学法大视野·数学·九年级(上册)(湘教版)·答案

合集下载

学法大视野·数学·九年级上册(湘教出版)·规范标准答案

学法大视野·数学·九年级上册(湘教出版)·规范标准答案

课时参考答案(课前预习、课堂探究、课堂训练、课后提升)第1章 反比例函数1.1 反比例函数课前预习1.y=k x≠ 零课堂探究【例1】 探究答案:-1 k ≠0 B变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x 与y ,而要看它能否化为y=k x(k 为常数,k ≠0)的形式.所以(2)是反比例函数,其中k=-6;(3)是反比例函数, 其中k=-3.变式训练1-2:解:(1)由三角形的面积公式,得12xy=36, 于是y=72x.所以,y 是x 的反比例函数.(2)由圆锥的体积公式,得13xy=60,于是y=180x. 所以y 是x 的反比例函数.【例2】 探究答案:1.y=k x (k ≠0) 2.(√2,-√2) 解:设反比例函数的解析式为y=k x(k ≠0), 因为图象过点(√2,-√2), 将x=√2,y=-√2代入,得-√2=√2,解得k=-2. 因此,这个反比例函数的解析式为y=-2x , 将x=-6,y=13代入,等式成立.所以函数图象经过-6,13.变式训练2-1:B变式训练2-2:解:(1)设y 1=k 1x ,y 2=k 2x(k 1,k 2为常数,且k 1≠0,k 2≠0),则y=k 1x+k 2x.∵x=1,y=4;x=2,y=5,∴{k 1+k 2=4,2k 1+k 22=5.解得{k 1=2,k 2=2.∴y 与x 的函数表达式为y=2x+2x.(2)当x=4时,y=2×4+24=812.课堂训练1.B2.C3.A4.-25.解:设大约需要工人y 个,每人每天生产纪念品x 个.∴xy=100,即y=100x(x>0) ∵5≤x ≤8,∴1008≤y ≤1005, 即1212≤y ≤20,∵y 是整数,∴大约需工人13至20人.课后提升1.D2.A3.C4.B5.C6.27.4008.-129.解:(1)∵y 是x 的正比例函数, ∴m 2-3=1, m 2=4, m=±2.∵m=2时,m-2=0, ∴舍去. ∴m=-2.(2)∵y 是x 的反比例函数, ∴m 2-3=-1, m 2=2,m=±√2.10.解:(1)由S=12xy=30,得y=60x,x 的取值范围是x>0.(2)由y=60x可知,y 是x 的反比例函数,系数为60.1.2 反比例函数的图象与性质第1课时 反比例函数的图象课前预习 3.(1)一、三 (2)二、四课堂探究【例1】 探究答案:第一、三象限 >解:(1)∵这个反比例函数图象的一支分布在第一象限, ∴m-5>0,解得m>5.(2)∵点A (2,n )在正比例函数y=2x 的图象上, ∴n=2×2=4,则A 点的坐标为(2,4). 又∵点A 在反比例函数y=m -5x的图象上, ∴4=m -52,即m-5=8. ∴反比例函数的解析式为y=8x.变式训练1-1:C 变式训练1-2:-52【例2】 探究答案:1.(1,5) 2.{y =kx ,y =3x +m解:(1)∵点(1,5)在反比例函数y=k x的图象上,∴5=k 1,即k=5,∴反比例函数的关系式为y=5x.又∵点(1,5)在一次函数y=3x+m 的图象上, ∴5=3+m , ∴m=2.∴一次函数的关系式为y=3x+2.(2)由题意可得{y =5x ,y =3x +2, 解得{x 1=1,y 1=5或{x 2=−5,y 2=−3.∴这两个函数图象的另一个交点的坐标为-53,-3.变式训练2-1:A变式训练2-2:解:(1)将A (-1,a )代入y=-x+2中, 得a=-(-1)+2,解得a=3.(2)由(1)得,A (-1,3),将A (-1,3)代入y=k x中, 得到3=k -1,即k=-3,即反比例函数的表达式为y=-3x.(3)如图:过A 点作AD ⊥x 轴于D , ∵A (-1,3),∴AD=3,在直线y=-x+2中,令y=0,得x=2, ∴B (2,0),即OB=2, ∴△AOB 的面积S=12×OB ×AD=12×2×3=3.课堂训练1.A2.C3.B4.m>15.解:(1)∵反比例函数y=k x与一次函数y=x+b 的图象,都经过点A (1,2),∴将x=1,y=2代入反比例函数解析式得, k=1×2=2,将x=1,y=2代入一次函数解析式得, b=2-1=1,∴反比例函数的解析式为y=2x,一次函数的解析式为y=x+1. (2)对于一次函数y=x+1, 令y=0,可得x=-1; 令x=0,可得y=1.∴一次函数图象与x 轴,y 轴的交点坐标分别为(-1,0),(0,1).课后提升1.C2.B3.A4.D5.C6.-37.-248.解:m 2=(-4)×(-9)=36,∴m=±6.∵反比例函数y=m x的图象位于第一、三象限,∴m>0, ∴m=6.9.解:(1)∵y=m -5的一支在第一象限内,∴ m-5>0. ∴m>5.对直线y=kx+k 来说,令y=0,得kx+k=0,即k (x+1)=0. ∵k ≠0,∴x+1=0,即x=-1. ∴点A 的坐标为(-1,0).(2)过点M 作MC ⊥AB 于点C ,∵点A 的坐标为(-1,0),点B 的坐标为(3,0), ∴AB=4,AO=1.∵S △ABM =12×AB ×MC =1×4×MC=8,∴MC=4.又AM=5,∴AC=3,又OA=1,∴OC=2.∴点M 的坐标为(2,4).把M (2,4)代入y=m -5x, 得4=m -52,则m=13,∴y=8x. 第2课时 反比例函数的性质课前预习 1.在每一象限内 减小 在每一象限内 增大2.y=±x 坐标原点课堂探究【例1】 探究答案:1.一、三 >0 2.减小 >解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2. (2)把点(3,1)代入y=2n -4x,得2n-4=3, 解得n=72.(3)因为在每个象限内,y 随x 的增大而减小,所以由a 1<a 2,得b 1>b 2. 变式训练1-1: A 变式训练1-2:< 【例2】 探究答案:|k||k|解:设点A 的坐标为a ,2a,则点B 的坐标为-a ,-2a,∵BC ∥x 轴,AC ∥y 轴,∴AC ⊥BC ,又由题意可得BC=2a ,AC=4a,S △ABC =12BC ·AC=12·2a ·4a=4.变式训练2-1:1变式训练2-2:解:设A 的坐标是(m ,n ),则n=k ,即k=mn ,∵OB=-m ,AB=n ,S 长方形ABOC =OB ·AB=(-m )n=-mn=3, ∴mn=-3,∴k=-3,则反比例函数的解析式是y=-3x.课堂训练1.A2.C3.64.25.解:设一次函数的解析式为y=kx+b (k ≠0).∵点A 是直线与反比例函数y=2x的交点, ∴把A (1,a )代入y=2x,得a=2. ∴A (1,2).把A (1,2)和C (0,3)代入y=kx+b ,得{k +b =2,b =3.解得k=-1,b=3.所以一次函数的解析式为:y=-x+3.课后提升1.D2.D3.A4.C5.C6.C7.x<-2或0<x<18.69.解:(1)图象的另一支在第三象限, ∵图象在一、三象限,∴5-2m>0,∴m<52.(2)b 1<b 2.理由如下:∵m<52,∴m-4<m-3<0,∴b 1<b 2.1.3 反比例函数的应用课堂探究【例1】 探究答案:1.反比例 v=P F2.减小 解:(1)设反比例函数解析式为v=P F, 把(3000,20)代入上式, 得20=P3000,P=3000×20=60000, ∴v=60000F. (2)当F=1200时,v=600001200=50(米/秒)=180(千米/时), 即当它所受的牵引力为1200牛时,汽车的速度为180千米/时. (3)由v=60000F≤30,得F ≥2000. 所以,若限定汽车的速度不超过30米/秒,则F 应不小于2000牛.变式训练1-1:C 变式训练1-2:0.5【例2】 探究答案:1.k 2 -2 2.图象 解:(1)∵双曲线y=k 2x经过点A (1,2),∴k 2=2.∴双曲线的解析式为y=2x. ∵点B (m ,-1)在双曲线y=2x上,∴m=-2,则B (-2,-1).由点A (1,2),B (-2,-1)在直线y=k 1x+b 上,得{k 1+b =2,-2k 1+b =−1,解得{k 1=1,b =1.∴直线的解析式为y=x+1. (2)y 2<y 1<y 3.(3)x>1或-2<x<0.变式训练2-1:C变式训练2-2:解:(1)直线y=12x+b 经过第一、二、三象限,与y 轴交于点B ,∴OB=b ,∵点A (2,t ),△AOB 的面积等于1.∴12×2×b=1,可得b=1,即直线为y=12x+1.(2)由点A (2,t )在直线y=12x+1上, 可得t=2,即点A 坐标为(2,2),反比例函数y=k x(k 是常量,k ≠0)的图象经过点A ,可得k=4, 所求反比例函数解析式为y=4x.课堂训练1.C2.C3.B4.(1,-2)5.解:(1)将A (2,4)代入反比例函数解析式得m=8,∴反比例函数解析式为y 2=8x,将B (-4,n )代入反比例函数解析式得n=-2, 即B (-4,-2),将A 与B 坐标代入一次函数解析式得,{2k +b =4,-4k +b =−2,解得{k =1,b =2.则一次函数解析式为y 1=x+2.(2)联立两函数解析式得{y =x +2,y =8x,解得{x =2,y =4或{x =−4,y =−2,则y 1=y 2时,x 的值为2或-4. (3)利用题图象得,y 1>y 2时,x 的取值范围为-4<x<0或x>2.课后提升1.D2.D3.C4.D5.x<0或1<x<46.1.67.(3,2)8.19.解:(1)∵反比例函数y=k x的图象过B (4,-2)点,∴k=4×(-2)=-8,∴反比例函数的解析式为y=-8x. ∵反比例函数y=-8的图象过点A (-2,m ), ∴m=-8=4,即A (-2,4).∵一次函数y=ax+b 的图象过A (-2,4),B (4,-2)两点,∴{-2a +b =4,4a +b =−2,解得{a =−1,b =2.∴一次函数的解析式为y=-x+2. (2)∵直线AB :y=-x+2交x 轴于点C , ∴C (2,0).∵AD ⊥x 轴于D ,A (-2,4), ∴CD=2-(-2)=4,AD=4, ∴S △ADC =12·CD ·AD=12×4×4=8.10.解:(1)把A (m ,2)代入反比例函数解析式y=2x得2=2m,所以m=1. ∴A (1,2).(2)把A (1,2)代入正比例函数解析式y=kx 得2=k ,所以k=2,因此正比例函数的解析式为y=2x. (3)因为正比例函数的解析式为y=2x ,当x=2时,y ≠3,所以点B (2,3)不在正比例函数图象上.第2章 一元二次方程2.1 一元二次方程课前预习 1.一个 2 整式 3.相等 课堂探究【例1】 探究答案:1.2 =2 2.≠0 解:根据题意,得m 2-2=2,且m-2≠0. 解得m=±2,且m ≠2.所以m=-2. 则m 2+2m-4=(-2)2+2×(-2)-4=-4. 变式训练1-1:C 变式训练1-2:≠±1 =12【例2】 探究答案:1.移项 合并同类项 2.符号 0 解:(1)去括号,得4t 2+12t+9-2(t 2-10t+25)=-41, 去括号、移项、合并得2t 2+32t=0,所以二次项系数、一次项系数和常数项分别为2,32,0. (2)去括号,得12x 2-x+12=3x+13, 移项、合并,得12x 2-4x+16=0,所以二次项系数、一次项系数和常数项分别为1,-4,1.变式训练2-1:B变式训练2-2:解:{m2-2=2, m+2≠0,解得m=±2且m≠-2.∴m=2.【例3】探究答案:1.根2.≠0解:根据题意,得(m-2)×12+(m2-3)×1-m+1=0,即m2-4=0,故m2=4,解得m=2或m=-2.∵方程(m-2)x2+(m2-3)x-m+1=0是关于x的一元二次方程,∴m-2≠0,即m≠2.故m=-2.变式训练3-1:1变式训练3-2:解:把x=0代入方程得a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a=-1.课堂训练1.C2.A3.-104.-25.解:去括号,得9x2+12x+4=4x2-24x+36.移项、合并同类项得,5x2+36x-32=0.∴它的二次项为5x2二次项系数为5,一次项为36x,一次项系数为36,常数项为-32.课后提升1.D2.D3.C4.C5.D6.x(x+5)=300x2+5x-300=015-3007.18.≠1=19.解:(1)去括号,得x2-4=3x2+2x,移项,得-2x2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4.(2)去括号,移项合并,得(1-2a)x2-2ax=0,二次项系数为1-2a,一次项系数为-2a,常数项为0.10.解:小明的话有道理.理由:若方程为一元二次方程,则m+1=2,m=1.而m=1时,m2+m-2=0,所以此方程不可能为一元二次方程.2.2 一元二次方程的解法2.2.1 配方法第1课时用配方法解简单的一元二次方程课前预习1.(1)平方根2.(1)a2±2ab+b2(2)完全平方式课堂探究【例1】探究答案:-a±√b没有解:移项,得2(x+1)2=92, 两边同时除以2,得(x+1)2=94,∴x+1=±32,∴x 1=-1+32=12,x 2=-1-32=-52.变式训练1-1:m ≥7变式训练1-2:解:(1)移项,得(2x-1)2=25, 开平方得2x-1=±5, ∴2x-1=5或2x-1=-5,解这两个方程得:x 1=3,x 2=-2. (2)两边同除以3,得(x-2)2=4, 开平方得:x-2=±2, ∴x-2=2或x-2=-2.解这两个方程,得x 1=4,x 2=0.【例2】 探究答案:一次项系数一半的平方 解:移项,得x 2-12x=12, 配方,得x 2-12x+(14)2=916,(x -14)2=916, ∴x-14=34或x-14=-34,∴x 1=1,x 2=-12.变式训练2-1:±43变式训练2-2:解:移项,得x 2-2x=2,配方,得(x-1)2=3, 解得x=1±√3.∴x 1=1+√3,x 2=1-√3.课堂训练1.D2.B3.±324.±85.解:(1)移项得x 2-2x=1,配方,得x 2-2x+1=2, 即(x-1)2=2,开方,得x-1=±√2, 则x 1=1+√2,x 2=1-√2.(2)移项,得x 2-4x=-1,配方,得x 2-4x+4=-1+4,即(x-2)2=3, 开方,得x-2=±√3,∴原方程的解是x 1=2+√3,x 2=2-√3.课后提升1.D2.B3.D4.B5.36.-37.900 cm 28.解:(1)直接开平方得,x-1=±√3,即x-1=√3或x-1=-√3,∴x 1=1+√3,x 2=1-√3.(2)配方,得x 2-2x+1=4+1,即(x-1)2=5. ∴x-1=±√5,即x-1=√5或x-1=-√5 ∴x 1=1+√5,x 2=1-√5.(3)方程两边都除以2,得x 2-32=-52x , 移项,得x 2+52x=32.配方,得x 2+52x+542=32+542,即x+542=4916. 开平方得,x+54=±74,∴x 1=12,x 2=-3.9.解:用配方法解方程a 2-10a+21=0,得a 1=3,a 2=7.当a=3时,3、3、7不能构成三角形; 当a=7时,三角形周长为3+7+7=17. 10.解:移项得x 2+px=-q ,配方得x 2+px+p 22=-q+p 22,即x+p 22=p 2-4q4.∵p 2≥4q , ∴p 2-4q ≥0,∴x+p2=±√p 2-4q 2.∴x 1=-p+√p 2-4q2,x 2=-p -√p 2-4q2.第2课时 用配方法解复杂的一元二次方程课前预习(1)1(2)二次项和一次项 常数项 (3)一次项系数一半的平方课堂探究【例1】 探究答案:1.1 2.完全平方式 解:两边同时除以2,得x 2-32x+12=0, 移项,得x 2-32x=-12, 配方,得x 2-32x+(-34)2=-12+(-34)2, 即(x -34)2=116,两边开平方,得x-34=±14,x-34=14或x-34=-14,∴原方程的解为x 1=1,x 2=12.变式训练1-1:D变式训练1-2:解:(1)二次项系数化为1, 得x 2-16x-2=0, 移项,得x 2-16x=2,配方, 得x 2-16x+1144=2+1144, 即x-1122=289144, ∴x-112=±1712,∴x 1=32,x 2=-43.(2)二次项系数化为1,得x 2-12x-12=0. 移项,得x 2-12x=12.配方得x 2-12x+142=12+142,即x-142=916, ∴x-14=±34, ∴x 1=1,x 2=-12.【例2】 探究答案:1.1 2.减去解:2x 2-4x+5=2(x 2-2x )+5 =2(x 2-2x+12-12)+5 =2(x-1)2+3 ∵2(x-1)2≥0, ∴2(x-1)2+3>0,∴代数式2x 2-4x+5的值总是一个正数. 变式训练2-1:13变式训练2-2:解:x 2-4x+5=x 2-4x+22-22+5 =(x-2)2+1.∵(x-2)2≥0,且当x=2时值为0, ∴当x=2时,代数式x 2-4x+5的值最小,最小值为1.课堂训练1.A2.B3.x 1=-2,x 2=124.3或-75.-3或36.解:由题意得2x 2-x=x+6,∴2x 2-2x=6,∴x 2-x=3,∴x 2-x+14=3+14,∴x-122=134,∴x-12=±√132, ∴x 1=1+√132,x 2=1−√132. ∴x=1+√132或1−√132时,整式2x 2-x 与x+6的值相等. 课后提升1.D2.D3.B4.D5.x 1=1+√3,x 2=1-√36.87.38.1±2√29.解:去括号,得4x 2-4x+1=3x 2+2x-7,移项,得x 2-6x=-8,配方,得(x-3)2=1, ∴x-3=±1,∴x 1=2,x 2=4.10.解:由题意,得2x 2+x-2+(x 2+4x )=0, 化简,得3x 2+5x-2=0. 系数化为1,得x 2+53x=23,配方,得x+562=4936,∴x+56=±76, ∴x 1=-2,x 2=13.2.2.2 公式法课前预习1.x=-b±√b 2-4ac2a(b 2-4ac ≥0)2.求根公式课堂探究【例1】 探究答案:1.一般形式 2.a 、b 、c解:原方程可化为x 2+2x-1=0, ∵a=1,b=2,c=-1.b 2-4ac=22-4×1×(-1)=8>0,∴x=-2±√82×1=-2±2√22=-1±√2.∴x 1=-1+√2,x 2=-1-√2.变式训练1-1:D变式训练1-2:解:(1)移项,得2x 2+3x-1=0, ∵a=2,b=3,c=-1,∴b 2-4ac=17>0,∴x=-3±√174,∴x 1=-3+√17,x 2=-3-√17. (2)化简得,x 2+5x+5=0,∴a=1,b=5,c=5, ∴b 2-4ac=5>0,∴x=-5±√52,∴x 1=-5+√52,x 2=-5-√52. 【例2】 探究答案:1.一元二次方程有实数根 2.相等 解:原方程可化为2x 2+2√2x+1=0,∵a=2,b=2√2,c=1, ∴b 2-4ac=(2√2)2-4×2×1=0, ∴x=-2√2±√02×2=-√22. ∴x 1=x 2=-√22.变式训练2-1:解:(1)b 2-4ac=(-2)2-4×1×1=4-4=0.∴此方程有两个相等的实数根.(2)b 2-4ac=72-4×(-1)×6=49+24=73>0. ∴此方程有两个不相等的实数根. 变式训练2-2:C课堂训练1.D2.C3.24.解:(1)b 2-4ac=(-4)2-4×2×(-1)=16+8=24>0.∴x=-b±√b 2-4ac 2a =4±√242×2=4±2√64=2±√62.∴x 1=2+√62,x 2=2−√62. (2)整理,得4x 2+12x+9=0,所以a=4,b=12,c=9.因为b 2-4ac=122-4×4×9=0, 所以方程有两个相等的实数根,所以x=-b±√b 2-4ac 2a=-12±√02×4=-128=-32. ∴x 1=x 2=-32.课后提升1.C2.A3.D4.D5.-1+√32,-1-√326.x 1=1,x 2=17.25或168.解:整理得x 2+2x-1=0, b 2-4ac=22-4×1×(-1)=8,x=-2±√82×1=-2±2√22=-1±√2,∴x 1=-1+√2,x 2=-1-√2.9.解:(1)x 2-4x-1=0,∵a=1,b=-4,c=-1,∴Δ=(-4)2-4×1×(-1)=20,∴x=4±√20=2±√5, ∴x 1=2+√5,x 2=2-√5.(2)∵3x (x-3)=2(x-1)(x+1),∴x 2-9x+2=0, ∵a=1,b=-9,c=2,∴Δ=(-9)2-4×1×2=73>0,∴x=-b±√b 2-4ac =9±√73, ∴x 1=9+√732,x 2=9−√732. 10.解:由题意得,m 2+1=2, 且m+1≠0, 解得m=1.所以原方程为2x 2-2x-1=0, 这里a=2,b=-2,c=-1.b 2-4ac=(-2)2-4×2×(-1)=12.∴x=2±2√34=1±√32, ∴x 1=1+√32,x 2=1−√32.2.2.3 因式分解法课前预习 1.(2)(a-b )(a+b ) (a ±b )2 2.一次因式 0 0课堂探究【例1】 探究答案:x [(x+2)-4] 3(x-5)2-2(5-x )=0 (x-5)(3x-13)解:(1)x (x+2)-4x=0,x [(x+2)-4]=0, 即x (x-2)=0, ∴x=0或x-2=0, ∴x 1=0,x 2=2.(2)3(x-5)2=2(5-x ), 3(x-5)2-2(5-x )=0, (x-5)[3(x-5)+2]=0, ∴x-5=0或3x-15+2=0,∴x 1=5,x 2=133.变式训练1-1:C变式训练1-2:解:(1)(3x-4)2=3(3x-4), ∴(3x-4)(3x-7)=0,∴x 1=43,x 2=73.(2)3(x+2)2=(x+2)(x-2), (x+2)[3(x+2)-(x-2)]=0, ∴(x+2)(2x+8)=0, ∴x 1=-2,x 2=-4.【例2】 探究答案:直接开平方法 配方法 公式法 因式分解法 解:(1)公式法:∵a=1,b=-3,c=1, ∴b 2-4ac=(-3)2-4×1×1=5>0,∴x=-(-3)±√52×1,∴x 1=3+√52,x 2=3−√52. (2)因式分解法:原方程可化为x (x-3)=0,∴x=0或x-3=0 ∴x 1=0,x 2=3.(3)配方法:配方,得x 2-2x+1=4+1, 即(x-1)2=5,∴x-1=±√5, ∴x 1=1+√5,x 2=1-√5.变式训练2-1:C变式训练2-2:解:(1)用直接开平方法:原方程可化为 (x-3)2=4, ∴x-3=±2,∴x 1=5,x 2=1.(2)用配方法:移项,得x 2-4x=7. 配方,得x 2-4x+4=7+4, 即(x-2)2=11,∴x-2=±√11∴x-2=√11或x-2=-√11, ∴x 1=2+√11,x 2=2-√11.(3)用因式分解法:方程两边分别分解因式,得 (x-3)2=2(x-3)(x+3),移项,得(x-3)2-2(x-3)(x+3)=0. 方程左边分解因式,得 (x-3)[(x-3)-2(x+3)]=0, 即(x-3)(-x-9)=0, ∴x-3=0或-x-9=0. ∴x 1=3,x 2=-9.课堂训练1.C2.D3.74.-1或45.解:(1)∵a=3,b=1,c=-1,∴b 2-4ac=12-4×3×(-1)=13>0,∴x=-1±√132×3∴x 1=-1+√136,x 2=-1-√136. (2)移项,得(3x-2)2-4(3-x )2=0,因式分解,得[(3x-2)+2(3-x )][(3x-2)-2(3-x )]=0, 即(x+4)(5x-8)=0, ∴x+4=0或5x-8=0,∴x 1=-4,x 2=85.(3)将原方程整理,得x 2+x=0, 因式分解,得x (x+1)=0, ∴x=0或x+1=0, ∴x 1=0,x 2=-1.课后提升1.A2.D3.B4.B5.B6.x 1=3,x 2=97.68.-19.解:(1)用求根公式法解得y 1=3,y 2=-8. (2)用分解因式法解得x 1=52,x 2=-1. (3)用求根公式法解得y 1=-2+√22,y 2=-2-√22.10.解:解方程x(x-7)-10(x-7)=0,得x1=7,x2=10.∵4<第三边长<10,∴x2=10(舍去).第三边长为7.这个三角形的周长为3+7+7=17.2.3 一元二次方程根的判别式课前预习1.a≠02.(1)> (2)= (3)<课堂探究【例1】探究答案:1.一般形式2.a、b、c b2-4ac解:(1)原方程可化为x2-6x+9=0,∵Δ=b2-4ac=(-6)2-4×1×9=0,∴原方程有两个相等的实数根.(2)原方程可化为x2+3x+1=0,∵Δ=b2-4ac=32-4×1×1=5>0,∴原方程有两个不相等的实数根.(3)原方程可化为3x2-2√6x+3=0.∵Δ=b2-4ac=(-2√6)2-4×3×3=-12<0,∴原方程无实数根.变式训练1-1:A变式训练1-2:B【例2】探究答案:1.≥解:由题意知:b2-4ac≥0,即42-8k≥0,解得k≤2.∴k的非负整数值为0,1,2.变式训练2-1:B变式训练2-2:解:∵a=2,b=t,c=2.∴Δ=t2-4×2×2=t2-16,令t2-16=0,解得t=±4,当t=4或t=-4时,原方程有两个相等的实数根.课堂训练1.D2.A3.D4.k<-15.解:(1)当m=3时,Δ=b2-4ac=22-4×1×3=-8<0,∴原方程没有实数根.(2)当m=-3时,x2+2x-3=0,x2+2x=3,x2+2x+1=3+1,(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3.课后提升1.D2.A3.C4.C5.D6.m>17.m<2且m≠18.6或12或109.解:由题意,得{ b 2-4ac =(−2√k +1)2-4(1-2k)(-1)>0 ①1−2k ≠0 ②k +1≥0 ③由①,得4(k+1)+4-8k>0,即-4k>-8,解得k<2.由②得,k ≠12,由③得,k ≥-1. ∴-1≤k<2且k ≠1.10.解:(1)Δ=b 2-4ac =4-4(2k-4) =20-8k. ∵方程有两个不等的实根, ∴20-8k>0,∴k<52.(2)∵k 为正整数, ∴0<k<52(且k 为整数),即k 为1或2,∴x=-1±√5−2k . ∵方程的根为整数,∴5-2k 为完全平方数.当k=1时,5-2k=3;当k=2时,5-2k=1. ∴k=2.*2.4 一元二次方程根与系数的关系课前预习-b a c a 课堂探究【例1】 探究答案:1.-1 2.2ab a+b ab解:因为方程x 2-x-1=0的两实根为a 、b.所以(1)a+b=1;(2)ab=-1;(3)a 2+b 2=(a+b )2-2ab=12-2×(-1)=3;(4)1a +1b =a+b ab=-1. 变式训练1-1:-2变式训练1-2:-658【例2】 探究答案:1.2(m+1) 2.>0解:∵方程有两个不相等的实数根, ∴Δ=b 2-4ac=[-2(m+1)]2-4×1×(m 2-3) =16+8m>0,解得m>-2;根据根与系数的关系可得x 1+x 2=2(m+1), ∵(x 1+x 2)2-(x 1+x 2)-12=0, ∴[2(m+1)]2-2(m+1)-12=0,解得m 1=1或m 2=-52. ∵m>-2,∴m 2=-52(舍去),∴m=1.变式训练2-1:1变式训练2-2:解:∵x 1+x 2=2,∴m=2. ∴原方程为x 2-2x-3=0,即(x-3)(x+1)=0,解得x 1=3,x 2=-1. 课堂训练1.B2.A3.-24.55.解:设x 1,x 2是方程的两个实数根,∴x 1+x 2=-32,x 1x 2=1−m 2. 又∵1x 1+1x 2=3,∴x 1+x 2x 1x 2=3, ∴-31−m=3, ∴-3=3-3m ,∴m=2,又∵当m=2时,原方程的Δ=17>0, ∴m 的值为2. 课后提升1.B2.B3.D4.B5.B6.-20147.68.20149.解:将-2代入原方程得:(-2)2-2+n=0,解得n=-2,因此原方程为x 2+x-2=0,解得x 1=-2,x 2=1, ∴m=1.10.解:(1)根据题意得m ≠1Δ=(-2m )2-4(m-1)(m+1)=4,∴x 1=2m+22(m -1)=m+1m -1, x 2=2m -22(m -1)=1. (2)由(1)知x 1=m+1m -1=1+2m -1 又∵方程的两个根都是正整数,∴2m -1是正整数, ∴m-1=1或2. ∴m=2或3.2.5 一元二次方程的应用第1课时增长率与利润问题课前预习1.a(1±x)2.(1)单件售价(2)单件利润课堂探究【例1】探究答案:(1)10000(1+x)10000(1+x)2(2)12100(1+x)解:(1)设捐款增长率为x,根据题意列方程得,10000(1+x)2=12100,解得x1=0.1,x2=-2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.变式训练1-1:A变式训练1-2:B3-2-x【例2】探究答案:200+40x0.1解:设应将每千克小型西瓜的售价降低x元.-24=200.根据题意,得(3-2-x)200+40x0.1解这个方程,得x1=0.2,x2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.变式训练2-1:2或6变式训练2-2:解:设每件童装应降价x元.根据题意得(40-x)(20+2x)=1200,解这个方程得x1=10,x2=20.因为在相同利润的条件下要扩大销售量,减少库存,所以应舍去x1=10.答:每件童装应降价20元.课堂训练1.B2.D3.B4.20%5.解:设每千克核桃应降价x元.×20)=2240根据题意得(60-x-40)(100+x2解这个方程得x1=4,x2=6.答:每千克核桃应降价4元或6元.课后提升1.C2.C3.D4.B5.10%6.30007.40(1+x)2=48.48.10%9.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9.答:每轮传染中平均一个人传染了7个人.(2)7×64=448.答:又有448人被传染.10.解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得x2+3x-1.75=0,解之,得x1=0.5, x2=-0.35(舍去)所以每年市政府投资的增长率为50%.=38(万平方米).(2)到2013年年底共建廉租房面积=9.5×82第2课时面积与动点问题课堂探究【例1】探究答案:1.(6-x)2x(6-x)·2x=82.12解:设经过x秒钟后,△PBQ的面积等于8 cm2.根据题意得1(6-x)·2x=8.解这个方程得x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8 cm2.变式训练1-1:解:(1)由勾股定理:AC=5 cm,设x秒钟后,P、Q之间的距离等于5 cm,这时PC=5-x,CQ=2x,则(5-x)2+(2x)2=52,即x2-2x=0.解这个方程,得x1=0,x2=2,其中x1=0不合题意,舍去.答:再运动2秒钟后,P、Q间的距离又等于5 cm.(2)设y秒钟时,可使△PCQ的面积等于4 cm2.1×(5-y)×2y=4,2即y2-5y+4=0,解得y1=1,y2=4.经检验,它们均符合题意.答:1秒钟或4秒钟时,△PCQ的面积等于4 cm2.变式训练1-2:解:设应移动x米.OA=√AB2-OB2=3米.则由题意得(3+x)2+(4-x)2=52.解这个方程得x1=1,x2=0(不合题意,舍去).答:应移动1米.【例2】探究答案:(100-2x)(50-2x)解:设正方形观光休息亭的边长为x米.依题意,有(100-2x)(50-2x)=3600.整理,得x2-75x+350=0.解得x1=5,x2=70.∵x=70>50,不合题意,舍去,∴x=5.答:矩形花园各角处的正方形观光休息亭的边长为5米.变式训练2-1:B变式训练2-2:解:设P 、Q 两块绿地周围的硬化路面的宽都为x 米,根据题意,得(40-2x )(60-3x )=60×40×14,解之,得x 1=10, x 2=30(不符合题意,舍去).答:两块绿地周围的硬化路面的宽都是10米. 课堂训练1.B2.C3.D4.15.解:设花边的宽为x 米,根据题意,得(2x+6)(2x+3)=40.解得x 1=1,x 2=-112.但x 2=-112不合题意,舍去.答:花边的宽为1米. 课后提升1.D2.C3.C4.B5.D6.97.24 458.10009.解:(1)设小货车原计划每辆每次运送帐篷x 顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得 2[8x+2(x+200)]=16800,解得x=800, x+200=800+200=1000.故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶.(2)根据题意,得2(1000-200m )1+12m +8(800-300)(1+m )=14400, 化简为m 2-23m+42=0,解得m 1=2,m 2=21.∵1000-200m 不能为负数,且12m 为整数,∴m 2=21(不符合实际,舍去),故m 的值为2.10.解:设x 秒后四边形APQB 的面积是△ABC 面积的23,在Rt △ABC 中,AB=10,AC=8,由勾股定理,得 BC 2=AB 2-AC 2=102-82=36, ∴BC=6.则12(8-2x )(6-x )=13×12×6×8,解得x 1=2,x 2=8(不合题意,舍去), ∴2秒后四边形APQB 的面积是△ABC 面积的23. 第3章 图形的相似3.1 比例线段 3.1.1 比例的基本性质 课前预习1.(1)比值 比值 (2)比例内项2.(1)bc课堂探究 【例1】 探究答案:1.3x 3y =2y 3yx y =23 2.7y=4x 7∶4解:(1)∵3x=2y ,∴3x 3y =2y 3y,即x y =23.(2)∵7=4, ∴7y=4x ,x y =74. 变式训练1-1:D变式训练1-2:4【例2】 探究答案:1.2解:∵AD AB =AE AC =DE BC =23, ∴AD+AE+DE AB+AC+BC =23, 即△ADE 的周长△ABC 的周长=23. 设△ADE 和△ABC 的周长分别为2x cm 和3x cm,则有3x-2x=15,得x=15. ∴△ABC 的周长为45 cm,△ADE 的周长为30 cm .变式训练2-1:D变式训练2-2:解:设x 3=y 5=z 7=k ,则x=3k ,y=5k ,z=7k , ∴x -y+z x+y -z =3k -5k+7k 3k+5k -7k =5k k=5. 课堂训练1.C2.A3.2∶3=4∶6(答案不唯一)4.135.解:因为m -n n =23, 所以3(m-n )=2n ,,. 化简得3m=5n ,所以m n =53,则3m+2n n =3m n +2=m n ×3+2=53×3+2=7.课后提升1.C2.C3.D4.C5.A6.52 727.3√38.2或-19.解:∵a ∶b ∶c=1∶2∶4,设a=k ,b=2k , c=4k ,则a+2b+3ca -b+c =k+4k+12kk -2k+4k =17k 3k =173.10.解:∵a b =c d =e f =23,∴2a 2b =-c -d =-5e-5f =23.∴2a -c -5e2b -d -5f =23.3.1.2 成比例线段课前预习1.m ∶n AB CD =m n2.a b =c d3.BC AC 黄金比 √5-12≈0.618课堂探究【例1】探究答案:1.(12-x ) x 12−x =64 2.DB AB =EC AC解:(1)设AD=x cm,则DB=(12-x )cm .则有x 12−x =64,解这个方程得x=7.2,所以AD=7.2 cm .(2)DB AB =12−7.212=25,EC AC =46+4=25,所以DB AB =EC AC ,所以线段DB 、AB 、EC 、AC 是成比例线段. 变式训练1-1:B变式训练1-2:解:利用比例线段的定义, ∵a=1 mm =0.1 cm,b=0.8 cm, c=0.02 cm,d=4 cm,∴d>b>a>c ,而d b =40.8=5,a c =0.10.02=5, ∴d b =a c ,∴d 、b 、a 、c 四条线段是成比例线段.【例2】 探究答案:1.AC AB =CB AC 2.3x+3=x 3 解:设CB=x ,∵点C 为线段AB 的黄金分割点, ∴AC AB =CB AC ,即3x+3=x 3,得9=x (x+3), 解得x 1=3√5-32,x 2=-3√5-32(舍去). 故CB 的长为3√5-32. 变式训练2-1:C变式训练2-2:解:因为点C 是AB 的黄金分割点, 所以当AC>BC 时,AC AB =√5-12. 又因为AB=10 cm,所以AC=√5-12×10=(5√5-5)(cm),当AC<BC 时,BC AB =√5-12, 所以BC=√5-12×10=(5√5-5)(cm),所以AC=AB-BC=10-(5√5-5)=(15-5√5)(cm), 所以AC 的长为(5√5-5)cm 或(15-5√5)cm . 课堂训练1.D2.45 353.6-2√54.=5.解:(1)a ∶b=c ∶d ,即a ∶0.2=0.5∶1,则a=0.2×0.5=0.1.(2)a ∶b=c ∶d ,即3∶7=c ∶21,则7c=21×3,得c=9. 课后提升1.B2.D3.C4.B5.B6.6.987.168.√5-12或3−√529.解:设相邻两个钉子之间的距离为1个单位长度, 则AD=2,BD=5,BE=5,CE=1,CF=4,AF=3.在直角三角形ABD中,AB=√AD2+BD2=√22+52=√29,在直角三角形BCE中,BC=√BE2+CE2=√52+12=√26,在直角三角形ACF中,AC=√CF2+AF2=√42+32=5,所以AB=√29,BC=√26.10.解:设每一份为k,由(a-c)∶(a+b)∶(c-b)=(-2)∶7∶1,得{a-c=−2k,a+b=7k,c-b=k,解得{a=3k,b=4k,c=5k,而(3k)2+(4k)2=(5k)2,即a2+b2=c2,所以△ABC是直角三角形.3.2 平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等(2)对应线段(3)成比例课堂探究【例1】探究答案:1.352.DE DF解:∵l1∥l2∥l3,∴AB AC =DE DF,∵AB BC =32,∴ABAC=35,∴DE DF =3 5 ,由DF=20 cm,得DE=35DF=12 cm,∴EF=DF-DE=8 cm.变式训练1-1:D变式训练1-2:12【例2】探究答案:1.AEAC 2.x-4x-4x-4x-3=4xD变式训练2-1:B变式训练2-2:A 课堂训练1.B2.A3.A4.55.解:∵DE ⊥AB ,CB ⊥AB , ∴DE ∥BC ,∴AD AB =AE AC ,即35=5AC, ∴AC=253.∴BC=√AC 2-AB 2=√(253) 2-52=203. 课后提升1.C2.C3.A4.D5.D6.97.68.149.解:∵DE ∥BC ,DF ∥AC , ∴四边形EDFC 为平行四边形, ∴DE=FC=5,又∵DF ∥AC ,∴AD BD =CF BF ,即48=5BF,得BF=10. 10.解:∵DE ∥BC ,∴AD AB =AE AC. 又∵EF ∥CD ,∴AF =AE , ∴AD =AF , ∴AD 2=AB ·AF=36, ∴AD=6 cm .3.3 相似图形课前预习 1.(1)对应相等 对应成比例 (2)∽ △ABC 相似于△A'B'C'(3)相等 成比例2.(1)对应角 成比例 (2)相等 等于相似比 课堂探究【例1】 探究答案:1.∠A' ∠B' ∠C'2.180°-∠A-∠B解:∵△ABC ∽△A'B'C', ∴∠B=∠B'=60°,在△ABC 中,∠C=180°-∠A-∠B=180°-50°-60°=70°. 变式训练1-1:50变式训练1-2:1∶2【例2】探究答案:(1)CD CB (2)77° 83° 解:因为四边形ABCD ∽四边形EFGH ,∴∠F=∠B=77°,∠G=∠C=83°,EF AB =GH CD =FG BC =418=29, ∴∠H=360°-(∠E+∠F+∠G )=83°, BC=FG ÷29=6×92=27, CD=GH ÷2=7×9=31.5.变式训练2-1:B变式训练2-2:解:由四边形ABCD 与四边形A'B'C'D'相似得,x 21=12y =1015, ∠A=∠A'=120°,∴x=21×1015=14, y=12÷1015=12×32=18,∠α=360°-(∠A+∠B+∠C )=80°.课堂训练1.C2.B3.6 1.54.9或255.解:因为梯形AEFD ∽梯形EBCF , 所以AD EF =EF BC =AE EB, 又因为AD=4,BC=9,所以EF 2=AD ·BC=4×9=36, 所以EF=6, 所以AE EB =AD EF =46=23. 课后提升1.B2.D3.D4.D5.D6.2 30°7.60° 140° 18.√5+129.解:∵四边形ABCD 与四边形EFGH 相似, ∴∠E=∠A=70°,∠F=∠B=80°. ∴∠G=360°-70°-80°-150°=60°.∵AB EF =AD EH, ∴AB=EF ·AD EH =5×86=203. ∵BC FG =ADEH,∴BC=FG ·AD EH =7×86=566=283. 10.解:∵△ABC ∽△APQ ,∴AB AP =BCPQ , 即4040+60=30PQ, 解得PQ=75.答:PQ 的长为75 cm .3.4 相似三角形的判定与性质3.4.1 相似三角形的判定第1课时 两角对应相等或平行判定相似课前预习 (1)相似 (2)相等课堂探究【例1】 探究答案:1.EDA 2.DFC 3.△EDA △DFC 解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,∴△BEF ∽△CDF ,△BEF ∽△AED , ∴△BEF ∽△CDF ∽△AED. 当△BEF ∽△CDF 时,相似比k 1=BE CD =13; 当△BEF ∽△AED 时,相似比k 2=BE AE =14; 当△CDF ∽△AED 时,相似比k 3=CD AE =34. 变式训练1-1:3变式训练1-2:1∶2【例2】 探究答案:1.∠DAE 2.∠D 解:△ABC ∽△ADE ,理由如下: ∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC , 即∠BAC=∠DAE ,又∵在△AOB 与△COD 中, ∠AOB=∠COD ,∠1=∠3, ∴∠B=∠D ,∴△ABC ∽△ADE. 变式训练2-1:C变式训练2-2:证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠ADF=∠CED ,∠B+∠C=180°, ∵∠AFE+∠AFD=180°,∠AFE=∠B , ∴∠AFD=∠C , ∴△ADF ∽△DEC.课堂训练1.D2.C3.A4.∠ADE=∠C (答案不唯一)5.解:(1)在△ABC 中, ∵∠A=90°,∠B=50°, ∴∠C=40°.∴∠A=∠A'=90°,∠C=∠C'=40°.∴△ABC ∽△A'B'C'(两角相等的两个三角形相似). (2)在△ABC 中, ∵∠A=∠B=∠C , ∴∠A=∠B=∠C=60°, ∴∠A=∠A',∠B=∠B',∴△ABC ∽△A'B'C'(两角相等的两个三角形相似).课后提升1.A2.D3.C4.D5.66.2.57.解:∵∠A=36°,AB=AC , ∴∠ABC=∠ACB=72°, ∵BD 平分∠ABC , ∴∠CBD=∠ABD=36°, ∠BDC=72°,∴AD=BD ,BC=BD , ∴△ABC ∽△BDC ,∴BD AB =CD BC ,即AD AC =CD AD, ∴AD 2=AC ·CD ,设AD=x ,则CD=1-x , ∴x 2=1×(1-x ), x 2+x-1=0, x=-1±√1+42=-1±√52,x 1=-1+√52,x 2=-1-√52(舍去), ∴AD=√5-12,∴AD 的长是√5-12.8.解:(1)△ABC ∽△FOA ,理由如下:在矩形ABCD 中,∠BAC+∠BCA=90°, ∵l 垂直平分AC ,∴∠OFC+∠BCA=90°, ∴∠BAC=∠OFC=∠OFA , 又∵∠ABC=∠FOA=90°, ∴△ABC ∽△FOA.(2)四边形AFCE 是菱形,理由如下: ∵AE ∥FC ,∴∠AEO=∠OFC ,∠EAO=∠OCF , ∴△AOE ∽△COF , ∵OC=OA ,∴OE=OF , 即AC 、EF 互相垂直平分, ∴四边形AFCE 是菱形.第2课时 两边成比例夹角相等或三边成比例判定相似课前预习 (1)成比例 夹角 (2)成比例课堂探究【例1】探究答案:1.45452.△DCA 解:因为AB CD =45,BC AC =45, 所以AB CD =BC AC, 又因为∠B=∠ACD , 所以△ABC ∽△DCA , 所以AB DC =AC AD, 所以AD=DC ·AC AB=152×56=254.变式训练1-1:B变式训练1-2:证明:∵四边形ABCD 是正方形, ∴AD=DC=BC ,∠D=∠C=90°,∵M 是CD 的中点,∴AD ∶DM=2∶1, ∵BP=3PC ,∴CM ∶PC=2∶1, 即AD DM =CMPC,且∠D=∠C , ∴△ADM ∽△MCP.【例2】探究答案:1.√5 √10 5 √2 2 √10 2.√10√10√10解:相似.理由如下:AB=√5,AC=√10,BC=5, DE=√2,DF=2,EF=√10, ∵AB DE =√102,AC DF =√102,BC EF =√102, 即AB DE =AC DF =BC EF, ∴△ABC ∽△DEF.变式训练2-1:A变式训练2-2:证明:∵D 、E 、F 分别为AB 、AC 、BC 的中点, ∴DE 、DF 、EF 分别为△ABC 的中位线,∴DE=12BC ,DF=12AC ,EF=12AB , ∴DE CB =DF CA =EF BA =12, ∴△DEF ∽△CBA.课堂训练1.A2.C3.B4.35.解:由题知AC=√2,BC=√12+32=√10,AB=4,DF=√22+22=2√2,EF=√22+62=2√10, ED=8,∴AC DF =BC EF =AB DE =12, ∴△ABC ∽△DEF.课后提升1.C2.C3.D4.C5.B6.20°7.(4,0)或(3,2)8.解:(1)△ABC ∽△EBD ,理由如下:∵BD ·AB=BE ·BC ,∴BD BC =BE AB, 又∵∠B 为公共角,∴△ABC ∽△EBD. (2)ED ⊥AB ,理由如下:由△ABC ∽△EBD 可得∠EDB=∠C , ∵∠C=90°,∴∠EDB=90°,即ED ⊥AB. 9.解:△A'B'C'∽△ABC ,理由如下:∵OA'OA =OC'OC=3,∠AOC=∠A'OC', ∴△AOC ∽△A'OC', ∴A'C'AC =OA'OA=3, 同理B'C'BC =3,A'B'AB=3, ∴A'C'AC =B'C'BC =A'B'AB, ∴△A'B'C'∽△ABC.3.4.2 相似三角形的性质课前预习1.相似比2.(1)相似比 相似比的平方 (2)相似比 相似比的平方课堂探究【例1】 探究答案:1.△ADE 2.DE 解:∵BC ∥DE ,∴∠ABC=∠ADE ,∠ACB=∠AED , ∴△ABC ∽△ADE ,所以MC NE =BC DE, 设DE 高为x m,则0.630=0.24x,x=12. 故旗杆大致高12 m .变式训练1-1:C 变式训练1-2:1∶2【例2】 探究答案:1.相似比的平方 2.916解:(1)∵△ABC ∽△ADE ,∴AB AD =AC AE, ∵AB=15,AC=9,BD=5, ∴AD=20,∴AE=AD ·AC AB =20×915=12. 即AE 的长为12. (2)∵△ABC ∽△ADE ,∴S△ABCS△ADE=AB 2AD2=916,∴S △ADE =16×279=48, ∴S 四边形BDEC =48-27=21.变式训练2-1:A变式训练2-2:D课堂训练1.D2.D3.1∶24.1∶2 1∶45.解:因为DE ∥BC ,所以∠ADE=∠ABC ,∠AED=∠ACB , 所以△ADE ∽△ABC. 又DE BC =13,△ADE 的周长是10 cm, 所以△ABC 的周长是30 cm,所以梯形BCED 的周长为30-8+2=24(cm).课后提升1.D2.A3.B4.A5.1∶96.37.60378.8 9.(1)证明:∵E 是AB 的中点, ∴AB=2EB ,∵AB=2CD ,∴CD=EB , 又∵AB ∥CD ,∴四边形CBED 是平行四边形, ∴DE ∥CB ,∴∠EDM=∠MBF ,∠DEM=∠MFB , ∴△EDM ∽△FBM. (2)解:∵△EDM ∽△FBM ,∴DM BM =DEBF,。

九年级上册数学学法大视野

九年级上册数学学法大视野

九年级上册数学学法大视野一、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式为ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法。

- 对于方程x^2=k(k≥0),解得x=±√(k)。

- 例如,方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

- 配方法。

- 步骤:先将方程化为x^2+bx = c的形式,然后在等式两边加上((b)/(2))^2,将左边配成完全平方式(x+(b)/(2))^2,再进行求解。

- 例如,解方程x^2+6x - 7 = 0。

- 移项得x^2+6x=7。

- 配方:x^2+6x + 9 = 7+9,即(x + 3)^2=16。

- 解得x=-3±4,即x = 1或x=-7。

- 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

- 例如,方程2x^2-5x + 1 = 0,其中a = 2,b=-5,c = 1。

- 先计算Δ=b^2-4ac=(-5)^2-4×2×1 = 25 - 8 = 17。

- 代入求根公式得x=(5±√(17))/(4)。

- 因式分解法。

- 把方程化为一边是零,另一边是两个一次因式积的形式,然后使每个因式分别为零,从而求出方程的解。

- 例如,方程x^2-3x + 2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2。

3. 根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),Δ=b^2-4ac。

- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

湘教版九年级上册数学第2章 一元二次方程含答案

湘教版九年级上册数学第2章 一元二次方程含答案

湘教版九年级上册数学第2章一元二次方程含答案一、单选题(共15题,共计45分)1、某公司把500万元资金投入新产品的生产,第一年获得一定的利润,在不抽掉资金和利润的前提下,继续生产,第二年的利润率提高8%,若第二年的利润达到112万元,设第一年的利润率为x,则方程可以列为()A.500(1+x)(1+x+8%)=112B.500(1+x)(1+x+8%)=112+500 C.500(1+x)•8%=112 D.500(1+x)(x+8%)=1122、若n()是关于x的方程的根,则m+n的值为()A.-2B.-1C.1D.23、下列方程没有实数根的是()A.x 2+4x=10B.3x 2+8x﹣3=0C.x 2﹣2x+3=0D.(x﹣2)(x ﹣3)=124、下列给出的方程:①(x+1)(x﹣1)﹣x2=0;②x2+1=0;③y2﹣2y﹣1=0;④x2﹣1= .其中是一元二次方程的是()A.①②③B.②③④C.①②④D.②③5、用配方法解方程,配方后的方程是()A. B. C. D.6、若方程x2+9x-a=0有两个相等的实数根,则()A. B. C. D.7、一元二次方程2x2-x-3=0的而次项系数、常数项分别是()A.2,1,3B.2,1,﹣3C.2,﹣1,3D.2,﹣1,﹣38、方程的二次项系数、一次项系数、常数项分别是()A.2,-3,1B.2,3,-1C.2,3,1D.2,-3,-19、下列各方程中,一定是关于x的一元二次方程的是()A.2x 2+3=2x(5+x)B.ax 2+c=0C.(a+1)x 2+6x+1=0D.(a 2+1)x 2﹣3x+1=010、若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=()A.3B.4C.5D.611、某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务,那么改进操作方法后,每天生产的产品件数为()A.55B.60C.50D.6512、若α、β是一元二次方程x2+2x﹣6=0的两个不相等的根,则α2﹣2β的值是()A.10B.16C.﹣2D.﹣1013、已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0 的两个不相等的实数根,且满足= -1,则m的值是().A.3或 -1B.3C.-1D.-3 或 114、已知−1是关于x的方程x2+4x−m=0的一个根,则这个方程的另一个根是( )A.-3B.-2C.-1D.315、已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C.2或3 D. 或二、填空题(共10题,共计30分)16、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为________17、已知一元二次方程x2﹣7x+10=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为________18、当________时,代数式比代数式的值大2.19、一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为________.20、一元二次方程2x2+ax+2=0的一个根是x=2,则它的另一个根是________.21、m是方程x2-6x-5=0的一个根,则代数式11+6m-m2的值是________.22、已知是方程的根,求的值为________.23、一元二次方程的根是________.24、已知实数m是关于x的方程-3x-1=0的一根,则代数式2-6m+2值为________.25、已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,则这个直角三角形的斜边长是________。

学法大视野·数学·九年级上册·答案

学法大视野·数学·九年级上册·答案

课时参考答案(课前预习、课堂探究、课堂训练、课后提升) 第1章 反比例函数反比例函数 课前预习=k x≠ 零 课堂探究【例1】 探究答案:-1 k ≠0 B变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x 与y ,而要看它能否化为y=k x (k 为常数,k ≠0)的形式. 所以(2)是反比例函数,其中k=-6;(3)是反比例函数, 其中k=-3.变式训练1-2:解:(1)由三角形的面积公式,得12xy=36,于是y=72x .所以,y 是x 的反比例函数.(2)由圆锥的体积公式,得13xy=60,于是y=180x . 所以y 是x 的反比例函数.【例2】 探究答案:=k x (k ≠0) 2.(√2,-√2)解:设反比例函数的解析式为y=k x (k ≠0),因为图象过点(√2,-√2),将x=√2,y=-√2代入,得-√2=√2,解得k=-2. 因此,这个反比例函数的解析式为y=-2x ,将x=-6,y=13代入,等式成立. 所以函数图象经过-6,13.变式训练2-1:B变式训练2-2:解:(1)设y 1=k 1x ,y 2=k 2x (k 1,k 2为常数,且k 1≠0,k 2≠0),则y=k 1x+k 2x. ∵x=1,y=4;x=2,y=5,∴{k 1+k 2=4,2k 1+k 22=5.解得{k 1=2,k 2=2.∴y 与x 的函数表达式为y=2x+2x .(2)当x=4时,y=2×4+24=812. 课堂训练5.解:设大约需要工人y 个,每人每天生产纪念品x 个.∴xy=100,即y=100x (x>0) ∵5≤x ≤8,∴1008≤y ≤1005, 即1212≤y ≤20,∵y 是整数,∴大约需工人13至20人. 课后提升9.解:(1)∵y 是x 的正比例函数, ∴m 2-3=1, m 2=4, m=±2. ∵m=2时,m-2=0, ∴舍去. ∴m=-2. (2)∵y 是x 的反比例函数, ∴m 2-3=-1, m 2=2,m=±√2.10.解:(1)由S=12xy=30,得y=60x, x 的取值范围是x>0.(2)由y=60x可知,y 是x 的反比例函数,系数为60. 反比例函数的图象与性质第1课时 反比例函数的图象课前预习3.(1)一、三 (2)二、四课堂探究 【例1】 探究答案:第一、三象限 > 解:(1)∵这个反比例函数图象的一支分布在第一象限, ∴m -5>0,解得m>5.(2)∵点A (2,n )在正比例函数y=2x 的图象上, ∴n=2×2=4,则A 点的坐标为(2,4).又∵点A 在反比例函数y=m -5x的图象上, ∴4=m -52,即m-5=8. ∴反比例函数的解析式为y=8x .变式训练1-1:C变式训练1-2:-52【例2】 探究答案:1.(1,5) 2.{y =k x ,y =3x +m解:(1)∵点(1,5)在反比例函数y=k x的图象上, ∴5=k 1,即k=5,∴反比例函数的关系式为y=5x .又∵点(1,5)在一次函数y=3x+m 的图象上, ∴5=3+m , ∴m=2. ∴一次函数的关系式为y=3x+2. (2)由题意可得{y =5x ,y =3x +2,解得{x 1=1,y 1=5或{x 2=-53,y 2=-3. ∴这两个函数图象的另一个交点的坐标为-53,-3.变式训练2-1:A 变式训练2-2:解:(1)将A (-1,a )代入y=-x+2中, 得a=-(-1)+2,解得a=3.(2)由(1)得,A (-1,3),将A (-1,3)代入y=k x中,得到3=k -1,即k=-3,即反比例函数的表达式为y=-3x .(3)如图:过A 点作AD ⊥x 轴于D , ∵A (-1,3),∴AD=3, 在直线y=-x+2中,令y=0,得x=2, ∴B (2,0),即OB=2, ∴△AOB 的面积 S=12×OB ×AD=12×2×3=3. 课堂训练>15.解:(1)∵反比例函数y=k x与一次函数y=x+b 的图象,都经过点A (1,2), ∴将x=1,y=2代入反比例函数解析式得, k=1×2=2, 将x=1,y=2代入一次函数解析式得, b=2-1=1,∴反比例函数的解析式为y=2x ,一次函数的解析式为y=x+1. (2)对于一次函数y=x+1, 令y=0,可得x=-1; 令x=0,可得y=1. ∴一次函数图象与x 轴,y 轴的交点坐标分别为(-1,0),(0,1). 课后提升8.解:m 2=(-4)×(-9)=36,∴m=±6.∵反比例函数y=m x的图象位于第一、三象限,∴m>0,∴m=6.9.解:(1)∵y=m -5x 的一支在第一象限内,∴ m-5>0. ∴m>5. 对直线y=kx+k 来说,令y=0,得kx+k=0,即k (x+1)=0. ∵k ≠0,∴x+1=0,即x=-1. ∴点A 的坐标为(-1,0). (2)过点M 作MC ⊥AB 于点C , ∵点A 的坐标为(-1,0),点B 的坐标为(3,0), ∴AB=4,AO=1.∵S △ABM =12×AB ×MC=12×4×MC=8, ∴MC=4. 又AM=5,∴AC=3, 又OA=1,∴OC=2.∴点M 的坐标为(2,4).把M (2,4)代入y=m -5x , 得4=m -52,则m=13,∴y=8x. 第2课时 反比例函数的性质 课前预习1.在每一象限内 减小 在每一象限内 增大 =±x 坐标原点课堂探究 【例1】 探究答案:1.一、三 >0 2.减小 > 解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2.(2)把点(3,1)代入y=2n -4x,得2n-4=3, 解得n=72.(3)因为在每个象限内,y 随x 的增大而减小,所以由a 1<a 2,得b 1>b 2. 变式训练1-1: A 变式训练1-2:<【例2】 探究答案:|k| |k|2 解:设点A 的坐标为a ,2a ,则点B 的坐标为-a ,-2a,∵BC ∥x 轴,AC ∥y 轴,∴AC ⊥BC ,又由题意可得BC=2a ,AC=4a,S △ABC =12BC ·AC=12·2a ·4a=4.变式训练2-1:1变式训练2-2:解:设A 的坐标是(m ,n ),则n=k ,即k=mn , ∵OB=-m ,AB=n ,S 长方形ABOC =OB ·AB=(-m )n=-mn=3,∴mn=-3,∴k=-3,则反比例函数的解析式是y=-3. 课堂训练5.解:设一次函数的解析式为y=kx+b (k ≠0).∵点A 是直线与反比例函数y=2x 的交点,∴把A (1,a )代入y=2x ,得a=2.∴A (1,2).把A (1,2)和C (0,3)代入y=kx+b ,得{k +b =2,b =3. 解得k=-1,b=3.所以一次函数的解析式为:y=-x+3. 课后提升<-2或0<x<19.解:(1)图象的另一支在第三象限, ∵图象在一、三象限,∴5-2m>0,∴m<52.(2)b 1<b 2.理由如下: ∵m<52,∴m -4<m-3<0,∴b 1<b 2. 反比例函数的应用课堂探究【例1】 探究答案:1.反比例 v=P 2.减小解:(1)设反比例函数解析式为v=P F ,把(3000,20)代入上式,得20=P 3000,P=3000×20=60000, ∴v=60000F. (2)当F=1200时,v=600001200=50(米/秒)=180(千米/时),即当它所受的牵引力为1200牛时,汽车的速度为180千米/时.(3)由v=60000F≤30,得F ≥2000. 所以,若限定汽车的速度不超过30米/秒,则F 应不小于2000牛. 变式训练1-1:C 变式训练1-2: 【例2】 探究答案: -2 2.图象解:(1)∵双曲线y=k 2x经过点A (1,2),∴k 2=2. ∴双曲线的解析式为y=2x .∵点B (m ,-1)在双曲线y=2x 上,∴m=-2,则B (-2,-1). 由点A (1,2),B (-2,-1)在直线y=k 1x+b 上,得{k 1+b =2,-2k 1+b =-1,解得{k 1=1,b =1.∴直线的解析式为y=x+1. (2)y 2<y 1<y 3. (3)x>1或-2<x<0. 变式训练2-1:C变式训练2-2:解:(1)直线y=12x+b 经过第一、二、三象限,与y 轴交于点B , ∴OB=b , ∵点A (2,t ),△AOB 的面积等于1.∴12×2×b=1,可得b=1,即直线为y=12x+1.(2)由点A (2,t )在直线y=12x+1上,可得t=2,即点A 坐标为(2,2),反比例函数y=k x (k 是常量,k ≠0)的图象经过点A ,可得k=4,所求反比例函数解析式为y=4x . 课堂训练4.(1,-2)5.解:(1)将A (2,4)代入反比例函数解析式得m=8,∴反比例函数解析式为y 2=8x,将B (-4,n )代入反比例函数解析式得n=-2, 即B (-4,-2), 将A 与B 坐标代入一次函数解析式得,{2k +b =4,-4k +b =-2,解得{k =1,b =2.则一次函数解析式为y 1=x+2. (2)联立两函数解析式得{y =x +2,y =8x ,解得{x =2,y =4或{x =-4,y =-2,则y 1=y 2时,x 的值为2或-4. (3)利用题图象得,y 1>y 2时, x 的取值范围为-4<x<0或x>2. 课后提升<0或1<x<4 7.(3,2)9.解:(1)∵反比例函数y=k x的图象过B (4,-2)点, ∴k=4×(-2)=-8,∴反比例函数的解析式为y=-8x.∵反比例函数y=-8x 的图象过点A (-2,m ),∴m=-8-2=4,即A (-2,4). ∵一次函数y=ax+b 的图象过A (-2,4),B (4,-2)两点, ∴{-2a +b =4,4a +b =-2,解得{a =-1,b =2. ∴一次函数的解析式为y=-x+2. (2)∵直线AB :y=-x+2交x 轴于点C , ∴C (2,0). ∵AD ⊥x 轴于D ,A (-2,4), ∴CD=2-(-2)=4,AD=4,∴S △ADC =12·CD ·AD=12×4×4=8.10.解:(1)把A (m ,2)代入反比例函数解析式y=2x 得2=2m ,所以m=1. ∴A (1,2). (2)把A (1,2)代入正比例函数解析式y=kx 得2=k ,所以k=2,因此正比例函数的解析式为y=2x. (3)因为正比例函数的解析式为y=2x ,当x=2时,y ≠3,所以点B (2,3)不在正比例函数图象上. 第2章 一元二次方程一元二次方程课前预习1.一个 2 整式 3.相等课堂探究 【例1】 探究答案: =2 2.≠0 解:根据题意,得m 2-2=2,且m-2≠0. 解得m=±2,且m ≠2.所以m=-2. 则m 2+2m-4=(-2)2+2×(-2)-4=-4. 变式训练1-1:C变式训练1-2:≠±1 =12【例2】 探究答案:1.移项 合并同类项 2.符号 0 解:(1)去括号,得 4t 2+12t+9-2(t 2-10t+25)=-41, 去括号、移项、合并得2t 2+32t=0, 所以二次项系数、一次项系数和常数项分别为2,32,0.(2)去括号,得12x 2-x+12=3x+13,移项、合并,得12x 2-4x+16=0,所以二次项系数、一次项系数和常数项分别为12,-4,16.变式训练2-1:B 变式训练2-2:解:{m 2-2=2,m +2≠0,?解得m=±2且m ≠-2. ∴m=2. 【例3】 探究答案:1.根 2.≠0 解:根据题意,得(m-2)×12+(m 2-3)×1-m+1=0, 即m 2-4=0,故m 2=4, 解得m=2或m=-2. ∵方程(m-2)x 2+(m 2-3)x-m+1=0是关于x 的一元二次方程, ∴m -2≠0,即m ≠2.故m=-2. 变式训练3-1:1 变式训练3-2:解:把x=0代入方程得a 2-1=0, ∴a=±1, ∵a -1≠0,∴a ≠1, ∴a=-1. 课堂训练5.解:去括号,得9x 2+12x+4=4x 2-24x+36. 移项、合并同类项得,5x 2+36x-32=0. ∴它的二次项为5x 2 二次项系数为5, 一次项为36x , 一次项系数为36,常数项为-32. 课后提升(x+5)=300 x 2+5x-300=0 1 5 -300 8.≠1 =19.解:(1)去括号,得x 2-4=3x 2+2x , 移项,得-2x 2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4. (2)去括号,移项合并,得(1-2a )x 2-2ax=0,二次项系数为1-2a ,一次项系数为-2a ,常数项为0. 10.解:小明的话有道理. 理由:若方程为一元二次方程,则m+1=2,m=1. 而m=1时,m 2+m-2=0, 所以此方程不可能为一元二次方程.一元二次方程的解法配方法 第1课时 用配方法解简单的一元二次方程 课前预习1.(1)平方根2.(1)a 2±2ab+b 2 (2)完全平方式课堂探究 【例1】 探究答案:-a ±√b 没有解:移项,得2(x+1)2=92,两边同时除以2,得(x+1)2=9, ∴x+1=±32,∴x 1=-1+32=12,x 2=-1-32=-52.变式训练1-1:m ≥7 变式训练1-2:解:(1)移项,得(2x-1)2=25, 开平方得2x-1=±5, ∴2x-1=5或2x-1=-5, 解这两个方程得:x 1=3,x 2=-2. (2)两边同除以3,得(x-2)2=4, 开平方得:x-2=±2, ∴x -2=2或x-2=-2. 解这两个方程,得x 1=4,x 2=0. 【例2】 探究答案:一次项系数一半的平方解:移项,得x 2-12x=12,配方,得x 2-12x+(14)2=916,(x -14)2=916, ∴x -14=34或x-14=-34,∴x 1=1,x 2=-12.变式训练2-1:±43变式训练2-2:解:移项,得x 2-2x=2,配方,得(x-1)2=3,解得x=1±√3.∴x 1=1+√3,x 2=1-√3.课堂训练3.±324.±85.解:(1)移项得x 2-2x=1,配方,得x 2-2x+1=2,即(x-1)2=2,开方,得x-1=±√2,则x 1=1+√2,x 2=1-√2.(2)移项,得x 2-4x=-1, 配方,得x 2-4x+4=-1+4,即(x-2)2=3,开方,得x-2=±√3, ∴原方程的解是x 1=2+√3,x 2=2-√3.课后提升cm 28.解:(1)直接开平方得,x-1=±√3,即x-1=√3或x-1=-√3,∴x 1=1+√3,x 2=1-√3.(2)配方,得x 2-2x+1=4+1,即(x-1)2=5.∴x -1=±√5,即x-1=√5或x-1=-√5∴x 1=1+√5,x 2=1-√5.(3)方程两边都除以2,得x 2-32=-52x ,移项,得x 2+52x=32.配方,得x 2+52x+542=32+542, 即x+542=4916. 开平方得,x+54=±74,∴x 1=12,x 2=-3.9.解:用配方法解方程a 2-10a+21=0,得a 1=3,a 2=7. 当a=3时,3、3、7不能构成三角形; 当a=7时,三角形周长为3+7+7=17. 10.解:移项得x 2+px=-q ,配方得x 2+px+p22=-q+p22,即x+p 22=p 2-4q 4. ∵p 2≥4q , ∴p 2-4q ≥0,∴x+p 2=±√p 2-4q 2. ∴x 1=-p+√p 2-4q2,x 2=-p -√p 2-4q2.第2课时 用配方法解复杂的一元二次方程课前预习 (1)1 (2)二次项和一次项 常数项 (3)一次项系数一半的平方课堂探究【例1】 探究答案: 2.完全平方式解:两边同时除以2,得x 2-32x+12=0,移项,得x 2-32x=-12,配方,得x 2-32x+(-34)2=-12+(-34)2, 即(x -34)2=116, 两边开平方,得x-34=±14,x-34=14或x-34=-14, ∴原方程的解为x 1=1,x 2=12.变式训练1-1:D 变式训练1-2:解:(1)二次项系数化为1,得x 2-16x-2=0,移项,得x 2-16x=2,配方,得x 2-16x+1144=2+1144, 即x-1122=289144, ∴x -112=±1712,∴x 1=32,x 2=-43.(2)二次项系数化为1,得x 2-12x-12=0.移项,得x 2-12x=12. 配方得x 2-12x+142=12+142,即x-142=916, ∴x -14=±34,∴x 1=1,x 2=-12.【例2】 探究答案: 2.减去 解:2x 2-4x+5=2(x 2-2x )+5 =2(x 2-2x+12-12)+5 =2(x-1)2+3 ∵2(x-1)2≥0, ∴2(x-1)2+3>0, ∴代数式2x 2-4x+5的值总是一个正数.变式训练2-1:13 变式训练2-2:解:x 2-4x+5=x 2-4x+22-22+5 =(x-2)2+1. ∵(x-2)2≥0,且当x=2时值为0, ∴当x=2时, 代数式x 2-4x+5的值最小,最小值为1. 课堂训练=-2,x 2=12或-7 或3 6.解:由题意得2x 2-x=x+6,∴2x 2-2x=6, ∴x 2-x=3,∴x 2-x+14=3+14, ∴x-122=134,∴x -12=±√132, ∴x 1=1+√132,x 2=1-√132. ∴x=1+√132或1-√132时,整式2x 2-x 与x+6的值相等. 课后提升=1+√3,x 2=1-√3±2√29.解:去括号,得4x 2-4x+1=3x 2+2x-7, 移项,得x 2-6x=-8,配方,得(x-3)2=1, ∴x -3=±1,∴x 1=2,x 2=4. 10.解:由题意,得2x 2+x-2+(x 2+4x )=0, 化简,得3x 2+5x-2=0.系数化为1,得x 2+53x=23, 配方,得x+562=4936,∴x+56=±76, ∴x 1=-2,x 2=13.公式法课前预习=-b±√b 2-4ac2a (b 2-4ac ≥0)2.求根公式 课堂探究【例1】 探究答案:1.一般形式 、b 、c 解:原方程可化为x 2+2x-1=0, ∵a=1,b=2,c=-1. b 2-4ac=22-4×1×(-1)=8>0,∴x=-2±√82×1=-2±2√22=-1±√2. ∴x 1=-1+√2,x 2=-1-√2.变式训练1-1:D 变式训练1-2:解:(1)移项,得2x 2+3x-1=0, ∵a=2,b=3,c=-1,∴b 2-4ac=17>0,∴x=-3±√174, ∴x 1=-3+√174,x 2=-3-√174. (2)化简得,x 2+5x+5=0, ∴a=1,b=5,c=5, ∴b 2-4ac=5>0,∴x=-5±√5,∴x 1=-5+√52,x 2=-5-√52. 【例2】 探究答案:1.一元二次方程有实数根 2.相等 解:原方程可化为2x 2+2√2x+1=0,∵a=2,b=2√2,c=1,∴b 2-4ac=(2√2)2-4×2×1=0,∴x=-2√2±√02×2=-√22. ∴x 1=x 2=-√22. 变式训练2-1:解:(1)b 2-4ac=(-2)2-4×1×1=4-4=0. ∴此方程有两个相等的实数根. (2)b 2-4ac=72-4×(-1)×6=49+24=73>0. ∴此方程有两个不相等的实数根. 变式训练2-2:C 课堂训练4.解:(1)b 2-4ac=(-4)2-4×2×(-1)=16+8=24>0.∴x=-b±√b 2-4ac 2a =4±√242×2=4±2√64=2±√62. ∴x 1=2+√62,x 2=2-√62. (2)整理,得4x 2+12x+9=0, 所以a=4,b=12,c=9. 因为b 2-4ac=122-4×4×9=0, 所以方程有两个相等的实数根,所以x=-b±√b 2-4ac 2a =-12±√02×4=-128=-32. ∴x 1=x 2=-32.课后提升5.-1+√32,-1-√32=1,x 2=12或16 8.解:整理得x 2+2x-1=0, b 2-4ac=22-4×1×(-1)=8,x=-2±√82×1=-2±2√22=-1±√2,∴x 1=-1+√2,x 2=-1-√2.9.解:(1)x 2-4x-1=0, ∵a=1,b=-4,c=-1, ∴Δ=(-4)2-4×1×(-1)=20,∴x=4±√202×1=2±√5,∴x 1=2+√5,x 2=2-√5.(2)∵3x (x-3)=2(x-1)(x+1), ∴x 2-9x+2=0, ∵a=1,b=-9,c=2, ∴Δ=(-9)2-4×1×2=73>0,∴x=-b±√b 2-4ac =9±√73,∴x 1=9+√732,x 2=9-√732.10.解:由题意得,m 2+1=2, 且m+1≠0, 解得m=1. 所以原方程为2x 2-2x-1=0, 这里a=2,b=-2,c=-1. b 2-4ac=(-2)2-4×2×(-1)=12.∴x=2±2√34=1±√32,∴x 1=1+√32,x 2=1-√32.因式分解法 课前预习1.(2)(a-b )(a+b ) (a ±b )22.一次因式 0 0课堂探究【例1】 探究答案:x [(x+2)-4] 3(x-5)2-2(5-x )=0(x-5)(3x-13) 解:(1)x (x+2)-4x=0,x [(x+2)-4]=0, 即x (x-2)=0, ∴x=0或x-2=0, ∴x 1=0,x 2=2. (2)3(x-5)2=2(5-x ), 3(x-5)2-2(5-x )=0, (x-5)[3(x-5)+2]=0, ∴x -5=0或3x-15+2=0,∴x 1=5,x 2=133.变式训练1-1:C 变式训练1-2:解:(1)(3x-4)2=3(3x-4), ∴(3x-4)(3x-7)=0, ∴x 1=43,x 2=73.(2)3(x+2)2=(x+2)(x-2), (x+2)[3(x+2)-(x-2)]=0, ∴(x+2)(2x+8)=0, ∴x 1=-2,x 2=-4.【例2】 探究答案:直接开平方法 配方法 公式法 因式分解法 解:(1)公式法:∵a=1,b=-3,c=1, ∴b 2-4ac=(-3)2-4×1×1=5>0, ∴x=-(-3)±√52×1, ∴x 1=3+√52,x 2=3-√52. (2)因式分解法:原方程可化为x (x-3)=0, ∴x=0或x-3=0 ∴x 1=0,x 2=3. (3)配方法:配方,得x 2-2x+1=4+1, 即(x-1)2=5,∴x -1=±√5,∴x 1=1+√5,x 2=1-√5.变式训练2-1:C 变式训练2-2:解:(1)用直接开平方法:原方程可化为 (x-3)2=4, ∴x -3=±2, ∴x 1=5,x 2=1. (2)用配方法:移项,得x 2-4x=7. 配方,得x 2-4x+4=7+4, 即(x-2)2=11,∴x -2=±√11∴x -2=√11或x-2=-√11,∴x 1=2+√11,x 2=2-√11.(3)用因式分解法:方程两边分别分解因式,得 (x-3)2=2(x-3)(x+3), 移项,得(x-3)2-2(x-3)(x+3)=0. 方程左边分解因式,得(x-3)[(x-3)-2(x+3)]=0, 即(x-3)(-x-9)=0, ∴x -3=0或-x-9=0. ∴x 1=3,x 2=-9. 课堂训练或45.解:(1)∵a=3,b=1,c=-1, ∴b 2-4ac=12-4×3×(-1)=13>0,∴x=-1±√132×3∴x 1=-1+√136,x 2=-1-√136. (2)移项,得(3x-2)2-4(3-x )2=0, 因式分解, 得[(3x-2)+2(3-x )][(3x-2)-2(3-x )]=0, 即(x+4)(5x-8)=0, ∴x+4=0或5x-8=0,∴x 1=-4,x 2=85.(3)将原方程整理,得x 2+x=0, 因式分解,得x (x+1)=0, ∴x=0或x+1=0, ∴x 1=0,x 2=-1. 课后提升=3,x 2=9 9.解:(1)用求根公式法解得y 1=3,y 2=-8.(2)用分解因式法解得x 1=52,x 2=-1.(3)用求根公式法解得 y 1=-2+√22,y 2=-2-√22. 10.解:解方程x (x-7)-10(x-7)=0, 得x 1=7,x 2=10. ∵4<第三边长<10, ∴x 2=10(舍去).第三边长为7. 这个三角形的周长为3+7+7=17.一元二次方程根的判别式课前预习≠0 2.(1)> (2)= (3)<课堂探究 【例1】 探究答案:1.一般形式 、b 、c b 2-4ac 解:(1)原方程可化为x 2-6x+9=0, ∵Δ=b 2-4ac=(-6)2-4×1×9=0, ∴原方程有两个相等的实数根.(2)原方程可化为x2+3x+1=0,∵Δ=b2-4ac=32-4×1×1=5>0,∴原方程有两个不相等的实数根.(3)原方程可化为3x2-2√6x+3=0.∵Δ=b2-4ac=(-2√6)2-4×3×3=-12<0,∴原方程无实数根.变式训练1-1:A变式训练1-2:B【例2】探究答案:1.≥解:由题意知:b2-4ac≥0,即42-8k≥0,解得k≤2.∴k的非负整数值为0,1,2.变式训练2-1:B变式训练2-2:解:∵a=2,b=t,c=2.∴Δ=t2-4×2×2=t2-16,令t2-16=0,解得t=±4,当t=4或t=-4时,原方程有两个相等的实数根.课堂训练<-15.解:(1)当m=3时,Δ=b2-4ac=22-4×1×3=-8<0,∴原方程没有实数根.(2)当m=-3时,x2+2x-3=0,x2+2x=3,x2+2x+1=3+1,(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3.课后提升>1<2且m≠1或12或109.解:由题意,得{b2-4ac=(-2√k+1)2-4(1-2k)(-1)>0①1-2k≠0②k+1≥0③由①,得4(k+1)+4-8k>0,即-4k>-8,解得k<2.由②得,k≠12,由③得,k≥-1.∴-1≤k<2且k≠12. 10.解:(1)Δ=b2-4ac=4-4(2k-4)=20-8k.∵方程有两个不等的实根,∴20-8k>0,∴k<52.(2)∵k 为正整数, ∴0<k<52(且k 为整数),即k 为1或2,∴x=-1±√5-2k . ∵方程的根为整数,∴5-2k 为完全平方数. 当k=1时,5-2k=3;当k=2时,5-2k=1. ∴k=2. * 一元二次方程根与系数的关系课前预习-b a c a课堂探究【例1】 探究答案: a+b ab解:因为方程x 2-x-1=0的两实根为a 、b. 所以(1)a+b=1; (2)ab=-1; (3)a 2+b 2=(a+b )2-2ab=12-2×(-1)=3;(4)1a +1b =a+b ab=-1. 变式训练1-1:-2变式训练1-2:-658【例2】 探究答案:(m+1) 2.>0 解:∵方程有两个不相等的实数根, ∴Δ=b 2-4ac=[-2(m+1)]2-4×1×(m 2-3) =16+8m>0, 解得m>-2; 根据根与系数的关系可得x 1+x 2=2(m+1), ∵(x 1+x 2)2-(x 1+x 2)-12=0, ∴[2(m+1)]2-2(m+1)-12=0,解得m 1=1或m 2=-52. ∵m>-2,∴m 2=-52(舍去),∴m=1. 变式训练2-1:1 变式训练2-2:解:∵x 1+x 2=2,∴m=2. ∴原方程为x 2-2x-3=0,即(x-3)(x+1)=0, 解得x 1=3,x 2=-1. 课堂训练5.解:设x 1,x 2是方程的两个实数根,∴x 1+x 2=-32,x 1x 2=1-m 2. 又∵1x 1+1x 2=3,∴x 1+x 2x 1x 2=3, ∴-3=3, ∴-3=3-3m ,∴m=2, 又∵当m=2时,原方程的Δ=17>0, ∴m 的值为2. 课后提升9.解:将-2代入原方程得:(-2)2-2+n=0, 解得n=-2, 因此原方程为x 2+x-2=0, 解得x 1=-2,x 2=1, ∴m=1. 10.解:(1)根据题意得m ≠1 Δ=(-2m )2-4(m-1)(m+1)=4,∴x 1=2m+22(m -1)=m+1m -1, x 2=2m -22(m -1)=1. (2)由(1)知x 1=m+1m -1=1+2m -1 又∵方程的两个根都是正整数,∴2m -1是正整数, ∴m -1=1或2. ∴m=2或3.一元二次方程的应用第1课时 增长率与利润问题 课前预习(1±x ) 2.(1)单件售价 (2)单件利润课堂探究 【例1】探究答案:(1)10000(1+x ) 10000(1+x )2(2)12100(1+x ) 解:(1)设捐款增长率为x ,根据题意列方程得, 10000(1+x )2=12100, 解得x 1=,x 2=(不合题意,舍去); 答:捐款增长率为10%. (2)12100×(1+10%)=13310元. 答:第四天该单位能收到13310元捐款. 变式训练1-1:A变式训练1-2:B【例2】探究答案:200+40x3-2-x0.1解:设应将每千克小型西瓜的售价降低x元.-24=200.根据题意,得(3-2-x)200+40x0.1解这个方程,得x1=,x2=.答:应将每千克小型西瓜的售价降低元或元.变式训练2-1:2或6变式训练2-2:解:设每件童装应降价x元.根据题意得(40-x)(20+2x)=1200,解这个方程得x1=10,x2=20.因为在相同利润的条件下要扩大销售量,减少库存,所以应舍去x1=10.答:每件童装应降价20元.课堂训练%5.解:设每千克核桃应降价x元.×20)=2240根据题意得(60-x-40)(100+x2解这个方程得x1=4,x2=6.答:每千克核桃应降价4元或6元.课后提升%(1+x)2=%9.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9.答:每轮传染中平均一个人传染了7个人.(2)7×64=448.答:又有448人被传染.10.解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=,整理,得x2+=0,解之,得x1=,x2=(舍去)所以每年市政府投资的增长率为50%.=38(万平方米).(2)到2013年年底共建廉租房面积=×82第2课时面积与动点问题课堂探究【例1】探究答案:1.(6-x)2x2.1(6-x)·2x=82解:设经过x秒钟后,△PBQ的面积等于8cm2.根据题意得1(6-x)·2x=8.解这个方程得x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8cm2.变式训练1-1:解:(1)由勾股定理:AC=5cm,设x秒钟后,P、Q之间的距离等于5cm,这时PC=5-x,CQ=2x,则(5-x)2+(2x)2=52,即x2-2x=0.解这个方程,得x1=0,x2=2,其中x1=0不合题意,舍去.答:再运动2秒钟后,P、Q间的距离又等于5cm.(2)设y秒钟时,可使△PCQ的面积等于4cm2.1×(5-y)×2y=4,2即y2-5y+4=0,解得y1=1,y2=4.经检验,它们均符合题意.答:1秒钟或4秒钟时,△PCQ的面积等于4cm2.变式训练1-2:解:设应移动x米.OA=√AB2-OB2=3米.则由题意得(3+x)2+(4-x)2=52.解这个方程得x1=1,x2=0(不合题意,舍去).答:应移动1米.【例2】探究答案:(100-2x)(50-2x)解:设正方形观光休息亭的边长为x米.依题意,有(100-2x)(50-2x)=3600.整理,得x2-75x+350=0.解得x1=5,x2=70.∵x=70>50,不合题意,舍去,∴x=5.答:矩形花园各角处的正方形观光休息亭的边长为5米.变式训练2-1:B变式训练2-2:解:设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得,(40-2x)(60-3x)=60×40×14解之,得x1=10,x2=30(不符合题意,舍去).答:两块绿地周围的硬化路面的宽都是10米.课堂训练5.解:设花边的宽为x米,根据题意,得(2x+6)(2x+3)=40..解得x1=1,x2=-112不合题意,舍去.但x2=-112答:花边的宽为1米. 课后提升459.解:(1)设小货车原计划每辆每次运送帐篷x 顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得 2[8x+2(x+200)]=16800,解得x=800, x+200=800+200=1000.故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶.(2)根据题意,得2(1000-200m )1+12m +8(800-300)(1+m )=14400, 化简为m 2-23m+42=0,解得m 1=2,m 2=21.∵1000-200m 不能为负数,且12m 为整数,∴m 2=21(不符合实际,舍去),故m 的值为2.10.解:设x 秒后四边形APQB 的面积是△ABC 面积的23,在Rt △ABC 中,AB=10,AC=8, 由勾股定理,得 BC 2=AB 2-AC 2=102-82=36, ∴BC=6.则12(8-2x )(6-x )=13×12×6×8,解得x 1=2,x 2=8(不合题意,舍去), ∴2秒后四边形APQB 的面积是△ABC 面积的23. 第3章 图形的相似比例线段比例的基本性质课前预习1.(1)比值 比值 (2)比例内项2.(1)bc课堂探究 【例1】 探究答案:1.3x 3y =2y3y x y =23 =4x 7∶4 解:(1)∵3x=2y ,∴3x 3y =2y 3y,即x y =23.(2)∵7x =4y, ∴7y=4x ,x y =74. 变式训练1-1:D 变式训练1-2:4【例2】 探究答案:1.23解:∵AD AB =AE AC =DE BC =23, ∴AD+AE+DE =2, 即△ADE 的周长△ABC 的周长=23. 设△ADE 和△ABC 的周长分别为2x cm 和3x cm,则有3x-2x=15,得x=15. ∴△ABC 的周长为45 cm,△ADE 的周长为30 cm . 变式训练2-1:D变式训练2-2:解:设x 3=y 5=z 7=k ,则x=3k ,y=5k ,z=7k , ∴x -y+z x+y -z =3k -5k+7k 3k+5k -7k =5k k=5. 课堂训练∶3=4∶6(答案不唯一) 4.135.解:因为m -n n =23, 所以3(m-n )=2n , 化简得3m=5n ,所以m n =53,则3m+2n n =3m n +2=m n ×3+2=53×3+2=7. 课后提升6.52 72 √3 或-19.解:∵a∶b∶c=1∶2∶4, 设a=k ,b=2k , c=4k ,则a+2b+3c a -b+c =k+4k+12k k -2k+4k =17k 3k =173. 10.解:∵a b =c d =e f =23,∴2a 2b =-c -d =-5e -5f =23. ∴2a -c -5e 2b -d -5f =23. 成比例线段课前预习∶n AB =m 2.a b =c d3.BC AC 黄金比 √5-12≈ 课堂探究【例1】探究答案:1.(12-x ) x 12-x =64 2.DB AB =EC AC 解:(1)设AD=x cm,则DB=(12-x )cm .则有x 12-x =64,解这个方程得x=, 所以AD= cm .(2)DB AB =12-7.212=25,EC AC =46+4=25, 所以DB AB =EC AC , 所以线段DB 、AB 、EC 、AC 是成比例线段. 变式训练1-1:B变式训练1-2:解:利用比例线段的定义, ∵a=1 mm = cm,b= cm, c= cm,d=4 cm,∴d>b>a>c ,而d b =40.8=5,a c =0.10.02=5, ∴d b =a c,∴d 、b 、a 、c 四条线段是成比例线段.【例2】 探究答案:1.AC AB =CB AC 2.3x+3=x 3 解:设CB=x ,∵点C 为线段AB 的黄金分割点,∴AC AB =CB AC ,即3x+3=x 3,得9=x (x+3), 解得x 1=3√5-32,x 2=-3√5-32(舍去). 故CB 的长为3√5-32.变式训练2-1:C 变式训练2-2:解:因为点C 是AB 的黄金分割点,所以当AC>BC 时,AC =√5-1. 又因为AB=10 cm,所以AC=√5-12×10=(5√5-5)(cm),当AC<BC 时,BC =√5-1, 所以BC=√5-12×10=(5√5-5)(cm),所以AC=AB-BC=10-(5√5-5)=(15-5√5)(cm), 所以AC 的长为(5√5-5)cm 或(15-5√5)cm .课堂训练2.45 35 √5 4.=5.解:(1)a∶b=c∶d ,即a∶=∶1, 则a=×=. (2)a∶b=c∶d ,即3∶7=c∶21,则7c=21×3,得c=9. 课后提升8.√5-12或3-√529.解:设相邻两个钉子之间的距离为1个单位长度, 则AD=2,BD=5,BE=5, CE=1,CF=4,AF=3. 在直角三角形ABD 中,AB=√AD 2+BD 2=√22+52=√29,在直角三角形BCE 中,BC=√BE 2+CE 2=√52+12=√26,在直角三角形ACF 中,AC=√CF 2+AF 2=√42+32=5,所以AB =√29,BC =√26. 10.解:设每一份为k , 由(a-c )∶(a+b )∶(c-b )=(-2)∶7∶1,得{a -c =-2k,a +b =7k,c -b =k,解得{a =3k,b =4k,c =5k,而(3k )2+(4k )2=(5k )2, 即a 2+b 2=c 2, 所以△ABC 是直角三角形.平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等 (2)对应线段 (3)成比例课堂探究 【例1】探究答案:1.35 2.DE DF 解:∵l 1∥l 2∥l 3,∴AB AC =DE DF , ∵AB BC =32,∴AB AC =35, ∴DE DF =35, 由DF=20 cm,得DE=3DF=12 cm,∴EF=DF -DE=8 cm . 变式训练1-1:D变式训练1-2:12【例2】 探究答案:1.AE AC x-4 x -4x -3=4x D 变式训练2-1:B 变式训练2-2:A 课堂训练5.解:∵DE ⊥AB ,CB ⊥AB , ∴DE ∥BC ,∴AD AB =AE AC ,即35=5AC, ∴AC=253.∴BC=√AC 2-AB 2=√(253)?2-52=203. 课后提升9.解:∵DE ∥BC ,DF ∥AC , ∴四边形EDFC 为平行四边形, ∴DE=FC=5, 又∵DF ∥AC ,∴AD BD =CF BF ,即48=5BF,得BF=10. 10.解:∵DE ∥BC ,∴AD AB =AE AC. 又∵EF ∥CD ,∴AF AD =AE AC , ∴AD AB =AF AD, ∴AD 2=AB ·AF=36, ∴AD=6 cm .相似图形课前预习1.(1)对应相等 对应成比例 (2)∽ △ABC 相似于△A'B'C'(3)相等 成比例 2.(1)对应角 成比例 (2)相等 等于相似比 课堂探究【例1】 探究答案:1.∠A' ∠B' ∠C' °-∠A-∠B 解:∵△ABC ∽△A'B'C', ∴∠B=∠B'=60°, 在△ABC 中,∠C=180°-∠A-∠B=180°-50°-60°=70°. 变式训练1-1:50 变式训练1-2:1∶2 【例2】探究答案:(1)CD CB (2)77° 83° 解:因为四边形ABCD ∽四边形EFGH , ∴∠F=∠B=77°,∠G=∠C=83°,EF AB =GH CD =FG BC =418=29, ∴∠H=360°-(∠E+∠F+∠G )=83°,BC=FG ÷29=6×92=27,CD=GH ÷29=7×92=.变式训练2-1:B 变式训练2-2:解:由四边形ABCD 与四边形A'B'C'D'相似得, x =12=10, ∠A=∠A'=120°,∴x=21×1015=14,y=12÷1015=12×32=18,∠α=360°-(∠A+∠B+∠C )=80°. 课堂训练或25 5.解:因为梯形AEFD ∽梯形EBCF ,所以AD EF =EF BC =AE EB, 又因为AD=4,BC=9, 所以EF 2=AD ·BC=4×9=36,所以EF=6,所以AE EB =AD EF =46=23. 课后提升30° ° 140° 1 8.√5+129.解:∵四边形ABCD 与四边形EFGH 相似, ∴∠E=∠A=70°,∠F=∠B=80°. ∴∠G=360°-70°-80°-150°=60°.∵AB EF =AD EH, ∴AB=EF ·AD EH =5×86=203. ∵BC FG =AD EH, ∴BC=FG ·AD EH =7×86=566=283. 10.解:∵△ABC ∽△APQ ,∴AB AP =BC PQ, 即4040+60=30PQ , 解得PQ=75. 答:PQ 的长为75 cm .相似三角形的判定与性质相似三角形的判定 第1课时 两角对应相等或平行判定相似课前预习 (1)相似 (2)相等课堂探究【例1】 探究答案: 3.△EDA △DFC 解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC , ∴△BEF ∽△CDF ,△BEF ∽△AED , ∴△BEF ∽△CDF ∽△AED.当△BEF ∽△CDF 时,相似比k 1=BE CD =13; 当△BEF ∽△AED 时,相似比k 2=BE AE =14; 当△CDF ∽△AED 时,相似比k 3=CD AE =34. 变式训练1-1:3变式训练1-2:1∶2 【例2】 探究答案:1.∠DAE 2.∠D 解:△ABC ∽△ADE ,理由如下: ∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC , 即∠BAC=∠DAE , 又∵在△AOB 与△COD 中, ∠AOB=∠COD ,∠1=∠3, ∴∠B=∠D , ∴△ABC ∽△ADE. 变式训练2-1:C 变式训练2-2:证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD , ∴∠ADF=∠CED ,∠B+∠C=180°, ∵∠AFE+∠AFD=180°,∠AFE=∠B , ∴∠AFD=∠C , ∴△ADF ∽△DEC. 课堂训练4.∠ADE=∠C (答案不唯一)5.解:(1)在△ABC 中, ∵∠A=90°,∠B=50°, ∴∠C=40°. ∴∠A=∠A'=90°,∠C=∠C'=40°. ∴△ABC ∽△A'B'C'(两角相等的两个三角形相似).(2)在△ABC 中, ∵∠A=∠B=∠C , ∴∠A=∠B=∠C=60°, ∴∠A=∠A',∠B=∠B', ∴△ABC ∽△A'B'C'(两角相等的两个三角形相似). 课后提升解:∵∠A=36°,AB=AC ,∴∠ABC=∠ACB=72°, ∵BD 平分∠ABC , ∴∠CBD=∠ABD=36°, ∠BDC=72°,∴AD=BD ,BC=BD , ∴△ABC ∽△BDC ,∴BD AB =CD BC ,即AD AC =CD AD, ∴AD 2=AC ·CD , 设AD=x ,则CD=1-x , ∴x 2=1×(1-x ), x 2+x-1=0,x=-1±√1+42=-1±√52, x 1=-1+√52,x 2=-1-√52(舍去), ∴AD=√5-12,∴AD 的长是√5-12.8.解:(1)△ABC ∽△FOA ,理由如下:在矩形ABCD 中,∠BAC+∠BCA=90°, ∵l 垂直平分AC , ∴∠OFC+∠BCA=90°, ∴∠BAC=∠OFC=∠OFA , 又∵∠ABC=∠FOA=90°, ∴△ABC ∽△FOA. (2)四边形AFCE 是菱形,理由如下: ∵AE ∥FC , ∴∠AEO=∠OFC ,∠EAO=∠OCF , ∴△AOE ∽△COF , ∵OC=OA ,∴OE=OF , 即AC 、EF 互相垂直平分, ∴四边形AFCE 是菱形.第2课时 两边成比例夹角相等或 三边成比例判定相似 课前预习(1)成比例 夹角 (2)成比例 课堂探究【例1】探究答案:1.45 45 2.△DCA解:因为AB CD =45,BC AC =45, 所以AB CD =BC AC, 又因为∠B=∠ACD , 所以△ABC ∽△DCA ,所以AB DC =AC AD, 所以AD=DC ·AC =152×5=25. 变式训练1-1:B 变式训练1-2:证明:∵四边形ABCD 是正方形, ∴AD=DC=BC ,∠D=∠C=90°, ∵M 是CD 的中点,∴AD∶DM=2∶1, ∵BP=3PC ,∴CM∶PC=2∶1,即AD DM =CM PC,且∠D=∠C , ∴△ADM ∽△MCP.【例2】探究答案:1.√5 √10 5 √2 2 √102.√102 √102 √102解:相似.理由如下:AB=√5,AC=√10,BC=5,DE=√2,DF=2,EF=√10,∵AB DE =√102,AC DF =√102,BC EF =√102, 即AB DE =AC DF =BC EF , ∴△ABC ∽△DEF. 变式训练2-1:A 变式训练2-2:证明:∵D 、E 、F 分别为AB 、AC 、BC 的中点, ∴DE 、DF 、EF 分别为△ABC 的中位线,∴DE=12BC ,DF=12AC ,EF=12AB ,∴DE CB =DF CA =EF BA =12, ∴△DEF ∽△CBA. 课堂训练5.解:由题知AC=√2,BC=√12+32=√10,AB=4,DF=√22+22=2√2,EF=√22+62=2√10,ED=8,∴AC DF =BC EF =AB DE =12, ∴△ABC ∽△DEF.课后提升° 7.(4,0)或(3,2)8.解:(1)△ABC ∽△EBD ,理由如下:∵BD ·AB=BE ·BC ,∴BD BC =BE AB ,又∵∠B 为公共角,∴△ABC ∽△EBD. (2)ED ⊥AB ,理由如下: 由△ABC ∽△EBD 可得∠EDB=∠C , ∵∠C=90°,∴∠EDB=90°,即ED ⊥AB.9.解:△A'B'C'∽△ABC ,理由如下:∵OA'OA =OC'OC =3,∠AOC=∠A'OC',∴△AOC ∽△A'OC',∴A'C'AC =OA'OA =3,同理B'C'BC =3,A'B'AB =3,∴A'C'=B'C'=A'B',∴△A'B'C'∽△ABC.相似三角形的性质 课前预习1.相似比2.(1)相似比 相似比的平方 (2)相似比 相似比的平方课堂探究【例1】 探究答案:1.△ADE 解:∵BC ∥DE , ∴∠ABC=∠ADE ,∠ACB=∠AED , ∴△ABC ∽△ADE ,所以MC NE =BC DE ,设DE 高为x m,则0.630=0.24x ,x=12.故旗杆大致高12 m . 变式训练1-1:C变式训练1-2:1∶2【例2】 探究答案:1.相似比的平方 2.916解:(1)∵△ABC ∽△ADE ,∴AB =AC ,∵AB=15,AC=9,BD=5,∴AD=20,∴AE=AD ·AC AB =20×915=12.即AE 的长为12.(2)∵△ABC ∽△ADE ,∴S △ABC S △ADE =AB 2AD 2=916, ∴S △ADE =16×279=48, ∴S 四边形BDEC =48-27=21. 变式训练2-1:A 变式训练2-2:D 课堂训练∶2 ∶2 1∶45.解:因为DE ∥BC ,所以∠ADE=∠ABC ,∠AED=∠ACB , 所以△ADE ∽△ABC.又DE BC =13,△ADE 的周长是10 cm, 所以△ABC 的周长是30 cm, 所以梯形BCED 的周长为30-8+2=24(cm). 课后提升∶9 7.60379.(1)证明:∵E 是AB 的中点, ∴AB=2EB , ∵AB=2CD ,∴CD=EB , 又∵AB ∥CD , ∴四边形CBED 是平行四边形, ∴DE ∥CB , ∴∠EDM=∠MBF ,∠DEM=∠MFB , ∴△EDM ∽△FBM.(2)解:∵△EDM ∽△FBM ,∴DM BM =DE BF , 又∵F 是BC 的中点, ∴DE=2BF , ∴DM=2BM. ∴BM=13DB=3. S △EDM S △FBM =DE BF 2=4.相似三角形的应用课堂探究【例1】 探究答案:1.△ABF △EFG2.DF BF FG BG解:∵CD ∥EF ∥AB , ∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴CD AB =DF BF ,EF AB =FG BG, 又∵CD=EF ,∴DF =FG , ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴3DB+3=4BD+7, ∴BD=9,BF=9+3=12,∴1.6AB =312,解得,AB= m . 变式训练1-1:A 变式训练1-2:【例2】 探究答案:1.△EDC 2.△EDC BC DC解:(1)DE=AB ,理由如下: ∵AB ⊥BF ,ED ⊥BF , ∴∠ABC=∠EDC. ∵∠ACB=∠ECD ,BC=CD , ∴△ABC ≌△EDC (ASA), ∴AB=DE ,即DE 的长就是A 、B 的距离. (2)能,∵∠ABC=∠EDC=90°,∠ACB=∠ECD , ∴△ABC ∽△EDC ,∴AB DE =BC CD ,AB=DE ·BC CD =30×1020=15(米). 即A 、B 之间的距离为15米. 变式训练2-1:C 变式训练2-2:解:设AB=x 米, 因为BC ∥DE ,所以∠ABC=∠D , 又∠A=∠A ,所以△ABC ∽△ADE ,则AB BC =AD DE ,即x 70=20+x 90, 解得x=70.答:A 、B 两村相距70米. 课堂训练3.87米 5.解:由光的反射定律可知∠1=∠2,∴∠ABS=∠CBP. ∵SA ⊥AC ,PC ⊥AC ,∴∠SAB=∠PCB=90°, ∴△ASB ∽△CPB.∴SA PC =AB CB,∴SA=AB ·PC CB =10×2420=12(cm). 答:点光源S 与平面镜的距离SA 的长是12 cm . 课后提升m 解:∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB ,∴BC EF =DC DE, ∵DE=40 cm = m,EF=20 cm = m,AC= m,CD=10 m .∴BC 0.2=100.4, ∴BC=5(m), ∴AB=AC+BC=+5=(m),∴树高为 m .位 似课前预习1.同一个点O 位似中心 相似比2.位似 坐标原点课堂探究 【例1】 探究答案:∶2 ∶4 解:(1)△ABC 与△A'B'C'的周长之比为AB A'B'=36=12. 设S △ABC 周长为x cm,△A'B'C'周长为2x cm, 则2x-x=12,解得x=12, 所以△ABC 的周长为12 cm .(2)△ABC 与△A'B'C'的面积之比为AB AB 2=14, 设S △ABC =y cm 2,则S △A'B'C'=4y cm 2, 则y+4y=25,解得y=5, 所以△A'B'C'的面积为20 cm 2. 变式训练1-1:B 变式训练1-2:解:(1)、(3)中的两个图形都是位似图形,位似中心分别为点A 、O ;(2)中的两个图形不是位似图形. 【例2】 探究答案:1.位似中心 2.位似中心解:(1)如图所示.(2)A'C'=√22+22=2√2,AC=4√2, ∴四边形AA'C'C 的周长为AA'+A'C'+C'C+CA=2+2√2+2+4√2=4+6√2.变式训练2-1:B 变式训练2-2:解:作法:(1)连接OA ,并延长OA 到A',使得AA'=OA ; (2)连接OB ,并延长OB 到B',使得BB'=OB ; (3)连接OC ,并延长OC 到C',使得CC'=OC ; (4)连接OD ,并延长OD 到D',使得DD'=OD ; (5)连接A'B',B'C',C'D',D'A'(如图所示),则四边形A'B'C'D'是四边形ABCD 关于O 点的位似图形, 且四边形A'B'C'D'与四边形ABCD 的相似比为2.【例3】 探究答案:1.位似中心 ∶(-2) 解:(1)延长BO 到B',使B'O=2BO ,延长CO 到C',使C'O=2CO ,连接B'C'.则△OB'C'即为△OBC 的位似图形(如图所示). (2)观察图形可知,B'(-6,2)、C'(-4,-2). (3)M'(-2x ,-2y ). 变式训练3-1:C 变式训练3-2:6 课堂训练4.(-4,-4)5.解:(1)OAE 与△OBF 相似.理由:∵AC ∥BD ,∴OA OB =OC OD. 又CE ∥DF ,∴OE OF =OC OD , ∴OA OB =OE OF, ∴AE ∥BF , ∴△OAE ∽△OBF. △OAE 与△OBF 位似.理由: 已证△OAE ∽△OBF ,又△OAE 和△OBF 对应点的连线都经过点O , ∴△OAE 与△OBF 位似. (2)△ACE 与△BDF 位似.理由:由(1)得AE ∥BF ,∴AE BF =OA OB , 又AC ∥BD ,∴AC BD =OA OB =OC OD . 又CE ∥DF ,∴CE DF =OC OD. ∴AC BD =CE DF =AE BF, ∴△ACE ∽△BDF. 又△ACE 和△BDF 对应点的连线都经过点O , ∴△ACE 与△BDF 位似. 课后提升,32或-2,-32 8.解:∵矩形ABCD 与矩形AB'C'D'是位似图形,且点A 为位似中心, ∴AB AB'=AD AD', 即AB AB+4=AD AD+2, ∴2AB=4AD ,即AB AD =21, 又∵矩形ABCD 的周长为24,即AB+AD=12, ∴AB=8,AD=4. 第4章 锐角三角函数正弦和余弦第1课时 正 弦 课前预习1.大小2.对边 斜边 sin A∠A 的对边斜边 3.12 √22 √32课堂探究【例1】 探究答案:1.直角 2.对 斜 角的大小 无关 解:∵BC 2+AC 2=62+82=102=AB 2, ∴△ABC 是直角三角形,∠C=90°,∴sin A=BC AB =610=35,sin B=AC AB =810=45. 变式训练1-1:√55 变式训练1-2:34【例2】 探究答案: 12.倒数 正 311 3。

九年级上册的学法大视野

九年级上册的学法大视野

九年级上册的学法大视野学法大视野是九年级上册的一本教材,它涵盖了九年级上学期的各个科目的内容。

我认为学法大视野是一本非常重要的教材,它不仅可以帮助我们掌握各个科目的知识,还能培养我们的学习能力和学习方法。

首先,学法大视野是一本非常全面的教材。

在九年级上学期,我们学习的科目包括语文、数学、英语、物理、化学、生物、地理和历史等。

学法大视野涵盖了这些科目的大部分内容,帮助我们系统地学习各个科目。

通过学法大视野,我们可以学习到每个科目的基础知识,掌握各个科目的基本概念和原理。

这对我们进一步学习和理解后续内容非常重要。

其次,学法大视野注重培养我们的学习能力和学习方法。

学法大视野不仅教给我们知识,还教给我们如何学习。

其中的学习方法部分,通过介绍学习技巧和学习策略,帮助我们提高学习效率和学习成绩。

比如,在语文课程中,学法大视野告诉我们如何进行阅读理解,如何写好作文;在数学课程中,学法大视野教给我们如何解题方法和步骤。

这些学习方法对我们的学习能力的培养非常有帮助,能够提高我们对知识的理解和掌握能力。

此外,学法大视野还采用了多样化的学习资源和学习工具。

在每一课的课后习题中,学法大视野设计了不同类型的题目,帮助我们巩固和运用所学的知识。

同时,它还提供了配套的试题和答案,方便我们进行自我测试和自我评估。

此外,学法大视野还配备了多媒体教学资源,如录音、视频和在线课程等,使我们可以更加灵活地学习。

这些学习资源和学习工具的运用,使我们的学习更加丰富多样,提高了学习效果。

总的来说,学法大视野是九年级上学期的一本非常重要的教材。

它全面地介绍了九年级上学期各个科目的知识内容,帮助我们系统地学习各个科目。

同时,它还注重培养我们的学习能力和学习方法,提高我们的学习效果。

我相信,通过学法大视野的学习,我们能够更好地掌握所学的知识,提高学习成绩,为未来的学习和发展打下坚实的基础。

2023学法大视野九年级上册数学湘教版

2023学法大视野九年级上册数学湘教版

一、2023学法大视野九年级上册数学湘教版从简到繁,由浅入深地探讨2023学法大视野九年级上册数学湘教版,是我们深入了解这一主题的首要任务。

2023学法大视野九年级上册数学湘教版是九年级学生学习数学的教材,涵盖了丰富的数学知识和技能,是学生学习数学的重要工具和资源。

本文将从多个角度全面评估这一教材,以期帮助读者更全面、深刻地理解这一主题。

1.2023学法大视野九年级上册数学湘教版的内容2023学法大视野九年级上册数学湘教版的内容包括数与代数、函数与方程、几何与变换、统计与概率等多个模块。

其中,数与代数模块介绍了有理数与整式、一元一次方程与一元一次不等式等知识;函数与方程模块介绍了平面直角坐标系、一元二次函数等知识;几何与变换模块介绍了平面直角坐标系、平面向量等知识;统计与概率模块介绍了事件与概率、统计图与数据等知识。

这些内容涵盖了数学的基本概念和方法,对学生的数学学习起着重要的指导和支持作用。

2.2023学法大视野九年级上册数学湘教版的教学特点2023学法大视野九年级上册数学湘教版的教学特点主要表现在以下几个方面:注重培养学生的数学思维和解决问题的能力,通过一些启发式的问题设计和解决方法引导学生探索和发现数学知识;注重联系实际、贴近生活,通过举一反三和例题设计引导学生将数学知识运用到实际生活中去;再次,注重综合性和灵活性,通过跨学科和综合性案例设计引导学生将数学知识与其他学科进行整合和应用。

这些教学特点有利于培养学生的综合素质和创新精神,对学生成长和发展具有重要意义。

3.个人观点和理解2023学法大视野九年级上册数学湘教版是一份优秀的教材,具有丰富的内容和严谨的体系。

通过学习这份教材,学生可以系统地掌握数学的基本知识和技能,培养良好的数学思维和解决问题的能力。

这份教材在教学特点上也具有很多值得肯定的地方,能够有效地激发学生学习的兴趣和动力,培养学生的综合素质和创新精神。

我认为2023学法大视野九年级上册数学湘教版是一份非常优秀的数学教材,值得学生和教师们的认真学习和借鉴。

学法大视野·数学·九年级上册(湘教版)·答案

学法大视野·数学·九年级上册(湘教版)·答案

学法大视野·数学·九年级上册(湘教版)·答案第1章反比例函数1.1反比例函数课前预习1.y=kx≠零课堂探究【例1】探究答案:-1k≠0 B 变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x与y,而要看它能否化为y=kx(k为常数,k≠0)的形式所以(2)是反比例函数,其中k=-6;(3)是反比例函数, 其中k=-3. 变式训练1-2:解:(1)由三角形的面积公式,得12xy=36 于是y=72x 所以,y是x的反比例函数. (2)由圆锥的体积公式,得13xy=60,于是y=180 所以y是x的反比例函数.【例2】探究答案:1.y=kx(k≠0) 2.(2,-2 解:设反比例函数的解析式为y=kx(k≠0 因为图象过点(2,-2), 将x=2,y=-2代入,得-2=k2,解得k=-2 因此,这个反比例函数的解析式为y=-2x 将x=-6,y=13代入,等式成立所以函数图象经过-6,13. 变式训练2-1:B 变式训练2-2:解:(1)设y1=k1x,y2=k2x(k1,k2为常数,且k1≠0,k2≠0),则y=k1x+ ∵x=1,y=4;x=2,y=5,∴k 解得k ∴y与x的函数表达式为y=2x+2x (2)当x=4时,y=2×4+24=81课堂训练 1.B 2.C 3.A 4.-2 5.解:设大约需要工人y个,每人每天生产纪念品x个. ∴xy=100,即y=100x(x>0∵5≤x≤8,∴1008≤y≤100 即1212≤y≤20 ∵y是整数,∴大约需工人13至20人.课后提升 1.D 2.A 3.C 4.B 5.C 6.27.4008.-12 9.解:(1)∵y是x的正比例函数, ∴m2-3=1, m2=4, m=±2. ∵m=2时,m-2=0, ∴舍去. ∴m=-2. (2)∵y是x的反比例函数, ∴m2-3=-1, m2=2, m=±2. 10.解:(1)由S=12xy=30,得y=60 x的取值范围是x>0. (2)由y=60x可知,y是x的反比例函数,系数为601.2反比例函数的图象与性质第1课时反比例函数的图象课前预习3.(1)一、三(2)二、四课堂探究【例1】探究答案:第一、三象限> 解:(1)∵这个反比例函数图象的一支分布在第一象限, ∴m-5>0,解得m>5. (2)∵点A(2,n)在正比例函数y=2x的图象上, ∴n=2×2=4,则A点的坐标为(2,4). 又∵点A在反比例函数y=m-5 ∴4=m-52,即m-5 ∴反比例函数的解析式为y=8x 变式训练1-1:C 变式训练1-2:-5【例2】探究答案:1.(1,5) 2.y 解:(1)∵点(1,5)在反比例函数y=kx的图象上∴5=k1,即k=5 ∴反比例函数的关系式为y=5x 又∵点(1,5)在一次函数y=3x+m的图象上, ∴5=3+m, ∴m=2. ∴一次函数的关系式为y=3x+2. (2)由题意可得y解得x1= ∴这两个函数图象的另一个交点的坐标为-53,-3. 变式训练2-1:A 变式训练2-2:解:(1)将A(-1,a)代入y=-x+2中, 得a=-(-1)+2,解得a=3. (2)由(1)得,A(-1,3),将A(-1,3)代入y=kx中得到3=k-1,即k=- 即反比例函数的表达式为y=-3x (3)如图:过A点作AD⊥x轴于D,∵A(-1,3),∴AD=3, 在直线y=-x+2中,令y=0,得x=2, ∴B(2,0),即OB=2, ∴△AOB的面积S=12×OB×AD=12×2×3=课堂训练1.A 2.C 3.B 4.m>15.解:(1)∵反比例函数y=kx 与一次函数y=x+b的图象,都经过点A(1,2 ∴将x=1,y=2代入反比例函数解析式得, k=1×2=2, 将x=1,y=2代入一次函数解析式得,b=2-1=1, ∴反比例函数的解析式为y=2x 一次函数的解析式为y=x+1. (2)对于一次函数y=x+1, 令y=0,可得x=-1; 令x=0,可得y=1. ∴一次函数图象与x轴,y轴的交点坐标分别为(-1,0),(0,1).课后提升 1.C 2.B 3.A 4.D 5.C 6.-37.-24 8.解:m2=(-4)×(-9)=36,∴m=±6. ∵反比例函数y=mx的图象位于第一、三象限,∴m>0 ∴m=6. 9.解:(1)∵y=m-5x的一支在第一象限内,∴ m-5 ∴m>5. 对直线y=kx+k来说,令y=0,得kx+k=0,即k(x+1)=0. ∵k≠0,∴x+1=0,即x=-1. ∴点A的坐标为(-1,0). (2)过点M 作MC⊥AB于点C, ∵点A的坐标为(-1,0),点B的坐标为(3,0),∴AB=4,AO=1. ∵S△ABM=12×AB× =12×4× =8, ∴MC=4. 又AM=5,∴AC=3, 又OA=1,∴OC=2.∴点M的坐标为(2,4). 把M(2,4)代入y=m- 得4=m-52,则m=13,第2课时反比例函数的性质课前预习1.在每一象限内减小在每一象限内增大2.y=±x坐标原点课堂探究【例1】探究答案:1.一、三>0 2.减小> 解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2. (2)把点(3,1)代入y=2n-4x,得2n- 解得n=72 (3)因为在每个象限内,y随x的增大而减小,所以由a1<a2,得b1>b2. 变式训练1-1: A 变式训练1-2:<【例2】探究答案:|k|解:设点A的坐标为a,2a,则点B的坐标为-a,-2a, ∵BC‖x轴,AC‖y轴,∴AC⊥BC, 又由题意可得BC=2a,AC=4a S△ABC=12BC·AC=12·2a·4a 变式训练2-1:1 变式训练2-2:解:设A的坐标是(m,n),则n=km,即k=mn ∵OB=-m,AB=n,S长方形ABOC=OB·AB=(-m)n=-mn=3, ∴mn=-3,∴k=-3,则反比例函数的解析式是y=-3x课堂训练 1.A 2.C 3.6 4.25.解:设一次函数的解析式为y=kx+b(k≠0). ∵点A是直线与反比例函数y=2x的交点∴把A(1,a)代入y=2x,得a=2 ∴A(1,2). 把A(1,2)和C(0,3)代入y=kx+b,得k 解得k=-1,b=3. 所以一次函数的解析式为:y=-x+3.课后提升 1.D 2.D 3.A 4.C 5.C 6.C7.x<-2或0<x<1 8.6< span="">9.解:(1)图象的另一支在第三象限, ∵图象在一、三象限,∴5-2m>0, ∴m<52 (2)b1<b2.理由如下:∵m<52,∴m-4<m-3<0,∴b1<="" span="">【例1】探究答案:1.反比例v=PF2.解:(1)设反比例函数解析式为v=PF 把(3000,20)代入上式, 得20=P3000,P=3000×20=60000 ∴v=60000F (2)当F=1200时,v=600001200=50(米/秒)=180(千米/时即当它所受的牵引力为1200牛时,汽车的速度为180千米/时. (3)由v=60000F≤30,得F≥2000 所以,若限定汽车的速度不超过30米/秒,则F应不小于2000牛. 变式训练1-1:C 变式训练1-2:0.5【例2】探究答案:1.k2-2 2.图象解:(1)∵双曲线y=k2x 经过点A(1,2),∴k2= ∴双曲线的解析式为y=2x ∵点B(m,-1)在双曲线y=2x上∴m=-2,则B(-2,-1). 由点A(1,2),B(-2,-1)在直线y=k1x+b上, 得k 解得k ∴直线的解析式为y=x+1. (2)y2<y11或-2<x<0. < span="">变式训练2-1:C 变式训练2-2:解:(1)直线y=12x+b经过第一、二、三象限,与y轴交于点B ∴OB=b, ∵点A(2,t),△AOB的面积等于1. ∴12×2×b=1,可得b=1 即直线为y=12x+1 (2)由点A(2,t)在直线y=12x+1上可得t=2,即点A坐标为(2,2), 反比例函数y=kx(k是常量,k≠0)的图象经过点A,可得k=4 所求反比例函数解析式为y=4x 课堂训练 1.C 2.C 3.B 4.(1,-2) 5.解:(1)将A(2,4)代入反比例函数解析式得m=8, ∴反比例函数解析式为y2=8x 将B(-4,n)代入反比例函数解析式得n=-2, 即B(-4,-2), 将A与B坐标代入一次函数解析式得, 2 解得k 则一次函数解析式为y1=x+2. (2)联立两函数解析式得y 解得x=2 则y1=y2时,x的值为2或-4. (3)利用题图象得,y1>y2时, x的取值范围为-4<x<0或x>2. 课后提升1.D 2.D 3.C 4.D 5.x<0或1<x<4 6.1.67.(3,2) 8.19.< span="">解:(1)∵反比例函数y=kx的图象过B(4,-2)点∴k=4×(-2)=-8, ∴反比例函数的解析式为y=-8x ∵反比例函数y=-8x的图象过点A(-2,m ∴m=-8-2= 即A(-2,4). ∵一次函数y=ax+b的图象过A(-2,4),B(4,-2)两点, ∴- 解得a ∴一次函数的解析式为y=-x+2. (2)∵直线AB:y=-x+2交x轴于点C, ∴C(2,0).∵AD⊥x轴于D,A(-2,4), ∴CD=2-(-2)=4,AD=4,∴S△ADC=12·CD·AD=12×4×4= 10.解:(1)把A(m,2)代入反比例函数解析式y=2 得2=2m 所以m=1. ∴A(1,2). (2)把A(1,2)代入正比例函数解析式y=kx得2=k,所以k=2,因此正比例函数的解析式为y=2x. (3)因为正比例函数的解析式为y=2x,当x=2时,y≠3,所以点B(2,3)不在正比例函数图象上.第2章一元二次方程2.1一元二次方程课前预习1.一个2整式 3.相等课堂探究【例1】探究答案:1.2=2 2.≠0 解:根据题意,得m2-2=2,且m-2≠0. 解得m=±2,且m≠2.所以m=-2. 则m2+2m-4=(-2)2+2×(-2)-4=-4. 变式训练1-1:C 变式训练1-2:≠±1=1【例2】探究答案:1.移项合并同类项 2.符号0 解:(1)去括号,得4t2+12t+9-2(t2-10t+25)=-41, 去括号、移项、合并得2t2+32t=0, 所以二次项系数、一次项系数和常数项分别为2,32,0.(2)去括号,得12x2-x+12=3x+ 移项、合并,得12x2-4x+16= 所以二次项系数、一次项系数和常数项分别为12,-4,1 变式训练2-1:B 变式训练2-2:解:m 解得m=±2且m≠-2. ∴m=2.【例3】探究答案:1.根 2.≠0 解:根据题意,得(m-2)×12+(m2-3)×1-m+1=0, 即m2-4=0,故m2=4, 解得m=2或m=-2. ∵方程(m-2)x2+(m2-3)x-m+1=0是关于x的一元二次方程, ∴m-2≠0,即m≠2.故m=-2. 变式训练3-1:1 变式训练3-2:解:把x=0代入方程得a2-1=0, ∴a=±1, ∵a-1≠0,∴a≠1, ∴a=-1.课堂训练1.C 2.A 3.-10 4.-2 5.解:去括号,得9x2+12x+4=4x2-24x+36. 移项、合并同类项得,5x2+36x-32=0. ∴它的二次项为5x2 二次项系数为5, 一次项为36x, 一次项系数为36, 常数项为-32.课后提升 1.D 2.D 3.C 4.C 5.D 6.x(x+5)=300x2+5x-300=015-3007.18.≠1=1 9.解:(1)去括号,得x2-4=3x2+2x, 移项,得-2x2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4. (2)去括号,移项合并,得(1-2a)x2-2ax=0,二次项系数为1-2a,一次项系数为-2a,常数项为0. 10.解:小明的话有道理. 理由:若方程为一元二次方程,则m+1=2,m=1. 而m=1时,m2+m-2=0, 所以此方程不可能为一元二次方程.2.2一元二次方程的解法2.2.1配方法第1课时用配方法解简单的一元二次方程课前预习1.(1)平方根2.(1)a2±2ab+b2(2)完全平方式课堂探究【例1】探究答案:-a±b没有解:移项,得2(x+1)2=92 两边同时除以2,得(x+1)2=94 ∴x+1=±32 ∴x1=-1+32=12,x2=-1-32 变式训练1-1:m≥7 变式训练1-2:解:(1)移项,得(2x-1)2=25, 开平方得2x-1=±5, ∴2x-1=5或2x-1=-5, 解这两个方程得:x1=3,x2=-2. (2)两边同除以3,得(x-2)2=4, 开平方得:x-2=±2, ∴x-2=2或x-2=-2. 解这两个方程,得x1=4,x2=0.【例2】探究答案:一次项系数一半的平方解:移项,得x2-12x=1 配方,得x2-12x+142=916, ∴x-14=34或x-14=-34,∴x1=1,x 变式训练2-1:±4 变式训练2-2:解:移项,得x2-2x=2,配方,得(x-1)2=3, 解得x=1±3. ∴x1=1+3,x2=1-3.课堂训练1.D 2.B 3.±32 4.± 5.解:(1)移项得x2-2x=1,配方,得x2-2x+1=2, 即(x-1)2=2,开方,得x-1=±2, 则x1=1+2,x2=1-2. (2)移项,得x2-4x=-1, 配方,得x2-4x+4=-1+4,即(x-2)2=3, 开方,得x-2=±3, ∴原方程的解是x1=2+3,x2=2-3.课后提升1.D 2.B 3.D 4.B 5.3 6.-37.900 cm2 8.解:(1)直接开平方得,x-1=±3,即x-1=3或x-1=-3, ∴x1=1+3,x2=1-3. (2)配方,得x2-2x+1=4+1,即(x-1)2=5. ∴x-1=±5,即x-1=5或x-1=-5∴x1=1+5,x2=1-5. (3)方程两边都除以2,得x2-32=-52 移项,得x2+52x=3 配方,得x2+52x+542=32+542, 即x+542=4916. 开平方得,x+54=±74,∴x1=12,x2 9.解:用配方法解方程a2-10a+21=0,得a1=3,a2=7. 当a=3时,3、3、7不能构成三角形; 当a=7时,三角形周长为3+7+7=17. 10.解:移项得x2+px=-q, 配方得x2+px+p22=-q+p22, 即x+p22=p2- ∵p2≥4q, ∴p2-4q≥0, ∴x+p2=±p ∴x1=-p+p2-4第2课时用配方法解复杂的一元二次方程课前预习(1)1 (2)二次项和一次项常数项(3)一次项系数一半的平方课堂探究【例1】探究答案:1.1 2.完全平方式解:两边同时除以2,得x2-32x+12= 移项,得x2-32x=-1 配方,得x2-32x+-342=- 即x-34 两边开平方,得x-34=±14,x-34=14或x- ∴原方程的解为x1=1,x2=12 变式训练1-1:D 变式训练1-2:解:(1)二次项系数化为1, 得x2-16x-2=0 移项,得x2-16x=2,配方得x2-16x+1144=2+ 即x-1122=289144, ∴x-112=±1712,∴x1=32,x2 (2)二次项系数化为1,得x2-12x-12= 移项,得x2-12x=1 配方得x2-12x+142=12+142, 即x-142=916, ∴x-14=±3 ∴x1=1,x2=-12【例2】探究答案:1.1 2.减去解:2x2-4x+5=2(x2-2x)+5=2(x2-2x+12-12)+5 =2(x-1)2+3 ∵2(x-1)2≥0, ∴2(x-1)2+3>0, ∴代数式2x2-4x+5的值总是一个正数. 变式训练2-1:13 变式训练2-2:解:x2-4x+5=x2-4x+22-22+5 =(x-2)2+1. ∵(x-2)2≥0,且当x=2时值为0, ∴当x=2时, 代数式x2-4x+5的值最小,最小值为1.课堂训练1.A 2.B 3.x1=-2,x2=1 4.3或-7 5.-3或3 6.解:由题意得2x2-x=x+6,∴2x2-2x=6, ∴x2-x=3,∴x2-x+14=3+1∴x-122=134,∴x-12=±13 ∴x1=1+132,x2 ∴x=1+132或1-132时,整式2x2课后提升1.D 2.D 3.B 4.D 5.x1=1+3,x2=1-3 6.87.3 8.1±22 9.解:去括号,得4x2-4x+1=3x2+2x-7, 移项,得x2-6x=-8,配方,得(x-3)2=1, ∴x-3=±1,∴x1=2,x2=4. 10.解:由题意,得2x2+x-2+(x2+4x)=0, 化简,得3x2+5x-2=0. 系数化为1,得x2+53x=2 配方,得x+562=4936,∴x+56=±7 ∴x1=-2,x2=132.2.2公式法课前预习 1.x=-b±b2-4ac2 2.求根公式课堂探究【例1】探究答案:1.一般形式 2.a、b、c 解:原方程可化为x2+2x-1=0, ∵a=1,b=2,c=-1. b2-4ac=22-4×1×(-1)=8>0,∴x=-2±82×1= ∴x1=-1+2,x2=-1-2. 变式训练1-1:D 变式训练1-2:解:(1)移项,得2x2+3x-1=0, ∵a=2,b=3,c=-1,∴b2-4ac=17>0, ∴x=-3 ∴x1=-3+174,x (2)化简得,x2+5x+5=0, ∴a=1,b=5,c=5, ∴b2-4ac=5>0, ∴x=-5 ∴x1=-5+52,x【例2】探究答案:1.一元二次方程有实数根 2.相等解:原方程可化为2x2+22x+1=0, ∵a=2,b=22,c=1,∴b2-4ac=(22)2-4×2×1=0, ∴x=-22± ∴x1=x2=-22 变式训练2-1:解:(1)b2-4ac=(-2)2-4×1×1=4-4=0. ∴此方程有两个相等的实数根.(2)b2-4ac=72-4×(-1)×6=49+24=73>0. ∴此方程有两个不相等的实数根. 变式训练2-2:C课堂训练 1.D 2.C 3.2 4.解:(1)b2-4ac=(-4)2-4×2×(-1)=16+8=24>0. ∴x=-b±b2-4a∴x1=2+62,x2 (2)整理,得4x2+12x+9=0, 所以a=4,b=12,c=9. 因为b2-4ac=122-4×4×9=0, 所以方程有两个相等的实数根, 所以x=-b± =-128=- ∴x1=x2=-32课后提升 1.C 2.A 3.D 4.D 5.-1+ 6.x1=1,x2=1 7.25或16 8.解:整理得x2+2x-1=0, b2-4ac=22-4×1×(-1)=8, x=-2±82×1=∴x1=-1+2,x2=-1-2. 9.解:(1)x2-4x-1=0, ∵a=1,b=-4,c=-1,∴Δ=(-4)2-4×1×(-1)=20, ∴x=4±202×1 ∴x1=2+5,x2=2-5.(2)∵3x(x-3)=2(x-1)(x+1), ∴x2-9x+2=0, ∵a=1,b=-9,c=2,∴Δ=(-9)2-4×1×2=73>0, ∴x=-b±b ∴x1=9+732,x2 10.解:由题意得,m2+1=2, 且m+1≠0, 解得m=1. 所以原方程为2x2-2x-1=0, 这里a=2,b=-2,c=-1. b2-4ac=(-2)2-4×2×(-1)=12. ∴x=2±23∴x1=1+32,x22.2.3因式分解法课前预习1.(2)(a-b)(a+b)(a±b)22.一次因式课堂探究【例1】探究答案:x[(x+2)-4]3(x-5)2-2(5-x)=0 (x-5)(3x-13) 解:(1)x(x+2)-4x=0,x[(x+2)-4]=0, 即x(x-2)=0, ∴x=0或x-2=0,∴x1=0,x2=2. (2)3(x-5)2=2(5-x), 3(x-5)2-2(5-x)=0, (x-5)[3(x-5)+2]=0,∴x-5=0或3x-15+2=0, ∴x1=5,x2=133 变式训练1-1:C 变式训练1-2:解:(1)(3x-4)2=3(3x-4), ∴(3x-4)(3x-7)=0, ∴x1=43,x2=7(2)3(x+2)2=(x+2)(x-2), (x+2)[3(x+2)-(x-2)]=0, ∴(x+2)(2x+8)=0,∴x1=-2,x2=-4.【例2】探究答案:直接开平方法配方法公式法因式分解法解:(1)公式法:∵a=1,b=-3,c=1, ∴b2-4ac=(-3)2-4×1×1=5>0, ∴x=-(-3 ∴x1=3+52,x2 (2)因式分解法:原方程可化为x(x-3)=0,∴x=0或x-3=0 ∴x1=0,x2=3. (3)配方法:配方,得x2-2x+1=4+1, 即(x-1)2=5, ∴x-1=±5, ∴x1=1+5,x2=1-5. 变式训练2-1:C 变式训练2-2:解:(1)用直接开平方法:原方程可化为(x-3)2=4, ∴x-3=±2,∴x1=5,x2=1. (2)用配方法:移项,得x2-4x=7. 配方,得x2-4x+4=7+4, 即(x-2)2=11, ∴x-2=±11 ∴x-2=11或x-2=-11, ∴x1=2+11,x2=2-11. (3)用因式分解法:方程两边分别分解因式,得(x-3)2=2(x-3)(x+3), 移项,得(x-3)2-2(x-3)(x+3)=0. 方程左边分解因式,得(x-3)[(x-3)-2(x+3)]=0, 即(x-3)(-x-9)=0, ∴x-3=0或-x-9=0.∴x1=3,x2=-9.课堂训练 1.C 2.D 3.7 4.-1或4 5.解:(1)∵a=3,b=1,c=-1, ∴b2-4ac=12-4×3×(-1)=13>0, ∴x=- ∴x1=-1+136,x (2)移项,得(3x-2)2-4(3-x)2=0, 因式分解, 得[(3x-2)+2(3-x)][(3x-2)-2(3-x)]=0,即(x+4)(5x-8)=0, ∴x+4=0或5x-8=0, ∴x1=-4,x2=85 (3)将原方程整理,得x2+x=0, 因式分解,得x(x+1)=0, ∴x=0或x+1=0, ∴x1=0,x2=-1.课后提升1.A 2.D 3.B 4.B 5.B 6.x1=3,x2=97.68.-1 9.解:(1)用求根公式法解得y1=3,y2=-8. (2)用分解因式法解得x1=52,x2=-1 (3)用求根公式法解得y1=-2+22,y 10.解:解方程x(x-7)-10(x-7)=0, 得x1=7,x2=10. ∵4<第三边长<10, ∴x2=10(舍去).第三边长为7. 这个三角形的周长为3+7+7=17.2.3一元二次方程根的判别式课前预习1.a≠02.(1)>(2)=(3)<课堂探究【例1】探究答案:1.一般形式 2.a、b、c b2-4ac 解:(1)原方程可化为x2-6x+9=0, ∵Δ=b2-4ac=(-6)2-4×1×9=0, ∴原方程有两个相等的实数根. (2)原方程可化为x2+3x+1=0,∵Δ=b2-4ac=32-4×1×1=5>0, ∴原方程有两个不相等的实数根. (3)原方程可化为3x2-26x+3=0. ∵Δ=b2-4ac=(-26)2-4×3×3=-12<0, ∴原方程无实数根. 变式训练1-1:A 变式训练1-2:B【例2】探究答案:1.≥ 解:由题意知:b2-4ac≥0, 即42-8k≥0,解得k≤2. ∴k的非负整数值为0,1,2. 变式训练2-1:B 变式训练2-2:解:∵a=2,b=t,c=2. ∴Δ=t2-4×2×2=t2-16, 令t2-16=0,解得t=±4, 当t=4或t=-4时,原方程有两个相等的实数根.课堂训练 1.D 2.A 3.D 4.k<-1 5.解:(1)当m=3时,Δ=b2-4ac=22-4×1×3=-8<0, ∴原方程没有实数根. (2)当m=-3时,x2+2x-3=0, x2+2x=3, x2+2x+1=3+1, (x+1)2=4, ∴x+1=±2,∴x1=1,x2=-3.课后提升 1.D 2.A 3.C 4.C 5.D 6.m>17.m<2且m≠1 8.6或12或10 9.解:由题意,得b 由①,得4(k+1)+4-8k>0, 即-4k>-8,解得k<2. 由②得,k≠12,由③得,k≥-1 ∴-1≤k<2且k≠12 10.解:(1)Δ=b2-4ac =4-4(2k-4) =20-8k. ∵方程有两个不等的实根,∴20-8k>0,∴k<52 (2)∵k为正整数, ∴0<k<52(且k为整数即k为1或2,∴x="-1±5-" ∵方程的根为整数,∴5-2k为完全平方数.="" 当k="1时,5-2k=3;当k=2时,5-2k=1." ∴k="2.2.4一元二次方程根与系数的关系课前预习-ba课堂探究【例1】探究答案:1.-1 2.2ab a 解:因为方程x2-x-1=0的两实根为a、b. 所以(1)a+b=1; (2)ab=-1;(3)a2+b2=(a+b)2-2ab=12-2×(-1)=3; (4)1a+1b=a+ 变式训练1-1:-2变式训练1-2:-65【例2】探究答案:1.2(m+1) 2.>0 解:∵方程有两个不相等的实数根, ∴Δ=b2-4ac=[-2(m+1)]2-4×1×(m2-3) =16+8m>0, 解得m>-2; 根据根与系数的关系可得x1+x2=2(m+1),∵(x1+x2)2-(x1+x2)-12=0, ∴[2(m+1)]2-2(m+1)-12=0, 解得m1=1或m2=-52 ∵m>-2,∴m2=-52(舍去∴m=1. 变式训练2-1:1 变式训练2-2:解:∵x1+x2=2,∴m=2. ∴原方程为x2-2x-3=0,即(x-3)(x+1)=0, 解得x1=3,x2=-1.课堂训练 1.B 2.A 3.-2 4.5 5.解:设x1,x2是方程的两个实数根, ∴x1+x2=-32,x1x2=1 又∵1x1+1x2=3,∴∴-31-∴-3=3-3m,∴m=2, 又∵当m=2时,原方程的Δ=17>0, ∴m的值为2.课后提升 1.B 2.B 3.D 4.B 5.B 6.-20147.68.2014 9.解:将-2代入原方程得:(-2)2-2+n=0, 解得n=-2, 因此原方程为x2+x-2=0, 解得x1=-2,x2=1, ∴m=1. 10.解:(1)根据题意得m≠1Δ=(-2m)2-4(m-1)(m+1)=4, ∴x1=2m+2 x2=2m-2 (2)由(1)知x1=m+1m- 又∵方程的两个根都是正整数, ∴2m- ∴m-1=1或2. ∴m=2或3.2.5一元二次方程的应用第1课时增长率与利润问题课前预习 1.a(1±x) 2.(1)单件售价(2)单件利润课堂探究【例1】探究答案:(1)10000(1+x)10000(1+x)2 (2)12100(1+x) 解:(1)设捐款增长率为x,根据题意列方程得, 10000(1+x)2=12100, 解得x1=0.1,x2=-2.1(不合题意,舍去); 答:捐款增长率为10%. (2)12100×(1+10%)=13310元. 答:第四天该单位能收到13310元捐款. 变式训练1-1:A 变式训练1-2:B【例2】探究答案:200+40x0.1解:设应将每千克小型西瓜的售价降低x元. 根据题意,得(3-2-x)200+40x0.1-24= 解这个方程,得x1=0.2,x2=0.3. 答:应将每千克小型西瓜的售价降低0.2元或0.3元. 变式训练2-1:2或6 变式训练2-2:解:设每件童装应降价x 元. 根据题意得(40-x)(20+2x)=1200, 解这个方程得x1=10,x2=20. 因为在相同利润的条件下要扩大销售量,减少库存, 所以应舍去x1=10. 答:每件童装应降价20元.课堂训练 1.B 2.D 3.B 4.20% 5.解:设每千克核桃应降价x元. 根据题意得(60-x-40)(100+x2×20)= 解这个方程得x1=4,x2=6. 答:每千克核桃应降价4元或6元.课后提升 1.C 2.C 3.D 4.B 5.10% 6.30007.40(1+x)2=48.48.10% 9.解:(1)设每轮传染中平均一个人传染了x个人, 由题意,得1+x+x(1+x)=64, 解之,得x1=7,x2=-9. 答:每轮传染中平均一个人传染了7个人. (2)7×64=448. 答:又有448人被传染. 10.解:(1)设每年市政府投资的增长率为x, 根据题意,得:2+2(1+x)+2(1+x)2=9.5, 整理,得x2+3x-1.75=0, 解之,得x1=0.5, x2=-0.35(舍去) 所以每年市政府投资的增长率为50%. (2)到2013年年底共建廉租房面积=9.5×82=38(万平方米)第2课时面积与动点问题课堂探究【例1】探究答案:1.(6-x)2x 2.12(6-x)·2x= 解:设经过x秒钟后,△PBQ的面积等于8 cm2. 根据题意得12(6-x)·2x=8 解这个方程得x1=2,x2=4. 答:经过2秒或4秒后,△PBQ的面积等于8 cm2. 变式训练1-1:解:(1)由勾股定理:AC=5 cm,设x秒钟后,P、Q之间的距离等于5 cm,这时PC=5-x,CQ=2x, 则(5-x)2+(2x)2=52,即x2-2x=0. 解这个方程,得x1=0,x2=2,其中x1=0不合题意,舍去. 答:再运动2秒钟后,P、Q间的距离又等于5 cm. (2)设y秒钟时,可使△PCQ的面积等于4 cm2. 12×(5-y)×2y=4 即y2-5y+4=0, 解得y1=1,y2=4. 经检验,它们均符合题意. 答:1秒钟或4秒钟时,△PCQ的面积等于4 cm2. 变式训练1-2:解:设应移动x米.OA=AB2-O 则由题意得(3+x)2+(4-x)2=52. 解这个方程得x1=1,x2=0(不合题意,舍去). 答:应移动1米.【例2】探究答案:(100-2x)(50-2x) 解:设正方形观光休息亭的边长为x米. 依题意,有(100-2x)(50-2x)=3600. 整理,得x2-75x+350=0.解得x1=5,x2=70. ∵x=70>50,不合题意,舍去,∴x=5. 答:矩形花园各角处的正方形观光休息亭的边长为5米. 变式训练2-1:B 变式训练2-2: 解:设P、Q两块绿地周围的硬化路面的宽都为x米, 根据题意,得(40-2x)(60-3x)=60×40×14 解之,得x1=10, x2=30(不符合题意,舍去). 答:两块绿地周围的硬化路面的宽都是10米.课堂训练1.B 2.C 3.D 4.1 5.解:设花边的宽为x米, 根据题意,得(2x+6)(2x+3)=40. 解得x1=1,x2=-112 但x2=-112不合题意,舍去答:花边的宽为1米.课后提升 1.D 2.C 3.C 4.B 5.D 6.97.24458.1000 9.解:(1)设小货车原计划每辆每次运送帐篷x顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得2[8x+2(x+200)]=16800,解得x=800, x+200=800+200=1000. 故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶. (2)根据题意,得2(1000-200m)1+12m+8(800-300)(1+m)=14400, 化简为m2-23m+42=0,解得m1=2,m2=21. ∵1000-200m不能为负数,且12m为整数∴m2=21(不符合实际,舍去),故m的值为2. 10.解:设x秒后四边形APQB的面积是△ABC面积的23 在Rt△ABC中,AB=10,AC=8, 由勾股定理,得BC2=AB2-AC2=102-82=36,∴BC=6. 则12(8-2x)(6-x)=13×12×6 解得x1=2,x2=8(不合题意,舍去), ∴2秒后四边形APQB的面积是△ABC面积的23 第3章图形的相似3.1比例线段3.1.1比例的基本性质课前预习 1.(1)比值比值(2)比例内项 2.(1)bc课堂探究【例1】探究答案:1.3x3y=2y 2.7y=4x7∶4 解:(1)∵3x=2y, ∴3x3y 即xy=2 (2)∵7x=4 ∴7y=4x, xy=7 变式训练1-1:D 变式训练1-2:4【例2】探究答案:1.2 解:∵ADAB=AEA ∴AD+A 即△ADE 设△ADE和△ABC的周长分别为2x cm和3x cm,则有3x-2x=15,得x=15. ∴△ABC的周长为45 cm,△ADE的周长为30 cm. 变式训练2-1:D 变式训练2-2:解:设x3=y5=z7=k,则x=3k,y=5k,z= ∴x-y+zx+y 课堂训练 1.C 2.A 3.2∶3=4∶6(答案不唯一) 4.1 5.解:因为m-nn 所以3(m-n)=2n, 化简得3m=5n, 所以mn=53,则3m+2nn=3mn+2=mn×3+课后提升 1.C 2.C 3.D 4.C 5.A 6.52727.338.2或9.解:∵a∶b∶c=1∶2∶4, 设a=k,b=2k, c=4k, 则a+2b+3ca 10.解:∵ab=cd=ef ∴2a2b=-c- ∴2a-c3.1.2成比例线段课前预习 1.m∶n ABC 2.ab=c 3.BCAC黄金比课堂探究【例1】探究答案:1.(12-x)x12-x=64 2 解:(1)设AD=x cm,则DB=(12-x)cm. 则有x12-x=64,解这个方程得x= 所以AD=7.2 cm.(2)DBAB=12-7.212= 所以DBAB 所以线段DB、AB、EC、AC是成比例线段. 变式训练1-1:B 变式训练1-2:解:利用比例线段的定义, ∵a=1 mm=0.1 cm,b=0.8 cm, c=0.02 cm,d=4 cm,∴d>b>a>c, 而db=40.8=5,ac ∴db=a ∴d、b、a、c四条线段是成比例线段.【例2】探究答案:1.ACAB=CBAC 解:设CB=x,∵点C为线段AB的黄金分割点, ∴ACAB=CBAC,即3x+3= 解得x1=35-32,x2=- 故CB的长为35 变式训练2-1:C 变式训练2-2:解:因为点C是AB的黄金分割点, 所以当AC>BC时,ACAB 又因为AB=10 cm, 所以AC=5-12×10=(55-5 当AC<bc时,bcab 所以bc="5-12×10=(55-5" 所以ac="AB-BC=10-(55-5)=(15-55)(cm)," 所以ac的长为(55-5)cm或(15-55)cm. <="" span="">课堂训练 1.D 2.4535 3.6-25 5.解:(1)a∶b=c∶d,即a∶0.2=0.5∶1, 则a=0.2×0.5=0.1. (2)a∶b=c∶d,即3∶7=c∶21,则7c=21×3,得c=9.课后提升 1.B 2.D 3.C 4.B 5.B 6.6.987.168.5-1 9.解:设相邻两个钉子之间的距离为1个单位长度, 则AD=2,BD=5,BE=5, CE=1,CF=4,AF=3. 在直角三角形ABD中, AB=AD2+BD 在直角三角形BCE中, BC=BE2+CE 在直角三角形ACF中, AC=CF2+AF 所以ABAC=295, 10.解:设每一份为k, 由(a-c)∶(a+b)∶(c-b)=(-2)∶7∶1, 得a-c 而(3k)2+(4k)2=(5k)2, 即a2+b2=c2, 所以△ABC是直角三角形.3.2平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等(2)对应线段(3)成比例课堂探究【例1】探究答案:1.35 2. 解:∵l1‖l2‖l3, ∴ABAC∵ABBC=32,∴∴DEDF 由DF=20 cm,得DE=35DF=12 cm∴EF=DF-DE=8 cm. 变式训练1-1:D 变式训练1-2:1【例2】探究答案:1.AEAC 2.x-4x-4 D 变式训练2-1:B 变式训练2-2:A课堂训练 1.B 2.A 3.A 4.5 5.解:∵DE⊥AB,CB⊥AB,∴DE‖BC, ∴ADAB=AEAC ∴AC=253 ∴BC=AC2-AB课后提升 1.C 2.C 3.A 4.D 5.D 6.97.68.14 9.解:∵DE‖BC,DF‖AC, ∴四边形EDFC为平行四边形, ∴DE=FC=5, 又∵DF‖AC, ∴ADBD=CFBF,即48 10.解:∵DE‖BC, ∴ADAB 又∵EF‖CD, ∴AFAD ∴ADAB ∴AD2=AB·AF=36, ∴AD=6 cm.3.3相似图形课前预习 1.(1)对应相等对应成比例(2)∽△ABC相似于△A'B'C' (3)相等成比例 2.(1)对应角成比例(2)相等等于相似比课堂探究【例1】探究答案:1.∠A'∠B'∠C' 2.180°-∠A-∠B解:∵△ABC∽△A'B'C', ∴∠B=∠B'=60°, 在△ABC中,∠C=180°-∠A-∠B=180°-50°-60°=70°. 变式训练1-1:50 变式训练1-2:1∶2【例2】探究答案:(1)CD CB(2)77°83°解:因为四边形ABCD∽四边形EFGH, ∴∠F=∠B=77°,∠G=∠C=83°, EFAB=GHCD= ∴∠H=360°-(∠E+∠F+∠G)=83°, BC=FG÷29=6×92=CD=GH÷29=7×92=31. 变式训练2-1:B 变式训练2-2:解:由四边形ABCD与四边形A'B'C'D'相似得, x21=12y= ∠A=∠A'=120°,∴x=21×1015=14 y=12÷1015=12×32=∠α=360°-(∠A+∠B+∠C)=80°.课堂训练 1.C 2.B 3.6 1.5 4.9或25 5.解:因为梯形AEFD∽梯形EBCF, 所以ADEF=E 又因为AD=4,BC=9, 所以EF2=AD·BC=4×9=36, 所以EF=6, 所以AEEB=ADE课后提升 1.B 2.D 3.D 4.D 5.D 6.230°7.60°140°18.5 9.解:∵四边形ABCD与四边形EFGH相似,∴∠E=∠A=70°,∠F=∠B=80°. ∴∠G=360°-70°-80°-150°=60°.∵ABEF ∴AB=EF·ADE ∵BCFG ∴BC=FG·ADEH= 10.解:∵△ABC∽△APQ, ∴ABAP 即4040+60 解得PQ=75. 答:PQ的长为75 cm.3.4相似三角形的判定与性质3.4.1相似三角形的判定第1课时两角对应相等或平行判定相似课前预习(1)相似(2)相等课堂探究【例1】探究答案:1.EDA 2.DFC 3.△EDA△DFC 解:∵四边形ABCD是平行四边形, ∴AB‖CD,AD‖BC,∴△BEF∽△CDF,△BEF∽△AED, ∴△BEF∽△CDF∽△AED. 当△BEF∽△CDF时,相似比k1=BECD 当△BEF∽△AED时,相似比k2=BEAE 当△CDF∽△AED时,相似比k3=CDAE 变式训练1-1:3 变式训练1-2:1∶2【例2】探究答案:1.∠DAE 2.∠D 解:△ABC∽△ADE,理由如下: ∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC, 即∠BAC=∠DAE,又∵在△AOB与△COD中, ∠AOB=∠COD,∠1=∠3, ∴∠B=∠D, ∴△ABC∽△ADE. 变式训练2-1:C 变式训练2-2:证明:∵四边形ABCD是平行四边形, ∴AD‖BC,AB‖CD,∴∠ADF=∠CED,∠B+∠C=180°, ∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C, ∴△ADF∽△DEC.课堂训练 1.D 2.C 3.A 4.∠ADE=∠C(答案不唯一) 5.解:(1)在△ABC中, ∵∠A=90°,∠B=50°, ∴∠C=40°.∴∠A=∠A'=90°,∠C=∠C'=40°. ∴△ABC∽△A'B'C'(两角相等的两个三角形相似). (2)在△ABC中, ∵∠A=∠B=∠C,∴∠A=∠B=∠C=60°, ∴∠A=∠A',∠B=∠B', ∴△ABC∽△A'B'C'(两角相等的两个三角形相似).课后提升1.A 2.D 3.C 4.D 5.6 6.2.5 7.解:∵∠A=36°,AB=AC, ∴∠ABC=∠ACB=72°, ∵BD平分∠ABC,∴∠CBD=∠ABD=36°, ∠BDC=72°, ∴AD=BD,BC=BD,∴△ABC∽△BDC, ∴BDAB=CDBC ∴AD2=AC·CD, 设AD=x,则CD=1-x, ∴x2=1×(1-x), x2+x-1=0, x=-1±1 x1=-1+52,x2= ∴AD=5-∴AD的长是5- 8.解:(1)△ABC∽△FOA,理由如下: 在矩形ABCD 中,∠BAC+∠BCA=90°, ∵l垂直平分AC, ∴∠OFC+∠BCA=90°,∴∠BAC=∠OFC=∠OFA, 又∵∠ABC=∠FOA=90°,∴△ABC∽△FOA. (2)四边形AFCE是菱形,理由如下: ∵AE‖FC,∴∠AEO=∠OFC,∠EAO=∠OCF, ∴△AOE∽△COF,∵OC=OA,∴OE=OF, 即AC、EF互相垂直平分, ∴四边形AFCE是菱形.第2课时两边成比例夹角相等或三边成比例判定相似课前预习(1)成比例夹角(2)成比例课堂探究【例1】探究答案:1.45 2.△DCA 解:因为ABCD=45, 所以ABCD 又因为∠B=∠ACD, 所以△ABC∽△DCA, 所以ABDC 所以AD=DC·ACA 变式训练1-1:B 变式训练1-2:证明:∵四边形ABCD是正方形, ∴AD=DC=BC,∠D=∠C=90°, ∵M是CD的中点,∴AD∶DM=2∶1, ∵BP=3PC,∴CM∶PC=2∶1, 即ADDM=CMPC, ∴△ADM∽△MCP.【例2】探究答案:1.51052210 2.102102 解:相似.理由如下: AB=5,AC=10,BC=5, DE=2,DF=2,EF=10,∵ABDE=102,ACDF 即ABDE=A ∴△ABC∽△DEF. 变式训练2-1:A 变式训练2-2:证明:∵D、E、F分别为AB、AC、BC的中点, ∴DE、DF、EF分别为△ABC的中位线, ∴DE=12BC,DF=12AC,EF=1∴DECB=DFC ∴△DEF∽△CBA.课堂训练 1.A 2.C 3.B 4.3 5.解:由题知AC=2,BC=12+32=10 DF=22+22=22,EF=2 ED=8,∴ACDF=BCE∴△ABC∽△DEF.课后提升1.C 2.C 3.D 4.C 5.B 6.20°7.(4,0)或(3,2) 8.解:(1)△ABC∽△EBD,理由如下: ∵BD·AB=BE·BC,∴BDBC 又∵∠B 为公共角,∴△ABC∽△EBD. (2)ED⊥AB,理由如下: 由△ABC∽△EBD可得∠EDB=∠C, ∵∠C=90°,∴∠EDB=90°,即ED⊥AB. 9.解:△A'B'C'∽△ABC,理由如下: ∵OA'OA=OC'OC∴△AOC∽△A'OC', ∴A'C'AC 同理B'C'BC=3 ∴A'C'AC∴△A'B'C'∽△ABC.3.4.2相似三角形的性质课前预习1.相似比2.(1)相似比相似比的平方(2)相似比相似比的平方课堂探究【例1】探究答案:1.△ADE 2.DE 解:∵BC‖DE,∴∠ABC=∠ADE,∠ACB=∠AED, ∴△ABC∽△ADE, 所以MCNE 设DE高为x m,则0.630=0. 故旗杆大致高12 m. 变式训练1-1:C 变式训练1-2:1∶2【例2】探究答案:1.相似比的平方 2.9解:(1)∵△ABC∽△ADE,∴ABAD ∵AB=15,AC=9,BD=5,∴AD=20,∴AE=AD·ACA 即AE的长为12.(2)∵△ABC∽△ADE,∴S△ABCS ∴S△ADE=16×279 ∴S四边形BDEC=48-27=21. 变式训练2-1:A 变式训练2-2:D课堂训练 1.D 2.D 3.1∶2 4.1∶21∶4 5.解:因为DE‖BC, 所以∠ADE=∠ABC,∠AED=∠ACB, 所以△ADE∽△ABC. 又DEBC=13,△ADE的周长是所以△ABC的周长是30 cm, 所以梯形BCED的周长为30-8+2=24(cm).课后提升 1.D 2.A 3.B 4.A 5.1∶9 6.37.60378. 9.(1)证明:∵E是AB的中点, ∴AB=2EB, ∵AB=2CD,∴CD=EB, 又∵AB‖CD, ∴四边形CBED是平行四边形, ∴DE‖CB,∴∠EDM=∠MBF,∠DEM=∠MFB, ∴△EDM∽△FBM. (2)解:∵△EDM∽△FBM,∴DMBM 又∵F是BC的中点, ∴DE=2BF, ∴DM=2BM. ∴BM=13DB=3 S△EDMS△FB3.5相似三角形的应用课堂探究【例1】探究答案:1.△ABF△EFG 2.DFB 解:∵CD‖EF‖AB, ∴可以得到△CDF∽△ABF,△ABG∽△EFG, ∴CDAB=DFB 又∵CD=EF,∴DFBF∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3DB+∴BD=9,BF=9+3=12,∴1.6AB=312,解得,AB=6 变式训练1-1:A 变式训练1-2:5.6【例2】探究答案:1.△EDC 2.△EDC B 解:(1)DE=AB,理由如下: ∵AB⊥BF,ED⊥BF, ∴∠ABC=∠EDC. ∵∠ACB=∠ECD,BC=CD, ∴△ABC≌△EDC(ASA), ∴AB=DE,即DE的长就是A、B的距离.∵∠ABC=∠EDC=90°,∠ACB=∠ECD, ∴△ABC∽△EDC,∴ABDE=BCCD,AB=DE·即A、B之间的距离为15米. 变式训练2-1:C 变式训练2-2:解:设AB=x米, 因为BC‖DE,所以∠ABC=∠D, 又∠A=∠A,所以△ABC∽△ADE, 则ABBC=ADDE 解得x=70.答:A、B两村相距70米. 课堂训练 1.A 2.B 3.874.1.55.解:由光的反射定律可知∠1=∠2,∴∠ABS=∠CBP.∵SA⊥AC,PC⊥AC,∴∠SAB=∠PCB=90°, ∴△ASB∽△CPB. ∴SAPC ∴SA=AB·PCCB=10 答:点光源S与平面镜的距离SA的长是12 cm.课后提升 1.C 2.A 3.A 4.D 5.22.5 6.8 m7.4.2 8.解:∵∠DEF=∠BCD=90°,∠D=∠D, ∴△DEF∽△DCB, ∴BCEF∵DE=40 cm=0.4 m,EF=20 cm=0.2 m,AC=1.5 m,CD=10 m. ∴BC0.∴BC=5(m), ∴AB=AC+BC=1.5+5=6.5(m),∴树高为6.5 m.3.6位似课前预习 1.同一个点O位似中心相似比 2.位似坐标原点课堂探究【例1】探究答案:1.1∶2 2.1∶4 解:(1)△ABC与△A'B'C'的周长之比为ABA'B' 设S△ABC周长为x cm,△A'B'C'周长为2x cm, 则2x-x=12,解得x=12, 所以△ABC的周长为12 cm. (2)△ABC与△A'B'C'的面积之比为ABAB2=1 设S△ABC=y cm2,则S△A'B'C'=4y cm2, 则y+4y=25,解得y=5, 所以△A'B'C'的面积为20 cm2. 变式训练1-1:B 变式训练1-2:解:(1)、(3)中的两个图形都是位似图形,位似中心分别为点A、O;(2)中的两个图形不是位似图形.【例2】探究答案:1.位似中心 2.位似中心解:(1)如图所示.(2)A'C'=22+22=22, ∴四边形AA'C'C的周长为AA'+A'C'+C'C+CA=2+22+2+42=4+62. 变式训练2-1:B 变式训练2-2:解:作法: (1)连接OA,并延长OA到A',使得AA'=OA; (2)连接OB,并延长OB到B',使得BB'=OB; (3)连接OC,并延长OC到C',使得CC'=OC;(4)连接OD,并延长OD到D',使得DD'=OD; (5)连接A'B',B'C',C'D',D'A'(如图所示),则四边形A'B'C'D'是四边形ABCD关于O点的位似图形, 且四边形A'B'C'D'与四边形ABCD的相似比为2.【例3】探究答案:1.位似中心 2.1∶(-2) 解:(1)延长BO到B',使B'O=2BO,延长CO到C',使C'O=2CO,连接B'C'.则△OB'C'即为△OBC的位似图形(如图所示). (2)观察图形可知,B'(-6,2)、C'(-4,-2).(3)M'(-2x,-2y). 变式训练3-1:C 变式训练3-2:6课堂训练 1.B 2.D 3.20 4.(-4,-4) 5.解:(1)OAE与△OBF相似.理由: ∵AC‖BD,∴OAOB 又CE‖DF,∴OEOF ∴OAOB ∴AE‖BF,∴△OAE∽△OBF. △OAE与△OBF位似.理由: 已证△OAE∽△OBF, 又△OAE和△OBF对应点的连线都经过点O,∴△OAE与△OBF位似. (2)△ACE与△BDF位似.理由: 由(1)得AE‖BF,∴AEBF 又AC‖BD,∴ACBD=O 又CE‖DF,∴CEDF ∴ACBD=C∴△ACE∽△BDF. 又△ACE和△BDF对应点的连线都经过点O, ∴△ACE与△BDF位似.课后提升 1.D 2.A 3.D 4.2,32或-2,-32 5.4 6.187.10 8.解:∵矩形ABCD与矩形AB'C'D'是位似图形,且点A为位似中心, ∴ABAB 即ABAB ∴2AB=4AD,即ABAD 又∵矩形ABCD的周长为24,即AB+AD=12, ∴AB=8,AD=4.第4章锐角三角函数 4.1正弦和余弦第1课时正弦课前预习 1.大小 2.对边斜边sin A∠A 3.1222课堂探究【例1】探究答案:1.直角 2.对斜角的大小无关解:∵BC2+AC2=62+82=102=AB2, ∴△ABC是直角三角形,∠C=90°, ∴sin A=BCAB=610=35,sin B=A 变式训练1-1:5 变式训练1-2:3 【例2】探究答案:1.1 1 2.倒数正311 3 3.3 解:原式=12+1-3-2×3 =23+1-3-3 =3-2. 变式训练2-1:45°变式训练2-2:2 课堂训练 1.C 2.D 3.4 4.4 5.解:(1)原式=2+3-2×1 =2+3-1 =4. (2)原式=3-1-4×32+2 =3-1-23+23 =2.课后提升 1.C 2.B 3.C 4.C 5.B 6.0.64217.538. 9.解:∵sin 30°=12 ∴∠A=30°, ∵sin 60°=32 ∴∠C=60°, 则∠B=180°-30°-60°=90°, ∴△ABC是直角三角形. 10.解:过点A作AD⊥BC于D, ∴sin ∠ABC=ADAB ∴AD=2114×AB=2114×10= 在Rt△ACD中,sin ∠ACB=ADAC第2课时余弦课前预习 1.邻边斜边 b 2.(90°-α)(90°-α) 3.3222课堂探究【例1】探究答案:1.BCAB AB2 2.ACAB解:∵sin A=BCAB 设BC=8x,AB=17x, ∴AC=AB2-B ∴cos A=ACAB=15 sin B=ACAB=cos cos B=BCAB=sin 变式训练1-1:D 变式训练1-2:27 变式训练1-3:0.5684【例2】探究答案:1.非负非负非负0 2.30°60° D 变式训练2-1:C 变式训练2-2:(1)6 (2)解:原式=22×22-32+2 =22-32+62 =2-62+ =2.课堂训练 1.B 2.B 3.513 4. 5.解:∵BC∶CA∶AB=5∶12∶13, 设BC=5k, 则CA=12k,AB=13k,∵(5k)2+(12k)2=(13k)2, 即BC2+CA2=AB2, ∴∠C=90°. 在Rt△ABC 中, sin A=BCAB=5 cos A=ACAB=12 sin B=cos A=1213 cos B=sinA=513课后提升 1.A 2.B 3.B 4.A 5.C 6.310107.18 9.解:(1)原式=2×22-1=1-1=0 (2)原式=-1-12+12+1= 10. 解:(1)过点B作BC⊥x轴于C, ∴sin ∠BOA=BCOB ∵OB=5, ∴BC=3, ∴OC=OB2- ∴点B的坐标为(4,3). (2)∵点A的坐标为(10,0), ∴AC=6. ∵BC=3,∴AB=62+32 ∴cos ∠BAO=ACAB=64.2正切课前预习 1.对边邻边ab 2.(2)正弦余弦正切 3.12 2232322212课堂探究【例1】探究答案:1.ACA 2.平行四边形ABED三角形ACD 三角形CDE B 变式训练1-1:C 变式训练1-2:A 【例2】探究答案:1.原式 2.2 解:(1)cos245°+tan 30°·sin 60° =222+33×3 =12+12= (2)cos 30°tan 30°+sin 60°tan 45°tan 60° =32×33+32× =12+ =2. 变式训练2-1:D变式训练2-2:1课堂训练 1.B 2.D 3.(1)0.3057(2)72.2° 4.3 5.解:(1)在Rt△ACD中,cos∠ADC=CDAD 设CD=3k,AD=5k, 由AD=BC得:5k=3k+4, ∴k=2.∴CD=3k=6. (2)∵BC=3k+4=10, AC=AD2-CD∴tan B=ACBC=8课后提升 1.A 2.C 3.B 4.C 5.A 6.337.58.②③④9. 10.解:11- ∴1-tan α=0,tan α=1, ∴α=45°, sin(α+15°)+cos(α-15°) =sin 60°+cos 30° =32+ =3.4.3解直角三角形课前预习 1.32未知 2.(1)a2+b2=c2(2)∠A+∠B=90°课堂探究【例1】探究答案:1.CD AB BD CD 2.BC BD BE D 解:(1)在△ABC中,AD是BC边上的高, ∴∠ADB=∠ADC=90°. 在△ADC中,∠ADC=90°,∠C=45°,AD=1, ∴DC=AD=1. 在△ADB中,∠ADB=90°,sin B=13,AD=1 ∴AB=ADsinB ∴BD=AB2-A∴BC=BD+DC=22+1. (2)∵AE是BC边上的中线, ∴BE=12BC=2+1∴DE=BD-BE=2-12 ∴tan∠DAE=DEAD=2 变式训练1-1:C 变式训练1-2:24【例2】探究答案:1.AB 2.AC·cos A AC·sin A CD 3.AD BD 解:过点C作CD⊥AB于D, ∵∠A=30°,AC=10 cm, sinA=CDAC,cos ∴CD=AC·sin A=10×sin 30°=5(cm), AD=AC·cos A=10×cos 30°=53(cm). ∵∠B=45°,∴BD=CD=5(cm).∴AB=AD+BD=53+5=5(3+1)cm. 变式训练2-1:D 变式训练2-2:21 课堂训练1.A 2.B 3.6 4.6 5.解:(1)∵∠C=90°,∴∠B=90°-∠A=60°. ∵cos A=bc ∴c=bcosA=3cos ∴a=12c=1.即∠B=60°,a=1,c=2 (2)∵∠C=90°,∴c2=a2+b2, 即a2=c2-b2=42-(22)2=8, ∴a=22,sin A=ac=224 ∴∠A=45°,∴∠B=45°. 即a=22,∠A=∠B=45°.课后提升 1.A 2.B 3.D 4.A 5.A 6.107.0,528.2 9.解:在Rt△BDC中,∠C=90°,∠BDC=45°, BD=102, ∴BC=BD·sin∠BDC =102·sin 45° =10. 在Rt△ABC中,sin A=BCAB=10 ∴∠A=30°. 10.解:过点B作BE⊥AD于E, BF⊥CD于F, ∵∠A=30°,AB=10,∴DF=BE=AB·sin A =10·sin 30° =5, AE=AB·cos 30°=53,∵∠C=30°,BC=20, ∴DE=BF=BC·sin C=20·sin 30°=10, CF=BC·cosC=20·cos 30°=103, ∴AD=AE+DE=53+10, CD=CF+DF=103+5.4.4解直角三角形的应用第1课时利用仰角、俯角解直角三角形课前预习 2.仰角俯角课堂探究【例1】探究答案:1.AD 2.tan 36°BD 解:根据题意,有∠CAD=45°,∠CBD=54°,AB=112 m. 在Rt△ACD中,∠ACD=∠CAD=45°, 有AD=CD.又AD=AB+BD,∴BD=AD-AB=CD-112. 在Rt△BCD中,∠BCD=90°-∠CBD=36°,∴tan∠BCD=tan 36°=BD 得BD=CD·tan 36°. 于是,CD·tan36°=CD-112. ∴CD=1121-tan36°≈1121 答:天塔的高度CD约为415 m. 变式训练1-1:A 变式训练1-2:D【例2】探究答案:1.△CBD△CAD 2.x3x 解:过点C作CD⊥AB于点D, 设CD=x米, 在Rt△ACD中, ∠CAD=30°, 则AD=CDtan30°=3 在Rt△BCD中,∠CBD=45°, 则BD=CD=x, 由题意得,3x-x=4, 解得x=43-1=2(3+1)≈5 答:生命所在点C的深度约为5.5米. 变式训练2-1:B 变式训练2-2:解:(1)根据题意得∠E=∠ABD-∠D=127°-37°=90°. 在Rt△BDE中,∠E=90°,∠D=37°. ∴cos D=DE ∴DE=BD·cos 37°≈520×0.8=416(m). 答:施工点E离D 约416米时,正好使A、C、E在一条直线上. (2)∵sin D=BE∴BE=BD·sin D=520×sin 37°≈312(m), ∴CE=BE-BC≈312-80=232(m). 答:公路CE段的长约为232 m.课堂训练 1.B 2.B 3.3871 m 4.7502 5. 解:如图,作CD⊥AB,垂足为D. 在Rt△ACD中,∠A=30°, ∴CD=12AC=5∴AD=CDtan30°=5 ∵∠B=45°,∴BD=CD=5,BC=52.∴AC+BC-AB=10+52-(53+5) =(5+52-53)(千米). 答:汽车从A地到B 地比原来少走(5+52-53)千米.课后提升1.A 2.A 3.D 4.D 5.A 6.607.2.78.90.6 第2课时利用坡度、方位角解直角三角形课前预习 1.坡角课堂探究【例1】探究答案:1.ABsin 45° 2.2ADcos 30°解:(1)已知AB=2 m,∠ABC=45°, ∴AC=BC=AB·sin 45°=2×22=2(m 答:舞台的高为2米. (2)不会触到大树.理由如下: 已知∠ADC=30°,∴AD=2AC=22. CD=AD·cos 30°=22×32=6(m)<3(m 故修新楼梯AD时底端D不会触到大树. 变式训练1-1:A 变式训练1-2:。

2023版初中数学九年级下册同步训练《学法大视野》(湘教版)含答案62页

2023版初中数学九年级下册同步训练《学法大视野》(湘教版)含答案62页

2023版初中数学九年级下册同步训练《学法大视野》(湘教版)含答案62页概述本文档是关于2023版初中数学九年级下册同步训练《学法大视野》(湘教版)含答案62页的详细介绍。

该教材是针对初中九年级学生编写的数学同步训练教材,在学生学习过程中起到辅助和巩固知识点的作用。

本文档将逐一介绍该教材的目录结构和内容特点,以及一些学生在使用该教材时应注意的事项。

同时,为了帮助学生更好地使用该教材,我们还将提供一些学习方法和解题技巧。

目录结构《学法大视野》(湘教版)含答案62页的目录结构如下:•Unit 1: 分析推理与证明–Section 1: 数列的前后关系–Section 2: 函数的概念–Section 3: 合成函数与反函数–Section 4: 不等式与绝对值•Unit 2: 线性方程与一次函数–Section 1: 一元一次方程–Section 2: 配方法与分式方程–Section 3: 一次函数的图象与性质•Unit 3: 二次根式与二次函数–Section 1: 二次根式的运算–Section 2: 二次函数的概念与图象–Section 3: 初等函数的图象与性质内容特点《学法大视野》(湘教版)含答案62页作为初中九年级数学的同步训练教材,具有以下内容特点:1.有机结合知识点:教材通过合理的章节划分,将数学知识点进行了有机组合,帮助学生更好地理解数学知识的内在联系。

2.着重培养思维能力:教材中的习题涵盖了不同难度和类型的题目,旨在培养学生的分析和推理能力,提高解决问题的能力。

3.强调实用应用:教材中的习题不仅涵盖了基本的数学理论和概念,还包括大量实际应用题,帮助学生将数学知识应用到实际生活中。

4.强调题目解析:教材中每个习题都配有详细的解析过程和答案解释,帮助学生理解解题思路和方法,从而更好地掌握数学知识。

5.高质量的练习题:教材中的习题经过精心编选,保证了题目的准确性和丰富性,适合学生进行系统性的练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时参考答案(课前预习、课堂探究、课堂训练、课后提升)第1章反比例函数1.1 反比例函数课前预习1.y=≠零课堂探究【例1】探究答案:-1k≠0B变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x与y,而要看它能否化为y=(k为常数,k≠0)的形式.所以(2)是反比例函数,其中k=-6;(3)是反比例函数,其中k=-3.变式训练1-2:解:(1)由三角形的面积公式,得xy=36,于是y=.所以,y是x的反比例函数.(2)由圆锥的体积公式,得xy=60,于是y=.所以y是x的反比例函数.【例2】探究答案:1.y=(k≠0)2.(,-)解:设反比例函数的解析式为y=(k≠0),因为图象过点(,-),将x=,y=-代入,得-=,k=-2.因此,这个反比例函数的解析式为y=-,将x=-6,y=代入,等式成立.所以函数图象经过-6,.变式训练2-1:B变式训练2-2:解:(1)设y1=k1x,y2=(k1,k2为常数,且k1≠0,k2≠0),则y=k1x+.∵x=1,y=4;x=2,y=5,∴解得∴y与x的函数表达式为y=2x+.(2)当x=4时,y=2×4+=8.课堂训练1.B2.C3.A4.-25.解:设大约需要工人y个,每人每天生产纪念品x个.∴xy=100,即y=(x>0)∵5≤x≤8,∴≤y≤,即12≤y≤20,∵y是整数,∴大约需工人13至20人.课后提升1.D2.A3.C4.B5.C6.27.4008.-129.解:(1)∵y是x的正比例函数,∴m2-3=1,m2=4,m=±2.∵m=2时,m-2=0,∴舍去.∴m=-2.(2)∵y是x的反比例函数,∴m2-3=-1,m2=2,m=±.10.解:(1)由S=xy=30,得y=,x 的取值范围是x>0.(2)由y= 可知,y 是x 的反比例函数,系数为60. 1.2 反比例函数的图象与性质第1课时 反比例函数的图象 课前预习3.(1)一、三 (2)二、四 课堂探究 【例1】 探究答案:第一、三象限 >解:(1)∵这个反比例函数图象的一支分布在第一象限,∴m -5>0,解得m>5.(2)∵点A (2,n )在正比例函数y=2x 的图象上, ∴n=2×2=4,则A 点的坐标为(2,4).又∵点A 在反比例函数y=- 的图象上, ∴4=- ,即m-5=8. ∴反比例函数的解析式为y= . 变式训练1-1:C变式训练1-2:-【例2】 探究答案:1.(1,5) 2.解:(1)∵点(1,5)在反比例函数y=的图象上, ∴5= ,即k=5, ∴反比例函数的关系式为y= . 又∵点(1,5)在一次函数y=3x+m 的图象上,∴5=3+m , ∴m=2. ∴一次函数的关系式为y=3x+2.(2)由题意可得解得 或 - -∴这两个函数图象的另一个交点的坐标为-,-3.变式训练2-1:A变式训练2-2:解:(1)将A(-1,a)代入y=-x+2中,得a=-(-1)+2,解得a=3.(2)由(1)得,A(-1,3),将A(-1,3)代入y=中,,即k=-3,得到3=-即反比例函数的表达式为y=-.(3)如图:过A点作AD⊥x轴于D,∵A(-1,3),∴AD=3,在直线y=-x+2中,令y=0,得x=2,∴B(2,0),即OB=2,∴△AOB的面积S=×OB×AD=×2×3=3.课堂训练1.A2.C3.B4.m>15.解:(1)∵反比例函数y=与一次函数y=x+b的图象,都经过点A(1,2),∴将x=1,y=2代入反比例函数解析式得,k=1×2=2,将x=1,y=2代入一次函数解析式得,b=2-1=1,∴反比例函数的解析式为y=,一次函数的解析式为y=x+1.(2)对于一次函数y=x+1,令y=0,可得x=-1;令x=0,可得y=1.∴一次函数图象与x轴,y轴的交点坐标分别为(-1,0),(0,1).课后提升1.C2.B3.A4.D5.C6.-37.-248.解:m2=(-4)×(-9)=36,∴m=±6.∵反比例函数y=的图象位于第一、三象限,∴m>0,∴m=6.9.解:(1)∵y=-的一支在第一象限内,∴m-5>0.∴m>5.对直线y=kx+k来说,令y=0,得kx+k=0,即k(x+1)=0.∵k≠0,∴x+1=0,即x=-1.∴点A的坐标为(-1,0).(2)过点M作MC⊥AB于点C,∵点A的坐标为(-1,0),点B的坐标为(3,0),∴AB=4,AO=1.∵S△ABM=×AB×MC=×4×MC=8,∴MC=4.又AM=5,∴AC=3,又OA=1,∴OC=2 ∴点M的坐标为(2,4).把M(2,4)代入y=-,得4=-,则m=13,∴y=.第2课时反比例函数的性质课前预习1.在每一象限内减小在每一象限内增大2 y=±x坐标原点课堂探究【例1】探究答案:1.一、三>02.减小>解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2.(2)把点(3,1)代入y=-,得2n-4=3,解得n=.(3)因为在每个象限内,y随x的增大而减小,所以由a1<a2,得b1>b2.变式训练1-1: A变式训练1-2:<【例2】探究答案:|k|解:设点A的坐标为a,,则点B的坐标为-a,-,∵BC∥x轴,AC∥y轴,∴AC⊥BC,又由题意可得BC=2a,AC=,S△ABC=BC·AC=·2a·=4.变式训练2-1:1变式训练2-2:解:设A的坐标是(m,n),则n=,即k=mn,∵OB=-m,AB=n,S=OB·AB=(-m)n=-mn=3,长方形ABOC∴mn=-3,∴k=-3,则反比例函数的解析式是y=-.课堂训练1.A2.C3.64.25.解:设一次函数的解析式为y=kx+b(k≠0).∵点A是直线与反比例函数y=的交点,∴把A(1,a)代入y=,得a=2.∴A(1,2).把A(1,2)和C(0,3)代入y=kx+b,得解得k=-1,b=3.所以一次函数的解析式为:y=-x+3.课后提升1.D2.D3.A4.C5.C6.C7.x<-2或0<x<18.69.解:(1)图象的另一支在第三象限,∵图象在一、三象限,∴5-2m>0,∴m<.(2)b1<b2.理由如下:∵m<,∴m-4<m-3<0,∴b1<b2.1.3 反比例函数的应用课堂探究【例1】探究答案:1.反比例v=2.减小解:(1)设反比例函数解析式为v=,把(3000,20)代入上式,得20=,P=3000×20=60000,∴v=.(2)当F=1200时,v==50(米/秒)=180(千米/时),即当它所受的牵引力为1200牛时,汽车的速度为180千米/时.(3)由v=≤30,得F≥2000.所以,若限定汽车的速度不超过30米/秒,则F应不小于2000牛.变式训练1-1:C变式训练1-2:0.5【例2】探究答案:1.k2-22.图象解:(1)∵双曲线y=经过点A(1,2),∴k2=2.∴双曲线的解析式为y=.∵点B(m,-1)在双曲线y=上,∴m=-2,则B(-2,-1).由点A(1,2),B(-2,-1)在直线y=k1x+b上,得--解得∴直线的解析式为y=x+1.(2)y2<y1<y3.(3)x>1或-2<x<0.变式训练2-1:C变式训练2-2:解:(1)直线y=x+b经过第一、二、三象限,与y轴交于点B,∴OB=b,∵点A(2,t),△AOB的面积等于1.∴×2×b=1,可得b=1,即直线为y=x+1.(2)由点A(2,t)在直线y=x+1上,可得t=2,即点A坐标为(2,2),反比例函数y=(k是常量,k≠0)的图象经过点A,可得k=4,所求反比例函数解析式为y=.课堂训练1.C2.C3.B4.(1,-2)5.解:(1)将A(2,4)代入反比例函数解析式得m=8,∴反比例函数解析式为y2=,将B(-4,n)代入反比例函数解析式得n=-2,即B(-4,-2),将A与B坐标代入一次函数解析式得,解得则一次函数解析式为y1=x+2.(2)联立两函数解析式得解得或--则y1=y2时,x的值为2或-4.(3)利用题图象得,y1>y2时,x的取值范围为-4<x<0或x>2.课后提升1.D2.D3.C4.D5.x<0或1<x<46.1.67.(3,2)8.19.解:(1)∵反比例函数y=的图象过B(4,-2)点,∴k=4×(-2)=-8,∴反比例函数的解析式为y=-.∵反比例函数y=-的图象过点A(-2,m),∴m=--=4,即A(-2,4).∵一次函数y=ax+b的图象过A(-2,4),B(4,-2)两点,∴--解得-∴一次函数的解析式为y=-x+2.(2)∵直线AB:y=-x+2交x轴于点C,∴C(2,0).∵AD⊥x轴于D,A(-2,4),∴CD=2-(-2)=4,AD=4,∴S△ADC=·CD·AD=×4×4=8.10.解:(1)把A(m,2)代入反比例函数解析式y=得2=,所以m=1.∴A(1,2).(2)把A(1,2)代入正比例函数解析式y=kx得2=k,所以k=2,因此正比例函数的解析式为y=2x.(3)因为正比例函数的解析式为y=2x,当x=2时,y≠3,所以点B(2,3)不在正比例函数图象上.第2章一元二次方程2.1 一元二次方程课前预习1.一个2整式3.相等课堂探究【例1】探究答案:1.2=22.≠0解:根据题意,得m2-2=2,且m-2≠0.解得m=±2,且m≠2.所以m=-2.则m2+2m-4=(-2)2+2×(-2)-4=-4.变式训练1-1:C变式训练1-2:≠±1=【例2】探究答案:1.移项合并同类项2.符号0解:(1)去括号,得4t2+12t+9-2(t2-10t+25)=-41,去括号、移项、合并得2t2+32t=0,所以二次项系数、一次项系数和常数项分别为2,32,0.(2)去括号,得x2-x+=3x+,移项、合并,得x2-4x+=0,所以二次项系数、一次项系数和常数项分别为,-4,.变式训练2-1:B-变式训练2-2:解:解得m=±2且m≠-2.∴m=2.【例3】探究答案:1.根2.≠0解:根据题意,得(m-2)×12+(m2-3)×1-m+1=0,即m2-4=0,故m2=4,解得m=2或m=-2.∵方程(m-2)x2+(m2-3)x-m+1=0是关于x的一元二次方程,∴m-2≠0,即m≠2.故m=-2.变式训练3-1:1变式训练3-2:解:把x=0代入方程得a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a=-1.课堂训练1.C2.A3.-104.-25.解:去括号,得9x2+12x+4=4x2-24x+36.移项、合并同类项得,5x2+36x-32=0.∴它的二次项为5x2二次项系数为5,一次项为36x,一次项系数为36,常数项为-32.课后提升1.D2.D3.C4.C5.D6.x(x+5)=300x2+5x-300=015-3007.18.≠1=19.解:(1)去括号,得x2-4=3x2+2x,移项,得-2x2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4.(2)去括号,移项合并,得(1-2a)x2-2ax=0,二次项系数为1-2a,一次项系数为-2a,常数项为0.10.解:小明的话有道理.理由:若方程为一元二次方程,则m+1=2,m=1.而m=1时,m2+m-2=0,所以此方程不可能为一元二次方程.2.2 一元二次方程的解法2.2.1 配方法第1课时用配方法解简单的一元二次方程课前预习1.(1)平方根2.(1)a2±2ab+b2(2)完全平方式课堂探究【例1】探究答案:-a±没有解:移项,得2(x+1)2=,两边同时除以2,得(x+1)2=,∴x+1=±,∴x1=-1+=,x2=-1-=-.变式训练1-1:m≥7变式训练1-2:解:(1)移项,得(2x-1)2=25,开平方得2x-1=±5,∴2x-1=5或2x-1=-5,解这两个方程得:x1=3,x2=-2.(2)两边同除以3,得(x-2)2=4,开平方得:x-2=±2,∴x-2=2或x-2=-2.解这两个方程,得x1=4,x2=0.【例2】探究答案:一次项系数一半的平方解:移项,得x2-x=,配方,得x2-x+=,-=,∴x-=或x-=-,∴x1=1,x2=-.变式训练2-1:±变式训练2-2:解:移项,得x2-2x=2,配方,得(x-1)2=3,解得x=1±.∴x1=1+,x2=1-.课堂训练1.D2.B3 ±4 ±85.解:(1)移项得x2-2x=1,配方,得x2-2x+1=2,即(x-1)2=2,开方,得x-1=±,则x1=1+,x2=1-.(2)移项,得x2-4x=-1,配方,得x2-4x+4=-1+4,即(x-2)2=3,开方,得x-2=±,∴原方程的解是x1=2+,x2=2-.课后提升1.D2.B3.D4.B5.36.-37.900 cm28.解:(1)直接开平方得,x-1=±,即x-1=或x-1=-,∴x1=1+,x2=1-.(2)配方,得x2-2x+1=4+1,即(x-1)2=5.∴x-1=±,即x-1=或x-1=-∴x1=1+,x2=1-.(3)方程两边都除以2,得x2-=-x,移项,得x2+x=.配方,得x2+x+2=+2,即x+2=.开平方得,x+=±,∴x1=,x2=-3.9.解:用配方法解方程a2-10a+21=0,得a1=3,a2=7.当a=3时,3、3、7不能构成三角形;当a=7时,三角形周长为3+7+7=17.10.解:移项得x2+px=-q,配方得x 2+px+ 2=-q+ 2,即x+2= - . ∵p 2≥4q , ∴p 2-4q ≥0,∴x+ =± - .∴x 1=-- ,x 2=- - - .第2课时 用配方法解复杂的一元二次方程课前预习(1)1(2)二次项和一次项 常数项(3)一次项系数一半的平方课堂探究【例1】 探究答案:1.1 2.完全平方式解:两边同时除以2,得x 2- x+ =0,移项,得x 2- x=- ,配方,得x 2- x+ - =- + -, 即 -= , 两边开平方,得x-=± ,x- = 或x- =-, ∴原方程的解为x 1=1,x 2=.变式训练1-1:D变式训练1-2:解:(1)二次项系数化为1,得x 2-x-2=0,移项,得x2-x=2,配方,得x2-x+=2+,即x-2=,∴x-=±,∴x1=,x2=-.(2)二次项系数化为1,得x2-x-=0.移项,得x2-x=.配方得x2-x+2=+2,即x-2=,∴x-=±,∴x1=1,x2=-.【例2】探究答案:1.12.减去解:2x2-4x+5=2(x2-2x)+5=2(x2-2x+12-12)+5=2(x-1)2+3∵2(x-1)2≥0,∴2(x-1)2+3>0,∴代数式2x2-4x+5的值总是一个正数.变式训练2-1:13变式训练2-2:解:x2-4x+5=x2-4x+22-22+5=(x-2)2+1.∵(x-2)2≥0,且当x=2时值为0,∴当x=2时,代数式x2-4x+5的值最小,最小值为1.课堂训练1.A2.B3.x1=-2,x2=4.3或-75.-3或36.解:由题意得2x2-x=x+6,∴2x2-2x=6,∴x2-x=3,∴x2-x+=3+,∴x-2=,∴x-=±,∴x1=,x2=-.∴x=或-时,整式2x2-x与x+6的值相等.课后提升1.D2.D3.B4.D5.x1=1+,x2=1-6.87.38.1±29.解:去括号,得4x2-4x+1=3x2+2x-7,移项,得x2-6x=-8,配方,得(x-3)2=1,∴x-3=±1,∴x1=2,x2=4.10.解:由题意,得2x2+x-2+(x2+4x)=0,化简,得3x2+5x-2=0.系数化为1,得x2+x=,配方,得x+2=,∴x+=±,∴x1=-2,x2=.2.2.2 公式法课前预习1.x=--(b2-4ac≥0)2.求根公式课堂探究【例1】探究答案:1.一般形式2.a、b、c解:原方程可化为x2+2x-1=0,∵a=1,b=2,c=-1.b2-4ac=22-4×1×(-1)=8>0,∴x=-=-=-1±.∴x1=-1+,x2=-1-.变式训练1-1:D变式训练1-2:解:(1)移项,得2x2+3x-1=0,∵a=2,b=3,c=-1,∴b2-4ac=17>0,∴x=-,∴x1=-,x2=--.(2)化简得,x2+5x+5=0,∴a=1,b=5,c=5,∴b2-4ac=5>0,∴x=-,∴x1=-,x2=--.【例2】探究答案:1.一元二次方程有实数根2.相等解:原方程可化为2x2+2x+1=0,∵a=2,b=2,c=1,∴b2-4ac=(2)2-4×2×1=0,∴x=-=-.∴x1=x2=-.变式训练2-1:解:(1)b2-4ac=(-2)2-4×1×1=4-4=0.∴此方程有两个相等的实数根.(2)b2-4ac=72-4×(-1)×6=49+24=73>0.∴此方程有两个不相等的实数根.变式训练2-2:C课堂训练1.D2.C3.24.解:(1)b 2-4ac=(-4)2-4×2×(-1)=16+8=24>0.∴x=- - == = .∴x 1= ,x 2= - .(2)整理,得4x 2+12x+9=0,所以a=4,b=12,c=9.因为b 2-4ac=122-4×4×9=0,所以方程有两个相等的实数根,所以x=- - =-=- =- .∴x 1=x 2=- . 课后提升1.C2.A3.D4.D5.- ,- -6.x 1=1,x 2=7.25或168.解:整理得x 2+2x-1=0, b 2-4ac=22-4×1×(-1)=8,x=- =- =-1± ,∴x 1=-1+ ,x 2=-1- .9.解:(1)x 2-4x-1=0, ∵a=1,b=-4,c=-1, ∴Δ=(-4)2-4×1×(-1)=20,∴x==2± ,∴x 1=2+ ,x 2=2- .(2)∵3x (x-3)=2(x-1)(x+1), ∴x 2-9x+2=0, ∵a=1,b=-9,c=2, ∴Δ=(-9)2-4×1×2=73>0,∴x=- - = ,∴x 1= ,x 2= - .10.解:由题意得,m2+1=2,且m+1≠0,解得m=1.所以原方程为2x2-2x-1=0,这里a=2,b=-2,c=-1.b2-4ac=(-2)2-4×2×(-1)=12.∴x==,∴x1=,x2=-.2.2.3 因式分解法课前预习1.(2)(a-b)(a+b)(a±b)22.一次因式00课堂探究【例1】探究答案:x[(x+2)-4]3(x-5)2-2(5-x)=0(x-5)(3x-13)解:(1)x(x+2)-4x=0,x[(x+2)-4]=0,即x(x-2)=0,∴x=0或x-2=0,∴x1=0,x2=2.(2)3(x-5)2=2(5-x),3(x-5)2-2(5-x)=0,(x-5)[3(x-5)+2]=0,∴x-5=0或3x-15+2=0,∴x1=5,x2=.变式训练1-1:C变式训练1-2:解:(1)(3x-4)2=3(3x-4),∴(3x-4)(3x-7)=0,∴x1=,x2=.(2)3(x+2)2=(x+2)(x-2),(x+2)[3(x+2)-(x-2)]=0,∴(x+2)(2x+8)=0,∴x1=-2,x2=-4.【例2】探究答案:直接开平方法配方法公式法因式分解法解:(1)公式法:∵a=1,b=-3,c=1,∴b2-4ac=(-3)2-4×1×1=5>0,∴x=--,∴x1=,x2=-.(2)因式分解法:原方程可化为x(x-3)=0,∴x=0或x-3=0∴x1=0,x2=3.(3)配方法:配方,得x2-2x+1=4+1,即(x-1)2=5,∴x-1=±,∴x1=1+,x2=1-.变式训练2-1:C变式训练2-2:解:(1)用直接开平方法:原方程可化为(x-3)2=4,∴x-3=±2,∴x1=5,x2=1.(2)用配方法:移项,得x2-4x=7.配方,得x2-4x+4=7+4,即(x-2)2=11,∴x-2=±∴x-2=或x-2=-,∴x1=2+,x2=2-.(3)用因式分解法:方程两边分别分解因式,得(x-3)2=2(x-3)(x+3),移项,得(x-3)2-2(x-3)(x+3)=0.方程左边分解因式,得(x-3)[(x-3)-2(x+3)]=0,即(x-3)(-x-9)=0,∴x-3=0或-x-9=0.∴x1=3,x2=-9.课堂训练1.C2.D3.74.-1或45.解:(1)∵a=3,b=1,c=-1,∴b2-4ac=12-4×3×(-1)=13>0,∴x=-∴x1=-,x2=--.(2)移项,得(3x-2)2-4(3-x)2=0,因式分解,得[(3x-2)+2(3-x)][(3x-2)-2(3-x)]=0,即(x+4)(5x-8)=0,∴x+4=0或5x-8=0,∴x1=-4,x2=.(3)将原方程整理,得x2+x=0,因式分解,得x(x+1)=0,∴x=0或x+1=0,∴x1=0,x2=-1.课后提升1.A2.D3.B4.B5.B6.x1=3,x2=97.68.-19.解:(1)用求根公式法解得y1=3,y2=-8.(2)用分解因式法解得x1=,x2=-1.(3)用求根公式法解得y1=-,y2=--.10.解:解方程x(x-7)-10(x-7)=0,得x1=7,x2=10.∵4<第三边长<10,∴x2=10(舍去).第三边长为7.这个三角形的周长为3+7+7=17.2.3 一元二次方程根的判别式课前预习1.a≠02.(1)> (2)= (3)<课堂探究【例1】探究答案:1.一般形式2.a、b、c b2-4ac解:(1)原方程可化为x2-6x+9=0,∵Δ=b2-4ac=(-6)2-4×1×9=0,∴原方程有两个相等的实数根.(2)原方程可化为x2+3x+1=0,∵Δ=b2-4ac=32-4×1×1=5>0,∴原方程有两个不相等的实数根.(3)原方程可化为3x2-2x+3=0.∵Δ=b2-4ac=(-2)2-4×3×3=-12<0,∴原方程无实数根.变式训练1-1:A变式训练1-2:B【例2】探究答案:1.≥解:由题意知:b2-4ac≥0,即42-8k≥0,解得k≤2.∴k的非负整数值为0,1,2.变式训练2-1:B变式训练2-2:解:∵a=2,b=t,c=2.∴Δ=t2-4×2×2=t2-16,令t2-16=0,解得t=±4,当t=4或t=-4时,原方程有两个相等的实数根.课堂训练1.D2.A3.D4.k<-15.解:(1)当m=3时,Δ=b2-4ac=22-4×1×3=-8<0,∴原方程没有实数根.(2)当m=-3时,x2+2x-3=0,x2+2x=3,x2+2x+1=3+1,(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3.课后提升1.D2.A3.C4.C5.D6.m>17.m<2且m≠18.6或12或109.解:由题意,得由,得4(k+1)+4-8k>0,即-4k>-8,解得k<2.由得,k≠,由得,k≥-1.∴-1≤k<2且k≠.10.解: Δ=b2-4ac=4-4(2k-4)=20-8k.∵方程有两个不等的实根,∴20-8k>0,∴k<.(2)∵k为正整数,∴0<k<(且k为整数),即k为1或2,∴x=-1±-.∵方程的根为整数,∴5-2k为完全平方数.当k=1时,5-2k=3;当k=2时,5-2k=1.∴k=2.*2.4 一元二次方程根与系数的关系课前预习-课堂探究【例1】探究答案:1.-12.2ab解:因为方程x2-x-1=0的两实根为a、b.所以(1)a+b=1;(2)ab=-1;(3)a2+b2=(a+b)2-2ab=12-2×(-1)=3;(4)+==-1.变式训练1-1:-2变式训练1-2:-【例2】探究答案:1.2(m+1)2.>0解:∵方程有两个不相等的实数根,∴Δ=b2-4ac=[-2(m+1)]2-4×1×(m2-3)=16+8m>0,解得m>-2;根据根与系数的关系可得x1+x2=2(m+1),∵(x1+x2)2-(x1+x2)-12=0,∴[2(m+1)]2-2(m+1)-12=0,解得m1=1或m2=-.∵m>-2,∴m2=-(舍去),∴m=1.变式训练2-1:1变式训练2-2:解:∵x1+x2=2,∴m=2.∴原方程为x2-2x-3=0,即(x-3)(x+1)=0,解得x1=3,x2=-1.课堂训练1.B2.A3.-24.55.解:设x1,x2是方程的两个实数根,∴x1+x2=-,x1x2=-.又∵+=3,∴=3,∴--=3,∴-3=3-3m,∴m=2,又∵当m=2时,原方程的Δ=17>0,∴m的值为2.课后提升1.B2.B3.D4.B5.B6.-20147.68.20149.解:将-2代入原方程得:(-2)2-2+n=0,解得n=-2,因此原方程为x2+x-2=0,解得x1=-2,x2=1,∴m=1.10.解:(1)根据题意得m≠1Δ=(-2m)2-4(m-1)(m+1)=4,∴x1=-=-,x2=--=1.(2)由(1)知x1=-=1+-又∵方程的两个根都是正整数,∴-是正整数,∴m-1=1或2.∴m=2或3.2.5 一元二次方程的应用第1课时增长率与利润问题课前预习1.a(1±x)2.(1)单件售价(2)单件利润课堂探究【例1】探究答案:(1)10000(1+x)10000(1+x)2(2)12100(1+x)解:(1)设捐款增长率为x,根据题意列方程得,10000(1+x)2=12100,解得x1=0.1,x2=-2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.变式训练1-1:A变式训练1-2:B【例2】探究答案:200+3-2-x解:设应将每千克小型西瓜的售价降低x元.根据题意,得(3-2-x)200+-24=200.解这个方程,得x1=0.2,x2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.变式训练2-1:2或6变式训练2-2:解:设每件童装应降价x元.根据题意得(40-x)(20+2x)=1200,解这个方程得x1=10,x2=20.因为在相同利润的条件下要扩大销售量,减少库存,所以应舍去x1=10.答:每件童装应降价20元.课堂训练1.B2.D3.B4.20%5.解:设每千克核桃应降价x元.根据题意得(60-x-40)(100+×20)=2240解这个方程得x1=4,x2=6.答:每千克核桃应降价4元或6元.课后提升1.C2.C3.D4.B5.10%6.30007.40(1+x)2=48.48.10%9.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9.答:每轮传染中平均一个人传染了7个人.(2)7×64=448.答:又有448人被传染.10.解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得x2+3x-1.75=0,解之,得x1=0.5, x2=-0.35(舍去)所以每年市政府投资的增长率为50%.(2)到2013年年底共建廉租房面积=9.5×=38(万平方米).第2课时面积与动点问题课堂探究【例1】探究答案:1.(6-x)2x2.(6-x)·2x=8解:设经过x秒钟后,△PBQ的面积等于8 cm2.根据题意得(6-x)·2x=8.解这个方程得x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8 cm2.变式训练1-1:解:(1)由勾股定理:AC=5 cm,设x秒钟后,P、Q之间的距离等于5 cm,这时PC=5-x,CQ=2x,则(5-x)2+(2x)2=52,即x2-2x=0.解这个方程,得x1=0,x2=2,其中x1=0不合题意,舍去.答:再运动2秒钟后,P、Q间的距离又等于5 cm.(2)设y秒钟时,可使△PCQ的面积等于4 cm2.×(5-y)×2y=4,即y2-5y+4=0,解得y1=1,y2=4.经检验,它们均符合题意.答:1秒钟或4秒钟时,△PCQ的面积等于4 cm2.变式训练1-2:解:设应移动x米.OA=-=3米.则由题意得(3+x)2+(4-x)2=52.解这个方程得x1=1,x2=0(不合题意,舍去).答:应移动1米.【例2】探究答案:(100-2x)(50-2x)解:设正方形观光休息亭的边长为x米.依题意,有(100-2x)(50-2x)=3600.整理,得x2-75x+350=0.解得x1=5,x2=70.∵x=70>50,不合题意,舍去,∴x=5.答:矩形花园各角处的正方形观光休息亭的边长为5米.变式训练2-1:B变式训练2-2:解:设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得(40-2x)(60-3x)=60×40×,解之,得x1=10,x2=30(不符合题意,舍去).答:两块绿地周围的硬化路面的宽都是10米.课堂训练1.B2.C3.D4.15.解:设花边的宽为x米,根据题意,得(2x+6)(2x+3)=40.解得x1=1,x2=-.但x2=-不合题意,舍去.答:花边的宽为1米.课后提升1.D2.C3.C4.B5.D6.97.24458.10009.解:(1)设小货车原计划每辆每次运送帐篷x顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得2[8x+2(x+200)]=16800,解得x=800,x+200=800+200=1000.故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶.(2)根据题意,得2(1000-200m)1+m+8(800-300)(1+m)=14400,化简为m2-23m+42=0,解得m1=2,m2=21.∵1000-200m不能为负数,且m为整数,∴m2=21(不符合实际,舍去),故m的值为2.10.解:设x秒后四边形APQB的面积是△ABC面积的,在Rt△ABC中,AB=10,AC=8,由勾股定理,得BC2=AB2-AC2=102-82=36,∴BC=6.则(8-2x)(6-x)=××6×8,解得x1=2,x2=8(不合题意,舍去),∴2秒后四边形APQB的面积是△ABC面积的.第3章图形的相似3.1 比例线段3.1.1 比例的基本性质课前预习1.(1)比值比值(2)比例内项2.(1)bc课堂探究【例1】探究答案:1.==2.7y=4x 7∶4解:(1)∵3x=2y,∴=,即=.(2)∵=,∴7y=4x,=.变式训练1-1:D变式训练1-2:4【例2】探究答案:1.解:∵===,∴=,即△的周长△的周长=.设△ADE 和△ABC 的周长分别为2x cm 和3x cm,则有3x-2x=15,得x=15. ∴△ABC 的周长为45 cm,△ADE 的周长为30 cm .变式训练2-1:D变式训练2-2:解:设 = = =k ,则x=3k ,y=5k ,z=7k , ∴ - - = - - = =5. 课堂训练1.C2.A3.2∶3=4∶6(答案不唯一)4.5.解:因为 - = ,所以3(m-n )=2n ,化简得3m=5n ,所以 = ,则 = +2= ×3+2= ×3+2=7. 课后提升1.C2.C3.D4.C5.A6. 7.3 8.2或-19.解:∵a ∶b ∶c=1∶2∶4,设a=k ,b=2k ,c=4k ,则 - =- == .10.解:∵ = = = ,∴ =- - =- - = .∴ - -- - = .3.1.2 成比例线段 课前预习1.m ∶n =2. =3. 黄金比 - ≈0.618课堂探究【例1】探究答案:1.(12-x)-=2.=解:(1)设AD=x cm,则DB=(12-x)cm.则有-=,解这个方程得x=7.2,所以AD=7.2 cm.(2)=-=,==,所以=,所以线段DB、AB、EC、AC是成比例线段.变式训练1-1:B变式训练1-2:解:利用比例线段的定义,∵a=1 mm=0.1 cm,b=0.8 cm,c=0.02 cm,d=4 cm,∴d>b>a>c,而==5,==5,∴=,∴d、b、a、c四条线段是成比例线段.【例2】探究答案:1.=2.=解:设CB=x,∵点C为线段AB的黄金分割点,∴=,即=,得9=x(x+3),解得x1=-,x2=--(舍去).故CB的长为-.变式训练2-1:C变式训练2-2:解:因为点C是AB的黄金分割点,所以当AC>BC时,=-.又因为AB=10 cm,所以AC=-×10=(5-5)(cm),当AC<BC时,=-,所以BC=-×10=(5-5)(cm),所以AC=AB-BC=10-(5-5)=(15-5)(cm),所以AC的长为(5-5)cm或(15-5)cm.课堂训练1.D2.3.6-24.=5.解:(1)a∶b=c∶d,即a∶0.2=0.5∶1,则a=0.2×0.5=0.1.(2)a∶b=c∶d,即3∶7=c∶21,则7c=21×3,得c=9.课后提升1.B2.D3.C4.B5.B-6.6.987.168.-或9.解:设相邻两个钉子之间的距离为1个单位长度,则AD=2,BD=5,BE=5,CE=1,CF=4,AF=3.在直角三角形ABD中,AB===,在直角三角形BCE中,BC===,在直角三角形ACF中,AC===5,所以=,=.10.解:设每一份为k,由(a-c)∶(a+b)∶(c-b)=(-2)∶7∶1,--得解得-而(3k)2+(4k)2=(5k)2,即a2+b2=c2,所以△ABC是直角三角形.3.2 平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等(2)对应线段(3)成比例课堂探究【例1】探究答案:1.2.解:∵l1∥l2∥l3,∴=,∵=,∴=,∴=,由DF=20 cm,得DE=DF=12 cm,∴EF=DF-DE=8 cm.变式训练1-1:D变式训练1-2:【例2】探究答案:1.2.x-4x-4--=D变式训练2-1:B变式训练2-2:A课堂训练1.B2.A3.A4.55.解:∵DE⊥AB,CB⊥AB,∴DE∥BC,∴=,即=,∴AC=.∴BC=-=-=.课后提升1.C2.C3.A4.D5.D6.97.68.149.解:∵DE∥BC,DF∥AC,∴四边形EDFC为平行四边形,∴DE=FC=5,又∵DF∥AC,∴=,即=,得BF=10.10.解:∵DE∥BC,∴=.又∵EF∥CD,∴=,∴=,∴AD2=AB·AF=36,∴AD=6 cm.3.3 相似图形课前预习1.(1)对应相等对应成比例(2)∽△ABC相似于△A'B'C'(3)相等成比例2.(1)对应角成比例(2)相等等于相似比课堂探究【例1】探究答案:1.∠A' ∠B' ∠C'2. °-∠A-∠B解:∵△ABC∽△A'B'C',∴∠B=∠B'= °在△ABC中,∠C= °-∠A-∠B= °- °- °= °.变式训练1-1:50变式训练1-2:1∶2【例2】探究答案:(1)CD CB ° °解:因为四边形ABCD∽四边形EFGH,∴∠F=∠B= ° ∠G=∠C= °====,∴∠H= °-(∠E+∠F+∠G)= °BC=FG÷=6×=27,CD=GH÷=7×=31.5.变式训练2-1:B变式训练2-2:解:由四边形ABCD与四边形A'B'C'D'相似得,==,∠A=∠A'= °∴x=21×=14,y=12÷=12×=18,∠α= °-(∠A+∠B+∠C)= °.课堂训练1.C2.B3.61.54.9或255.解:因为梯形AEFD∽梯形EBCF,所以==,又因为AD=4,BC=9,所以EF2=AD·BC=4×9=36,所以EF=6,所以===.课后提升1.B2.D3.D4.D5.D6.2 °7. ° °18.9.解:∵四边形ABCD与四边形EFGH相似,∴∠E=∠A= ° ∠F=∠B= °.∴∠G= °- °- °- °= °.∵=,∴AB=·==.∵=,∴BC=·===.10.解:∵△ABC∽△APQ,∴=,即=,解得PQ=75.答:PQ的长为75 cm.3.4 相似三角形的判定与性质3.4.1 相似三角形的判定第1课时两角对应相等或平行判定相似课前预习(1)相似(2)相等课堂探究【例1】探究答案:1.EDA 2.DFC 3.△EDA △DFC解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED,∴△BEF∽△CDF∽△AED.当△BEF∽△CDF时,相似比k1==;当△BEF∽△AED时,相似比k2==;当△CDF∽△AED时,相似比k3==.变式训练1-1:3变式训练1-2:1∶2【例2】探究答案:1.∠DAE 2.∠D解:△ABC∽△ADE,理由如下:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,又∵在△AOB与△COD中,∠AOB=∠COD,∠1=∠3,∴∠B=∠D,∴△ABC∽△ADE.变式训练2-1:C变式训练2-2:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C= °∵∠AFE+∠AFD= ° ∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC.课堂训练1.D2.C3.A4.∠ADE=∠C(答案不唯一)5.解:(1)在△ABC中,∵∠A= ° ∠B= °∴∠C= °.∴∠A=∠A'= ° ∠C=∠C'= °.∴△ABC∽△A'B'C'(两角相等的两个三角形相似).(2)在△ABC中,∵∠A=∠B=∠C,∴∠A=∠B=∠C= °∴∠A=∠A',∠B=∠B',∴△ABC∽△A'B'C'(两角相等的两个三角形相似).课后提升1.A2.D3.C4.D5.66.2.57.解:∵∠A= ° AB=AC,∴∠ABC=∠ACB= °∵BD平分∠ABC,∴∠CBD=∠ABD= °∠BDC= °∴AD=BD,BC=BD,∴△ABC∽△BDC,∴=,即=,∴AD2=AC·CD,设AD=x,则CD=1-x,∴x2=1×(1-x),x2+x-1=0,x=-=-,x1=-,x2=--(舍去),∴AD=-,∴AD的长是-.8.解:(1)△ABC∽△FOA,理由如下:在矩形ABCD中,∠BAC+∠BCA= °∵l垂直平分AC,∴∠OFC+∠BCA= °∴∠BAC=∠OFC=∠OFA,又∵∠ABC=∠FOA= °∴△ABC∽△FOA.(2)四边形AFCE是菱形,理由如下:∵AE∥FC,∴∠AEO=∠OFC,∠EAO=∠OCF,∴△AOE∽△COF,∵OC=OA,∴OE=OF,即AC、EF互相垂直平分,∴四边形AFCE是菱形.第2课时两边成比例夹角相等或三边成比例判定相似课前预习(1)成比例夹角(2)成比例课堂探究【例1】探究答案:1.2.△DCA解:因为=,=,所以=,又因为∠B=∠ACD,所以△ABC∽△DCA,所以=,·==.所以AD=变式训练1-1:B变式训练1-2:证明:∵四边形ABCD是正方形,∴AD=DC=BC,∠D=∠C= °∵M是CD的中点,∴AD∶DM=2∶1,∵BP=3PC,∴CM∶PC=2∶1,即=,且∠D=∠C,∴△ADM∽△MCP.【例2】探究答案:1.522.解:相似.理由如下:AB=,AC=,BC=5,DE=,DF=2,EF=,∵=,=,=,即==,∴△ABC∽△DEF.变式训练2-1:A变式训练2-2:证明:∵D、E、F分别为AB、AC、BC的中点,∴DE、DF、EF分别为△ABC的中位线,∴DE=BC,DF=AC,EF=AB,∴===,∴△DEF∽△CBA.课堂训练1.A2.C3.B4.35.解:由题知AC=,BC==,AB=4,DF==2,EF==2,ED=8,∴===,∴△ABC∽△DEF.课后提升1.C2.C3.D4.C5.B6. °7.(4,0)或(3,2)8.解:(1)△ABC∽△EBD,理由如下:∵BD·AB=BE·BC,∴=,又∵∠B为公共角,∴△ABC∽△EBD.(2)ED⊥AB,理由如下:由△ABC∽△EBD可得∠EDB=∠C,∵∠C= ° ∴∠EDB= ° 即ED⊥AB.9.解:△A'B'C'∽△ABC,理由如下:∵==3,∠AOC=∠A'OC',∴△AOC∽△A'OC',∴==3,同理=3,=3,∴==,∴△A'B'C'∽△ABC.3.4.2 相似三角形的性质课前预习1.相似比2.(1)相似比相似比的平方(2)相似比相似比的平方课堂探究【例1】探究答案:1.△ADE 2.DE解:∵BC∥DE,∴∠ABC=∠ADE,∠ACB=∠AED,∴△ABC∽△ADE,所以=,设DE高为x m,则=,x=12.故旗杆大致高12 m.变式训练1-1:C变式训练1-2:1∶2【例2】探究答案:1.相似比的平方2.解:(1)∵△ABC∽△ADE,∴=,∵AB=15,AC=9,BD=5,∴AD=20,∴AE=·==12.即AE的长为12.==,(2)∵△ABC∽△ADE,∴△△∴S△ADE==48,∴S=48-27=21.四边形BDEC变式训练2-1:A变式训练2-2:D课堂训练1.D2.D3.1∶24.1∶21∶45.解:因为DE∥BC,所以∠ADE=∠ABC,∠AED=∠ACB,所以△ADE∽△ABC.又=,△ADE的周长是10 cm,所以△ABC的周长是30 cm,所以梯形BCED的周长为30-8+2=24(cm).课后提升1.D2.A3.B4.A5.1∶96.37.8.89.(1)证明:∵E是AB的中点,∴AB=2EB,∵AB=2CD,∴CD=EB,又∵AB∥CD,∴四边形CBED是平行四边形,∴DE∥CB,∴∠EDM=∠MBF,∠DEM=∠MFB,∴△EDM∽△FBM.(2)解:∵△EDM∽△FBM,∴=,又∵F是BC的中点,∴DE=2BF,∴DM=2BM.∴BM=DB=3.△△=2=4.3.5 相似三角形的应用课堂探究【例1】探究答案:1.△ABF △EFG2.解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴=,=,又∵CD=EF,∴=,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴=,∴BD=9,BF=9+3=12,∴=,解得,AB=6.4 m.变式训练1-1:A变式训练1-2:5.6【例2】探究答案:1.△EDC 2.△EDC解:(1)DE=AB,理由如下:∵AB⊥BF,ED⊥BF,∴∠ABC=∠EDC.∵∠ACB=∠ECD,BC=CD,∴△ABC≌△EDC(ASA),∴AB=DE,即DE的长就是A、B的距离.(2)能,∵∠ABC=∠EDC= ° ∠ACB=∠ECD,∴△ABC∽△EDC,∴=,AB=·==15(米).即A、B之间的距离为15米.变式训练2-1:C变式训练2-2:解:设AB=x米,因为BC∥DE,所以∠ABC=∠D,又∠A=∠A,所以△ABC∽△ADE,则=,即=,解得x=70.答:A、B两村相距70米.课堂训练1.A2.B3.4.1.5米5.解:由光的反射定律可知∠1=∠2,∴∠ABS=∠CBP.∵SA⊥AC,PC⊥AC,∴∠SAB=∠PCB= °∴△ASB∽△CPB.∴=,∴SA=·==12(cm).答:点光源S与平面镜的距离SA的长是12 cm.课后提升1.C2.A3.A4.D5.22.56.8 m7.4.28.解:∵∠DEF=∠BCD= ° ∠D=∠D,∴△DEF∽△DCB,∴=,∵DE=40 cm=0.4 m,EF=20 cm=0.2 m,AC=1.5 m,CD=10 m.∴=,∴BC=5(m),∴AB=AC+BC=1.5+5=6.5(m),∴树高为6.5 m.3.6 位似课前预习1.同一个点O 位似中心相似比2.位似坐标原点课堂探究【例1】探究答案:1.1∶22.1∶4解:(1)△ABC与△A'B'C'的周长之比为==.设S△ABC周长为x cm,△A'B'C'周长为2x cm,则2x-x=12,解得x=12,所以△ABC的周长为12 cm.(2)△ABC与△A'B'C'的面积之比为2=,设S△ABC=y cm2,则S△A'B'C'=4y cm2,则y+4y=25,解得y=5,所以△A'B'C'的面积为20 cm2.变式训练1-1:B变式训练1-2:解:(1)、(3)中的两个图形都是位似图形,位似中心分别为点A、O;(2)中的两个图形不是位似图形.【例2】探究答案:1.位似中心2.位似中心解:(1)如图所示.(2)A'C'==2,AC=4,∴四边形AA'C'C的周长为AA'+A'C'+C'C+CA=2+2+2+4=4+6.变式训练2-1:B变式训练2-2:解:作法:(1)连接OA,并延长OA到A',使得AA'=OA;(2)连接OB,并延长OB到B',使得BB'=OB;(3)连接OC,并延长OC到C',使得CC'=OC;(4)连接OD,并延长OD到D',使得DD'=OD;(5)连接A'B',B'C',C'D',D'A'(如图所示),则四边形A'B'C'D'是四边形ABCD关于O点的位似图形,且四边形A'B'C'D'与四边形ABCD的相似比为2.【例3】探究答案:1.位似中心2.1∶(-2)解:(1)延长BO到B',使B'O=2BO,延长CO到C',使C'O=2CO,连接B'C'.则△OB'C'即为△OBC的位似图形(如图所示).(2)观察图形可知,B'(-6,2)、C'(-4,-2).(3)M'(-2x,-2y).变式训练3-1:C变式训练3-2:6课堂训练1.B2.D3.204.(-4,-4)5.解:(1)OAE与△OBF相似.理由:∵AC∥BD,∴=.又CE∥DF,∴=,∴=,∴AE∥BF,∴△OAE∽△OBF.△OAE与△OBF位似.理由:已证△OAE∽△OBF,又△OAE和△OBF对应点的连线都经过点O,∴△OAE与△OBF位似.(2)△ACE与△BDF位似.理由:由(1)得AE∥BF,∴=,又AC∥BD,∴==.又CE∥DF,∴=.∴==,∴△ACE∽△BDF.又△ACE和△BDF对应点的连线都经过点O,∴△ACE与△BDF位似.课后提升1.D2.A3.D4.2,或-2,-5.46.187.108.解:∵矩形ABCD与矩形AB'C'D'是位似图形,且点A为位似中心,∴=,即=,∴2AB=4AD,即=,又∵矩形ABCD的周长为24,即AB+AD=12,∴AB=8,AD=4.第4章锐角三角函数4.1 正弦和余弦第1课时正弦课前预习1.大小2.对边斜边sin A ∠的对边斜边3.课堂探究【例1】探究答案:1.直角2.对斜角的大小无关解:∵BC2+AC2=62+82=102=AB2,∴△ABC是直角三角形,∠C= °∴sin A===,sin B===.变式训练1-1:变式训练1-2:【例2】探究答案:1.112.倒数正133.解:原式=+1-3-2×=2+1-3-=-2.变式训练2- : °变式训练2-2:2课堂训练1.C2.D3.44.5.解:(1)原式=2+3-2×=2+3-1=4.(2)原式=3-1-4×+2=3-1-2+2=2.课后提升1.C2.B3.C4.C5.B6.0.64217.8.9.解:∵sin °=,∴∠A= °∵sin °=,∴∠C= °则∠B= °- °- °= °∴△ABC是直角三角形.10.解:过点A作AD⊥BC于D,∴sin ∠ABC==,∴AD=×AB=×10=.在Rt△ACD中,sin ∠ACB==.第2课时余弦课前预习1.邻边斜边2. °-α °-α)3.课堂探究【例1】探究答案:1.AB2BC22.解:∵sin A==,设BC=8x,AB=17x,∴AC=-=15x,∴cos A===,sin B==cos A=,cos B==sin A=.变式训练1-1:D变式训练1-2:2变式训练1-3:0.5684【例2】探究答案:1.非负非负非负02. ° °D变式训练2-1:C变式训练2-2:(1)(2)解:原式=2×-+=-+=2-+=2.课堂训练1.B2.B3.4.5.解:∵BC∶CA∶AB=5∶12∶13,设BC=5k,则CA=12k,AB=13k,∵(5k)2+(12k)2=(13k)2,即BC2+CA2=AB2,∴∠C= °.在Rt△ABC中,sin A===,cos A===,sin B=cos A=,cos B=sin A=.课后提升1.A2.B3.B4.A5.C6.7.18.9.解:(1)原式=×-1=1-1=0.(2)原式=-1-++1=0.10.解:(1)过点B作BC⊥x轴于C,∴sin ∠BOA==,∵OB=5,∴BC=3,∴OC=-=4,∴点B的坐标为(4,3).(2)∵点A的坐标为(10,0),∴AC=6.∵BC=3,∴AB==3,∴cos ∠BAO===.4.2 正切课前预习1.对边邻边2.(2)正弦余弦正切3.1课堂探究【例1】探究答案:1.AC2.平行四边形ABED 三角形ACD 三角形CDEB变式训练1-1:C变式训练1-2:A【例2】探究答案:1.原式2.解:(1)cos2 °+tan °·sin °=2+×=+=1.。

相关文档
最新文档