcos sin 21+=αα22cos sin ++ααcos sin 2,到此时解题思路豁然开朗 解:ααcos sin 21+=ααααcos sin 2cos sin 22++=2)cos (sin αα+=ααcos sin +∵α是第一象限角∴0cos ,0sin >>αα ∴ααcos sin 21+=ααcos sin +例2:已知3tan =α,求ααcos sin 的值解析:这道题目是一个齐次式,这类题目的特点是已知角α的正切值,求含有正弦和余弦的三角多项式的值,解题的方法是化弦为切,而这道题目要用化弦为切有困难,所以我们就要观察它的特点,没有分母是它无法直接利用传统方法解题。

我们发现ααcos sin 的分母是1,而1=αα22cos sin +,这样题目就迎刃而解了解:∵3tan =α∵ααcos sin =1cos sin αα=αααα22cos sin cos sin +=ααααcos sin cos sin 122+=ααtan 1tan 1+ ∴ααcos sin =3131+=103 理论二:14tan=π(145tan 0=)应用举例 例3:求值0015tan 115tan 1-+ 解析:题目的形式是分式,联想到两角和的正切公式,而两角和的正切公式)tan(βα+=βαβαtan tan 1tan tan -+与题目给出的形式有区别,这时我们观察到公式中的αtan 与题目中1的位置相同,则自然会想到令1=tan450,后面的问题自然容易解决 解:0015tan 115tan 1-+=000015tan 45tan 115tan 45tan -+=)1545tan(00+=3 理论三:形如θθcos sin b a +的三角函数式的化简与求最值问题θθcos sin b a +=)cos sin (222222θθb a b ba ab a ++++ ∵1)()(222222=+++b a b b a a∴可以联想到1cos sin 22=+ϕϕ 则由此可设ϕcos 22=+b a a ,ϕsin 22=+b a b 或设ϕsin 22=+b a a ,ϕcos 22=+b a b此时可得θθcos sin b a +=)sin(ϕθ+ 或θθcos sin b a +=)cos(ϕθ- 应用举例 例4:化简x x cos sin 3+解析:化简x x cos sin 3+,就意味着将原式化成)sin(ϕ+x a 或)cos(ϕ+x a 的形式,由理论三我们可得解题方法 解:x x cos sin 3+=)cos 21sin 23(13x x ++ =2(x x cos 6sin sin 6cos ππ+) =2)6sin(π+x例5:求函数x x x x x f 22cos 3cos sin 2sin )(++=的最大值,并求出此时的x 的值解:x x x x y 22cos 3cos sin 2sin ++= =212cos 22sin cos sin 22++++x x x x =22cos 2sin ++x x =2)42sin(2++πx , 当2242πππ+=+k x , 即)(8Z k k x ∈+=ππ时,22max +=y 理论四:单位圆中的三角函数线的应用单位圆中,令半径1=r ,给出了任意角的三角函数的几何形式,为后面推倒两角差的余弦公式做了很好的铺垫;同时三角函数线也是精确作出正弦函数,余弦函数,正切函数图象的理论依据,这为后面的学习打下了很好的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数是高中数学的重要内容,与数列、立体几何、平面向量、方程等都有密切的联系。

这部分中基本计算公式特别的多,而且在解决三角函数问题时又是基础工具,能够熟练而又灵活的运用这些公式成了学习的难点。

这部分公式大致分为三类,现和大家一起来研究下同角基本函数关系式中与“1”有关的问题,希望能给同学们带来帮助。

在三角函数的求值,化简,证明时,常把数1表示为三角函数式或特殊角的三角函数值参与运算,使问题得以简化。

常见的代换有:
22222221sin cos 1(sin cos )2sin cos 1sec tan csc cot 1cos sec sin csc tan cot 1tan cot 44
αα
αααα
αααα
αααααα
π
π
=+=+-=-=-=⋅=⋅=⋅== 等等。

下面例析几道题,供同学们参考。

例1
已知sin cos 2
αα-=-tan cot αα+的值为 .
分析:本题解法有二,一种是将sin cos 2αα-=-
与22sin cos 1αα+=联立成方程组求出sin α与cos α,再运用sin tan cos ααα=与cos cot sin ααα
=求出所求值;一种是先利用sin tan cos ααα=与cos cot sin ααα
=对tan cot αα+化简变形,发现只需要求出sin cos αα的
值即可,而将sin cos 2αα-=-
平方就能完成sin cos αα的求解,进而问题得以解决。

两种方法对比,显然后者简单,而且运算量很少。

解析:sin cos αα-= 222225(sin cos )sin cos 2sin cos 4
1sin cos 8
sin cos sin cos tan cot 8cos sin sin cos αααααααααααααααααα
∴=-=+-∴=-+∴+=+==- 例2 已知1tan 3
α=-,求下列各式的值: (1)2232sin sin cos 5cos 2
αααα-+
(2)1
1sin cos αα-
分析:这道题很多同学可能会去求解sin α与cos α的值,然后代入即解决了问题,这种思想简单直接,但运用起来却很繁琐,费力。

解决这道题简便的方法是将所求直接转化为tan α的关系式,这就需要将原来代数式中的“1”用22
sin cos αα+来代换。

解析:(1)原式2232sin sin cos 5cos 21
αααα-+= 222232sin sin cos 5cos 2sin cos αααααα
-+=+(分子分母同时除以2cos α) 2232tan tan 51032tan 120
ααα-+==+ (2)原式2222sin cos sin cos sin cos αααααα
+=+-(分子分母同时除以2cos α) 22tan 110tan 1tan 13
ααα+==+- 例3 化简:1tan 1tan θθ
+- 分析:可能会有很多同学认为这已经是最简形式,其实它还有更简单的形式——利用两角和的正切公式变化,这就需要对原式中的相关“1”用tan 4π
代换。

解析:原式tan
tan 4tan()41tan tan 4
πθ
πθπθ+==+- 例4 证明:2222tan sin tan sin αααα-=
分析:本题可以由左证到右,或者由右证到左。

无论哪种方式都需要利用“1”的代换,下面我们一起来看看这两种方式,自己来体会。

解析:方法一(由右到左)
右边22222
tan (1cos )tan tan cos ααααα=-=- 22
2222sin tan cos tan sin cos αααααα=-=-=左边 因此 2222
tan sin tan sin αααα-=
方法二(由左到右)
左边2222222sin 1sin sin (1)sin (sec 1)cos cos ααααααα
=-=-=- 22
sin tan αα==右边
因此 2222tan sin tan sin αααα-=
“1”的这种代换应用在这部分是一个重要内容,利用它能使运算由繁变简,提高解题速度,但是这种题变换万千,要想能灵活解决还需要同学们积累解题经验,参透其中的奥秘。

一、任意角的三角函数的定义
教材中,根据初中学过的锐角三角函数的定义:sina=MP/OP=b/r,cosa=OM/OP=a/r,tana=MP/OM=b/a.
此是”终边定义法”。

在高中,已将角的范围扩展到任意角,为全体实数,仍然用这种定义,就比较繁琐,这样可引导学生如何将问题简化,自然地联想到“1”这个单位。

P 点就是α的终边与单位圆的交点,锐角三角函数可以用单位圆上点的坐标表示,同样的可以用单位圆定义任意角的三角函数。

设P (x,y )那么有
Sina=y,cosa=x,tana=y/x(x ≠0).此是“单位圆定义法”。

比较这两种定义,可以看出“单位圆定义法”不仅简单方便,而且清晰易懂,更加反映本质,这是由于三角函数与单位圆之间的这种紧密的内部联系,从而可以圆的性质中得到启发,更好的研究三角函数的性质。

例:已知角的终边上有一点的坐标是P (3a,4a ),其中a ≠0,求sin ,cos ,tan 的三角函数值。

二、正切线的定义
由正、余弦函数的定义可知有向线段MP,OP 分别表示的正弦和余弦,故而得出正弦线与余弦线,那么如何定义正切线呢?t an应该用一条有向线段表示,tan=AT,而tan=MP/OM,A在哪里,T是哪一点?可以引导学生得出MP/OM=AT,将该式转化联想到MP/OM=AT/1,这样1用哪条线段表示?要与ΔOMP联系,运用相似,有OA=1,即A(1,0),T为过A 点与的终边(或反向延长线)的交点,我们就可以得到正切线的定义。

三、三角函数的基本关系式:sin2a+cos2a =1
在许多三角函数式中,常有“1”用:sin2a+cos2a来代换,达到化简得目的。

例如:tana=-1/3,计算1/(2sinacosa+cos2a)的值。

在该题中,分母是关于正余弦函数的二次齐次式,分子式1,1可以用sin2a+cos2a转化成为正余弦函数的二次齐次式。

解:1/(2sinacosa+cos2a)= (sin2a+cos2a)/
(2sinacosa+cos2a)=(tan2a+1)/(2tana+1)=10/3
四、三角函数的特殊值
1.sin 90º=1
例如:在ΔABC中sinB=1/3,sin(C-A)=1,求sinA。

在该题中,1作为特殊值,可用来sin 90º=1换。

解:由sin(C-A)=1有C-A=90º∴C=A+90º又∵B=180º-2A-90º=90º-2A,
∴sinB=sin(90º-2A)=cos2A=1-2sin2A=1/3得sinA=±/3 (负值舍去)sinA=/3。

2. tan45º=1
例如:求(1+tan15º)/(1-tan15º)
在该题中,表面上观察很难化简,但对比正切的和角公式可以得到tan45º=1转化。

解:(1+tan15º)/(1-tan15º)=(tan45º+tan15º)/(1-tan45ºtan15º)
=tan(45º+15º)=3。

相关文档
最新文档