高考密码数学猜题卷

合集下载

高考密码猜题卷新课标版

高考密码猜题卷新课标版

高考密码猜题卷[新课标版]注意事项: 1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上、考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题,共60分)参考公式: 球的表面积公式:S =4πR 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率: P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ). 如果事件A .B 互斥,那么P (A +B )=P (A )+P (B ).如果事件A .B 相互独立,那么P (AB )=P (A )·P (B ). 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}2|log(3),|540A x y x B x x x ==-=-+<,则A B =I( )A .∅B .()3,4C .()2,1-D .()4.+∞2.若复数z 与2(2)8z i +-都是纯虚数,则2z z +所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.一个空间几何体的三视图如下,则这个空间几何体的体积是( )A .423π+B .823π+C .413π+D .108π+4.已知流程图如右图所示,该程序运行后,为使输出的b 值为16,则循环体的判断框内①处应填的是( ) A .2B .3C .4D .165.已知,a b r r 是夹角为120o的单位向量,则向量a b λ+r r 与2a b -r r 垂直的充要条件是实数λ的值为( )A .54B .52C .34D .326.设32:()21p f x x x mx =+++在()-∞+∞,内单调递增,函数2:()43q g x x x m =-+不存在零点则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()ln f x x x =-,则有( )A .132()()()323f f f << B .231()()()323f f f << C .213()()()332f f f << D .321()()()233f f f <<8.已知函数()sin()(,0)4f x x x πωω=+∈>R 的最小正周期为π,为了得到函数()cos()4g x x πω=+的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度B .向右平移8π个单位长度C .向左平移4π个单位长度D .向右平移4π个单位长度9.在椭圆22221(0)x y a b a b+=>>中,12,F F 分别是其左右焦点,若122PF PF =,则该椭圆离心率的取值范围是 ( )A .1,13⎛⎫⎪⎝⎭ B .1,13⎡⎫⎪⎢⎣⎭C .10,3⎛⎫ ⎪⎝⎭D .10,3⎛⎤ ⎥⎝⎦10.若不等式组0220x y x y y x y a -≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,,,表示的平面区域是一个四边形,则a 的取值范围是()A .43a ≥ B .01a <≤C .413a <<D .01a <≤或43a ≥11.设函数()()ln f x g x x x =++,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处的切线方程为( )A .4y x =B .48y x =-C .22y x =+D .112y x =-+12.市内某公共汽车站有10个候车位(成一排),现有4名乘客随便坐在某个座位上候车,则恰好有5个连续空座位的候车方式的种数是 ( ) A .240 B .480 C .600 D .720第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。

高考密码数学猜题卷2

高考密码数学猜题卷2

高考密码猜题卷理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题1.函数y =)A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,, B .(1)(01)-∞- ,, C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,, 10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上.....作答无效....) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.。

东北三校(哈尔滨师大附中2024年高三高考猜题卷(一)数学试题

东北三校(哈尔滨师大附中2024年高三高考猜题卷(一)数学试题

东北三校(哈尔滨师大附中2024年高三高考猜题卷(一)数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.斜率为1的直线l 与椭圆22x y 14+=相交于A 、B 两点,则AB 的最大值为( )A .2B .455C .4105D .81052.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )A .356B .328C .314D .143.i 是虚数单位,21iz i=-则||z =( ) A .1B .2C 2D .224.已知椭圆22:13x C y +=内有一条以点11,3P ⎛⎫ ⎪⎝⎭为中点的弦AB ,则直线AB 的方程为( )A .3320x y --=B .3320x y -+=C .3340x y +-=D .3340x y ++=5.函数()256f x x x =-+ )A .{2x x ≤或}3x ≥ B .{3x x ≤-或}2x ≥- C .{}23x x ≤≤D .{}32x x -≤≤-6.若双曲线22214x y b -=的离心率72e =,则该双曲线的焦点到其渐近线的距离为( ) A .23B .2C .3D .17.已知非零向量a ,b 满足||a b |=|,则“22a b a b +=-”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:8.已知函数()()3sin 3cos 0f x x x ωωω=+>,对任意的1x ,2x ,当()()1212f x f x =-时,12min2x x π-=,则下列判断正确的是( )A .16f π⎛⎫= ⎪⎝⎭B .函数()f x 在,62ππ⎛⎫⎪⎝⎭上递增C .函数()f x 的一条对称轴是76x π=D .函数()f x 的一个对称中心是,03π⎛⎫⎪⎝⎭9.已知l ,m 是两条不同的直线,m ⊥平面α,则“//l α”是“l ⊥m ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件10.已知()21,+=-∈a i bi a b R ,其中i 是虚数单位,则z a bi =-对应的点的坐标为( ) A .()12,-B .()21,-C .()1,2D .()2,111.函数()xf x e ax =+(0a <)的图像可以是( )A .B .C .D .12.若424log 3,log 7,0.7a b c ===,则实数,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>二、填空题:本题共4小题,每小题5分,共20分。

高考密码数学猜题卷3

高考密码数学猜题卷3

高考密码猜题卷[新课标版]注意事项: 1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上、考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题,共60分)参考公式: 球的表面积公式:S =4πR 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率: P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ). 如果事件A .B 互斥,那么P (A +B )=P (A )+P (B ).如果事件A .B 相互独立,那么P (AB )=P (A )·P (B ). 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2|log(3),|540A x y x B x x x ==-=-+<,则A B =( )A .∅B .()3,4C .()2,1-D .()4.+∞ 2.若复数z 与2(2)8z i +-都是纯虚数,则2z z +所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.一个空间几何体的三视图如下,则这个空间几何体的体积是( ) A .423π+B .823π+C .413π+D .108π+4.已知流程图如右图所示,该程序运行后,为使输出的b 值为16,则循环体的判断框内①处应填的是( ) A .2B .3C .4D .165.已知,a b是夹角为120的单位向量,则向量a b λ+ 与2a b - 垂直的充要条件是实数λ的值为( )A .54B .52C .34D .326.设32:()21p f x x x m x =+++在()-∞+∞,内单调递增,函数2:()43q g x x x m =-+不存在零点则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()ln f x x x =-,则有 ( )A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<8.已知函数()sin()(,0)4f x x x πωω=+∈>R 的最小正周期为π,为了得到函数()cos()4g x x πω=+的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度B .向右平移8π个单位长度C .向左平移4π个单位长度 D .向右平移4π个单位长度9.在椭圆22221(0)x y a b ab+=>>中,12,F F 分别是其左右焦点,若122PF PF =,则该椭圆离心率的取值范围是( )A .1,13⎛⎫⎪⎝⎭B .1,13⎡⎫⎪⎢⎣⎭C .10,3⎛⎫⎪⎝⎭D .10,3⎛⎤ ⎥⎝⎦10.若不等式组0220x y x y y x y a-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,,,表示的平面区域是一个四边形,则a 的取值范围是( )A .43a ≥B .01a <≤C .413a <<D .01a <≤或43a ≥11.设函数()()ln f x g x x x =++,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处的切线方程为( )A .4y x =B .48y x =-C .22y x =+D .112y x =-+12.市内某公共汽车站有10个候车位(成一排),现有4名乘客随便坐在某个座位上候车,则恰好有5个连续空座位的候车方式的种数是 ( )A .240B .480C .600D .720第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。

2022年高三数学新高考测评卷(猜题卷八)(1)

2022年高三数学新高考测评卷(猜题卷八)(1)

一、单选题二、多选题1. 某小组两名男生和两名女生邀请一名老师排成一排合影留念,要求两名男生不相邻,两名女生也不相邻,老师不站在两端,则不同的排法共有( )A .48种B .32种C .24种D .16种2. 设全集,集合,,则实数的值为( )A .0B .-1C .2D .0或23. 连接正四面体每条棱的中点, 形成如图所示的多面体, 则该多面体的体积是原正四面体体积的()A.B.C.D.4. 已知,则( )A.B.C.D.5. 已知直线与圆相交于,两点(为坐标原点),且为等边三角形,则实数( )A.B.C.D.6.记等差数列的前项和为,若,,则的公差为( )A .5B .6C .7D .87. 如果复数是实数,(为虚数单位,),则实数的值是( )A.B.C.D.8. 已知函数的图象在点处的切线的斜率为,则直线在轴上的截距为( )A.B.C.D.9. 设实数、、满足,,则下列不等式成立的是( )A.B.C.D.10. 人均可支配收入和人均消费支出是两个非常重要的经济和民生指标,常被用于衡量一个地区经济发展水平和群众生活水平.下图为2018~2023年前三季度全国城镇居民人均可支配收入及人均消费支出统计图,据此进行分析,则()A .2018~2023年前三季度全国城镇居民人均可支配收入逐年递增2022年高三数学新高考测评卷(猜题卷八)(1)2022年高三数学新高考测评卷(猜题卷八)(1)三、填空题四、解答题B .2018~2023年前三季度全国城镇居民人均消费支出逐年递增C .2018~2023年前三季度全国城镇居民人均可支配收入的极差比人均消费支出的极差大D .2018~2023年前三季度全国城镇居民人均消费支出的中位数为21180元11. 某同学用搜集到的六组数据绘制了如下散点图,在这六个点中去掉点后重新进行回归分析,则下列说法正确的是()A .决定系数变小B .相关系数的绝对值越趋于1C .残差平方和变小D .解释变量与预报变量相关性变弱12. 某组数据方差的计算公式为,则( )A .样本的容量是3B .样本的中位数是3C .样本的众数是3D .样本的平均数是313. 已知,点为椭圆上的动点,当取最小值时,点的横坐标的值为________.14. 已知,若过点恰能作两条直线与曲线相切,且这两条切线关于直线对称,则的一个可能值为______.15. 函数,(为常数)的最大值为,则的取值范围为_____16. 在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:类是以自拍人像、美颜美妆为核心功能的APP;类是图片编辑、精修等图片美化类APP.某机构为调查市民对上述,两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记为5人中使用过美颜拍摄类APP 的人数,设的数学期望为,求;(3)在单独使用过,两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对类APP,乙组对类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为,,标准差分别为,,试判断哪组评价更合理.(设(),越小,则认为对应组评价更合理.)参考数据:,.17. 如图所示,已知正方体.(1)线段AC上是否存在点O,使得平面,若存在,求的值;若不存在,请说明理由;(2)求直线与平面所成角的大小.18. 现定义:设是非零实常数,若对于任意的,都有,则称函数为“关于的偶型函数”(1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明(2)设定义域为的“关于的偶型函数”在区间上单调递增,求证在区间上单调递减(3)设定义域为的“关于的偶型函数”是奇函数,若,请猜测的值,并用数学归纳法证明你的结论19. 如图,在直四棱柱中,底面四边形是边长为2的正方形,,点,分别为棱,的中点.(1)证明:平面;(2)求二面角的余弦值.20. 设数列的前n项的和与的关系是,其中b是与n无关的常数,且.(1)求和的关系式;(2)写出用n和b表示的表达式;(3)当时,求极限.21. 如图,矩形所在平面与半圆弧所在平面垂直,是上异于、的点.(1)证明:平面;(2)在线段上是否存在点,使得平面?说明理由.。

江苏省连云港市灌云县2024届高三高考猜题卷(一)数学试题

江苏省连云港市灌云县2024届高三高考猜题卷(一)数学试题

江苏省连云港市灌云县2024届高三高考猜题卷(一)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数()(1)2z i i =++(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.某人2018年的家庭总收人为80000元,各种用途占比如图中的折线图,2019年家庭总收入的各种用途占比统计如图中的条形图,已知2019年的就医费用比2018年的就医费用增加了4750元,则该人2019年的储畜费用为( )A .21250元B .28000元C .29750元D .85000元3.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是( )A 3B 3C 3D 34.已知函数2()sin 3cos444f x x x x πππ=,则(1)(2)...(2020)f f f +++的值等于( )A .2018B .1009C .1010D .20205.已知()()cos 0,0,,2f x A x A x R πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的部分图象如图所示,则()f x 的表达式是( )A .32cos 24x π⎛⎫+⎪⎝⎭B .2cos 4x π⎛⎫+⎪⎝⎭C .2cos 24x π⎛⎫-⎪⎝⎭D .32cos 24x π⎛⎫-⎪⎝⎭6.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为 7816 6572 0802 6314 0702 4369 9728 0198 3204 923449358200 3623486969387481A .08B .07C .02D .017.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .8.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A .2B .3C .4D .59.若直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为25m =( ) A .1B .2C 5D .310.已知向量()1,3a =,b 是单位向量,若3a b -=,则,a b =( ) A .6π B .4π C .3π D .23π11.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3-B .{}1,0-C .{}0,3D .{}1,0,3-12.已知P 为圆C :22(5)36x y -+=上任意一点,(5,0)A -,若线段PA 的垂直平分线交直线PC 于点Q ,则Q 点的轨迹方程为( )A .221916x y +=B .221916x y -=C .221916x y -=(0x <)D .221916x y -=(0x >)二、填空题:本题共4小题,每小题5分,共20分。

2023年高考【文科数学】猜题卷 附解析(全国卷)1

2023年高考【文科数学】猜题卷 附解析(全国卷)1

2023年普通高等学校招生全国统一考试文科数学猜题卷 (全国卷)【满分:150 分】一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合,,.若,,则( ){}22,3,23A a a =--{}0,3B ={}2,C a =B A ⊆{}2A C =I a =A. B. C.1D.33-1-2.设复数z 满足( ) i 4z +=-=A.B. 42i -42i +3.若α是第二象限角,则是( ) 180α︒-A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.一批学生分别来自于一班与二班,一班、二班中女生的占比分别为40%,50%.将这两个班的学生合编成一个大班,从大班中随机抽取1名学生,已知抽取到女生的概率为44%,然后从大班中随机抽取1名学生,若抽取到的是女生,则她来自一班的概率为( ) A.B. C.D.611352522755.在等差数列中,若,且它的前n 项和有最小值,则当时,n 的最小值为{}n a 981a a <-n S 0n S >( ) A.14B.15C.16D.176.若函数在点处的切线为直线,若直线l 与圆()()a f x x a x =+∈R (2,(2))f 1:2l y x b =+相切,则r 的值为( ) 222:(0)C r x y r =+>7.执行如图所示的程序框图,若输出S 的值为-90,则判断框中可填写( )A.B.C. 5 ?i <D.5?i >4?i > 4 ?i <8.定义在R 上的偶函数()f x 满足当时,1()f x x x =-,则不等式的解集0x >()0f x x>为( )A.(,1)(1,)-∞-+∞UB. (,1)(0,1)-∞-UC.(1,0)(1,)-+∞UD.(1,0)(0,1)-U 9.已知向量(,3)k =a ,,,且,则实数k 的值为( )(1,4)=b (2,1)=c (23)-⊥a b c A.B.0C.3D.92-15210.已知四棱锥SABCD 的底面是边长为2的正方形,平面平面ABCD ,SAD ⊥SA SD ⊥,,则四棱锥的外接球的表面积为( ). SA SD =S ABCD -11.已知为锐角,且,则( ) ,αβtan 2,cos()ααβ=+=tan()αβ-=A. B.C. D.913-913712-71212.已知函数在区间上有最小值,则实数a 的取值范围是( ). 3()e (3)1x f x x a x =++-+(0,1)A.B.C.D.(e,2)-(e,1e)--(1,2)(,1e)-∞-二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2023年河北省衡水中学高考数学猜题卷(理科)(解析版)

2023年河北省衡水中学高考数学猜题卷(理科)(解析版)

2023年河北省衡水中学高考数学猜题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.己知集合Q={x|2x2﹣5x≤0,x∈N},且P⊆Q,则满足条件地集合P地个数是( )A.3B.4C.7D.82.已知i是虚数单位,复数地虚部为( )A.﹣1B.1C.﹣i D.i3.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本地平均值为1,则样本方差为( )A.2B.C.D.4.双曲线C:﹣=1(a>0,b>0)地离心率为2,焦点到渐近线地距离为,则C地焦距等于( )A.2B.2C.4D.45.若不等式组表示地平面区域是一个直角三角形,则该直角三角形地面积是( )A.B.C.D.或6.已知,则tan2α=( )A.B.C.D.7.《九章算术》是中国古代数学名著,体现了古代劳动人民数学地智慧,其中第六章"均输"中,有一竹节容量问题,某教师根据这一问题地思想设计了如下图所示地程序框图,若输出地m地值为35,则输入地a地值为( )A.4B.5C.7D.118.如下图所示,过抛物线y2=2px(p>0)地焦点F地直线l交抛物线于点A、B,交其准线l′点C,若|BC|=2|BF|,且|AF|=3,则此抛物线地方程为( )A.y2=9x B.y2=6x C.y2=3x D.9.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥地三视图是( )A.B.C.D.10.在△ABC中,AB=AC=2,BC•cos(π﹣A)=1,则cosA地值所在区间为( )A.(﹣0.4,﹣0.3)B.(﹣0.2,﹣0.1)C.(﹣0.3,﹣0.2)D.(0.4,0.5)11.已知符号函数sgn(x)=,那么y=sgn(x3﹣3x2+x+1)地大致图象是( )A.B.C.D.12.已知函数f(x)=﹣,若对任意地x1,x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f (x2)|](x1﹣x2)>0,则实数a地取值范围为( )A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣e2,e2]二、填空题(每题5分,满分20分,将解析填在答题纸上)13.已知,则地值是 .14.已知一个公园地形状如下图所示,现有3种不同地植物要种在此公园地A,B,C,D,E这五个区域内,要求有公共边界地两块相邻区域种不同地植物,则不同地种法共有 种.15.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f (x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m)﹣f(x m)|=12(m≥2,m∈﹣1N*),则m地最小值为 .16.已知等腰直角△ABC地斜边BC=2,沿斜边地高线AD将△ABC折起,使二面角B﹣AD﹣C为,则四面体ABCD地外接球地表面积为 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}地公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}地通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}地前n项和T n.18.如图,在四棱锥E﹣ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF地中点.(I)求证:BE∥平面ACF;(II)求平面BCF与平面BEF所成锐二面角地余弦角.19.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格地花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观地大展示.该景区自2023年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客地具体情形以及采集旅客对园区地建议,特别在2023年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)年龄频数频率男女[0,10)100.155[10,20)①②③④[20,30)250.251213[30,40)200.21010[40,50)100.164[50,60)100.137[60,70)50.0514[70,80)30.0312[80,90)20.0202合计100 1.004555(1)完成表格一中地空位①﹣④,并在答题卡中补全频率分布直方图,并估计2023年4月1日当日接待游客中30岁以下人数.(2)完成表格二,并问你能否有97.5%地把握认为在观花游客中"年龄达到50岁以上"与"性别"相关?(3)按分层抽样(分50岁以上与50以下两层)抽取被调查地100位游客中地10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)地人数为ξ,求ξ地分布列(表二)50岁以上50岁以下合计男生 女生 合计 P (K 2≥k )0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828(参考公式:k 2=,其中n=a +b +c +d )20.给定椭圆C:=1(a>b>0),称圆心在原点O,半径为地圆是椭圆C地"准圆".若椭圆C地一个焦点为F(,0),其短轴上地一个端点到F地距离为.(Ⅰ)求椭圆C地方程和其"准圆"方程;(Ⅱ)点P是椭圆C地"准圆"上地动点,过点P作椭圆地切线l1,l2交"准圆"于点M,N.(ⅰ)当点P为"准圆"与y轴正半轴地交点时,求直线l1,l2地方程并证明l1⊥l2;(ⅱ)求证:线段MN地长为定值.21.已知函数f(x)=x2﹣alnx(a∈R)(1)若函数f(x)在x=2处地切线方程为y=x+b,求a,b地值;(2)讨论方程f(x)=0解地个数,并说明理由.[选修4-4:坐标系与参数方程]22.已知曲线C地极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x 轴地正半轴建立平面直角坐标系,直线l地参数方程为(t为参数).(I)写出直线l地一般方程与曲线C地直角坐标方程,并判断它们地位置关系;(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D经过伸缩变换得到曲线E,设曲线E上任一点为M(x,y),求地取值范围.[选修4-5:不等式选讲]23.设f(x)=|x﹣a|,a∈R(Ⅰ)当a=5,解不等式f(x)≤3;(Ⅱ)当a=1时,若∃x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求实数m 地取值范围.2023年河北省衡水中学高考数学猜题卷(理科)参考解析与试卷解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.己知集合Q={x|2x2﹣5x≤0,x∈N},且P⊆Q,则满足条件地集合P地个数是( )A.3B.4C.7D.8【考点】18:集合地包含关系判断及应用.【分析】解出集合Q,再根据P⊆Q,根据子集地性质,求出子集地个数即为集合P 地个数;【解答】解:集合Q={x|2x2﹣5x≤0,x∈N},∴Q={0,1,2},共有三个元素,∵P⊆Q,又Q地子集地个数为23=8,∴P地个数为8,故选D;2.已知i是虚数单位,复数地虚部为( )A.﹣1B.1C.﹣i D.i【考点】A5:复数代数形式地乘除运算.【分析】利用复数地运算法则、虚部地定义即可得出.【解答】解:复数==i﹣2地虚部为1.故选:B.3.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本地平均值为1,则样本方差为( )A.2B.C.D.【考点】BC:极差、方差与标准差.【分析】根据平均数公式先求出a,再计算它们地方差.【解答】解:设丢失地数据为a,则这组数据地平均数是×(a+0+1+2+3)=1,解得a=﹣1,根据方差计算公式得s2=×[(﹣1﹣1)2+(0﹣1)2+(1﹣1)2+(2﹣1)2+(3﹣1)2]=2.故选:A.4.双曲线C:﹣=1(a>0,b>0)地离心率为2,焦点到渐近线地距离为,则C地焦距等于( )A.2B.2C.4D.4【考点】KC:双曲线地简单性质.【分析】根据双曲线地离心率以及焦点到直线地距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)地离心率为2,∴e=,双曲线地渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0地距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C5.若不等式组表示地平面区域是一个直角三角形,则该直角三角形地面积是( )A.B.C.D.或【考点】7C:简单线性规划.【分析】依题意,三条直线围成一个直角三角形,可能会有两种情形,分别计算两种情形下三角形地顶点坐标,利用三角形面积公式计算面积即可.【解答】解:有两种情形:(1)由y=2x与kx﹣y+1=0垂直,则k=﹣,三角形地三个顶点为(0,0),(0,1),(,),三角形地面积为s=×1×=;(2)由x=0与kx﹣y+1=0形垂直,则k=0,三角形地三个顶点为(0.0),(0,1),(,1),三角形地面积为s=×1×=.∴该三角形地面积为或.故选:D.6.已知,则tan2α=( )A.B.C.D.【考点】GU:二倍角地正切.【分析】将已知等式两边平方,利用二倍角公式,同角三角函数基本关系式即可化简求值得解.【解答】解:∵,∴,化简得4sin2α=3cos2α,∴,故选:C.7.《九章算术》是中国古代数学名著,体现了古代劳动人民数学地智慧,其中第六章"均输"中,有一竹节容量问题,某教师根据这一问题地思想设计了如下图所示地程序框图,若输出地m地值为35,则输入地a地值为( )A.4B.5C.7D.11【考点】EF:程序框图.【分析】模拟程序框图地运行过程,求出运算结果即可.【解答】解:起始阶段有m=2a﹣3,i=1,第一次循环后m=2(2a﹣3)﹣3=4a﹣9,i=2,第二次循环后m=2(4a﹣9)﹣3=8a﹣21,i=3,第三次循环后m=2(8a﹣21)﹣3=16a﹣45,i=4,第四次循环后m=2(16a﹣45)﹣3=32a﹣93,跳出循环,输出m=32a﹣93=35,解得a=4,故选:A8.如下图所示,过抛物线y2=2px(p>0)地焦点F地直线l交抛物线于点A、B,交其准线l′点C,若|BC|=2|BF|,且|AF|=3,则此抛物线地方程为( )A.y2=9x B.y2=6x C.y2=3x D.【考点】K8:抛物线地简单性质.【分析】分别过点A,B作准线地垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD地值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段地性质可求得p,则抛物线方程可得.【解答】解:如图分别过点A,B作准线地垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴=求得p=,因此抛物线方程为y2=3x.故选C.9.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥地三视图是( )A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由已知中地四个三视图,可知四个三视图,分别表示从前、后、左、右四个方向观察同一个棱锥,但其中有一个是错误地,根据A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,可得A,C均正确,而根据AC可判断B正确,D错误.【解答】解:三棱锥地三视图均为三角形,四个解析均满足;且四个三视图均表示一个高为3,底面为两直角边分别为1,2地棱锥A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故A,C表示同一棱锥设A中观察地正方向为标准正方向,以C表示从后面观察该棱锥B与D中俯视图正好旋转180°,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故B,D中有一个不与其它三个一样表示同一个棱锥,根据B中正视图与A中侧视图相同,侧视图与C中正视图相同,可判断B是从左边观察该棱锥故选D10.在△ABC中,AB=AC=2,BC•cos(π﹣A)=1,则cosA地值所在区间为( )A.(﹣0.4,﹣0.3)B.(﹣0.2,﹣0.1)C.(﹣0.3,﹣0.2)D.(0.4,0.5)【考点】HR:余弦定理;HP:正弦定理.【分析】由题意求得cosA=﹣,再由余弦定理,得出关于﹣地方程,构造函数,利用函数零点地判断方法得出cosA地取值范围.【解答】解:△ABC中,AB=AC=2,BC•cos(π﹣A)=1,∴c=b=2,﹣acosA=1,cosA=﹣<0,且4>a>2;由余弦定理得,cosA==,∴﹣=,化为:8•﹣8•+1=0,令﹣=x∈(﹣,﹣),则f(x)=8x3﹣8x2+1=0,∵f(﹣0.4)=﹣1.4×1.28+1<0,f(﹣0.3)=0.064>0,∴cosA∈(﹣0.4,﹣0.3).故选:A.11.已知符号函数sgn(x)=,那么y=sgn(x3﹣3x2+x+1)地大致图象是( )A.B.C.D.【考点】3O:函数地图象.【分析】构造函数f(x)=x3﹣3x2+x+1,可整理得f(x)=(x﹣1)(x2﹣2x﹣1)=(x﹣1)(x﹣1﹣)(x﹣1+),利用排除法即可得到解析.【解答】解:令f(x)=x3﹣3x2+x+1,则f(x)=(x﹣1)(x2﹣2x﹣1)=(x﹣1)(x﹣1﹣)(x﹣1+),∴f(,1)=0,f(1﹣)=0,f(1+)=0,∵sgn(x)=,∴sgn(f(1))=0,可排除A,B;又sgn(f(1﹣))=0,sgn(f(1﹣))=0,可排除C,故选D.12.已知函数f(x)=﹣,若对任意地x1,x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f (x2)|](x1﹣x2)>0,则实数a地取值范围为( )A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣e2,e2]【考点】6B:利用导数研究函数地单调性.【分析】由题意可知函数y=丨f(x)丨单调递增,分类讨论,根据函数地性质及对勾函数地性质,即可求得实数a地取值范围.【解答】解:由任意地x1,x2∈[1,2],且x1<x2,由[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则函数y=丨f(x)丨单调递增,当a≥0,f(x)在[1,2]上是增函数,则f(1)≥0,解得:0≤a≤,当a<0时,丨f(x)丨=f(x),令=﹣,解得:x=ln,由对勾函数地单调递增区间为[ln,+∞),故ln≤1,解得:﹣≤a<0,综上可知:a地取值范围为[﹣,],故选B.二、填空题(每题5分,满分20分,将解析填在答题纸上)13.已知,则地值是 ()2018 .【考点】DB:二项式系数地性质.【分析】利用二项式定理,对等式中地x赋值﹣2,可求得a0=0,再令x=,即可求出解析.【解答】解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=﹣2,得a0=0再令x=﹣,得到a0+=(﹣+1)2(﹣+2)2016=()2018,∴=,故解析为:()2018,14.已知一个公园地形状如下图所示,现有3种不同地植物要种在此公园地A,B,C,D,E这五个区域内,要求有公共边界地两块相邻区域种不同地植物,则不同地种法共有 18 种.【考点】D8:排列、组合地实际应用.【分析】根据题意,分2步进行分析:①、对于A、B、C区域,将3种不同地植物全排列,安排在A、B、C区域,由排列数公式可得其排法数目,②、对于D、E区域,分2种情况讨论:若A,E种地植物相同,若A,E种地植物不同;由加法原理可得D、E 区域地排法数目,进而由分步计数原理计算可得解析.【解答】解:根据题意,分2步进行分析:①、对于A、B、C区域,三个区域两两相邻,种地植物都不能相同,将3种不同地植物全排列,安排在A、B、C区域,有A33=6种情况,②、对于D、E区域,分2种情况讨论:若A,E种地植物相同,则D有2种种法,若A,E种地植物不同,则E有1种情况,D也有1种种法,则D、E区域共有2+1=3种不同情况,则不同地种法共有6×3=18种;故解析为:18.15.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f)﹣f(x m)|=12(m≥2,m∈(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1N*),则m地最小值为 8 .【考点】H2:正弦函数地图象.【分析】由正弦函数地有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f (x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件地最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m)﹣1﹣f(x m)|=12,按下图取值即可满足条件,∴m地最小值为8.故解析为:8.16.已知等腰直角△ABC地斜边BC=2,沿斜边地高线AD将△ABC折起,使二面角B﹣AD﹣C为,则四面体ABCD地外接球地表面积为 .【考点】LG:球地体积和表面积.【分析】由题意,△BCD是等边三角形,边长为1,外接圆地半径为,AD=1,可得四面体ABCD地外接球地半径==,即可求出四面体ABCD地外接球地表面积.【解答】解:由题意,△BCD是等边三角形,边长为1,外接圆地半径为,∵AD=1,∴四面体ABCD地外接球地半径==,∴四面体ABCD地外接球地表面积为=,故解析为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}地公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}地通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}地前n项和T n.【考点】8E:数列地求和;82:数列地函数特性;8H:数列递推式.【分析】(Ⅰ)利用等差数列与等比数列地通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论"裂项求和"即可得出.【解答】解:(Ⅰ)∵等差数列{a n}地公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+ =1+=.∴Tn=.18.如图,在四棱锥E﹣ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DF地中点.(I)求证:BE∥平面ACF;(II)求平面BCF与平面BEF所成锐二面角地余弦角.【考点】MT:二面角地平面角及求法;LS:直线与平面平行地判定.【分析】(1)连接BD和AC交于点O,连接OF,证明OF∥BE.然后证明BE∥平面ACF.(II)以D为原点,以DE所在直线为x轴建立如下图所示地空间直角坐标系,求出相关点地坐标,求出平面BEF地一个法向量,平面BCF地一个法向量,设平面BCF 与平面BEF所成地锐二面角为θ,利用数量积求解即可.【解答】解:(1)连接BD和AC交于点O,连接OF,因为四边形ABCD为正方形,所以O为BD地中点.因为F为DE地中点,所以OF∥BE.因为BE⊄平面ACF,OF⊂平面AFC,所以BE∥平面ACF.(II)因为AE⊥平面CDE,CD⊂平面CDE,所以AE⊥CD.因为ABCD为正方形,所以CD⊥AD.因为AE∩AD=A,AD,AE⊂平面DAE,所以CD⊥平面DAE.因为DE⊂平面DAE,所以DE⊥CD.所以以D为原点,以DE所在直线为x轴建立如下图所示地空间直角坐标系,则E(2,0,0),F(1,0,0),A(2,0,2),D(0,0,0).因为AE⊥平面CDE,DE⊂平面CDE,所以AE⊥CD.因为AE=DE=2,所以.因为四边形ABCD为正方形,所以,所以.由四边形ABCD为正方形,得==(2,2,2),所以.设平面BEF地一个法向量为=(x1,y1,z1),又知=(0,﹣2,﹣2),=(1,0,0),由,可得,令y1=1,得,所以.设平面BCF地一个法向量为=(x2,y2,z2),又知=(﹣2,0,﹣2),=(1,﹣2,0),由,即:.令y2=1,得,所以.设平面BCF与平面BEF所成地锐二面角为θ,又cos===.则.所以平面BCF与平面BEF所成地锐二面角地余弦值为.19.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格地花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观地大展示.该景区自2023年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客地具体情形以及采集旅客对园区地建议,特别在2023年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)年龄频数频率男女[0,10)100.155[10,20)①②③④[20,30)250.251213[30,40)200.21010[40,50)100.164[50,60)100.137[60,70)50.0514[70,80)30.0312[80,90)20.0202合计100 1.004555(1)完成表格一中地空位①﹣④,并在答题卡中补全频率分布直方图,并估计2023年4月1日当日接待游客中30岁以下人数.(2)完成表格二,并问你能否有97.5%地把握认为在观花游客中"年龄达到50岁以上"与"性别"相关?(3)按分层抽样(分50岁以上与50以下两层)抽取被调查地100位游客中地10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)地人数为ξ,求ξ地分布列(表二)50岁以上50岁以下合计男生 5 40 45 女生 15 40 55 合计 20  80  100 P (K 2≥k )0.150.100.050.0250.0100.0050.001k2.0722.7063.841 5.024 6.6357.87910.828(参考公式:k 2=,其中n=a +b +c +d )【考点】CG:离散型随机变量及其分布列;BL:独立性检验.【分析】(1)由频率分布表地性质能完成表(一),从而能完成频率分布直方图,进而求出30岁以下频率,由此以频率作为概率,能估计2023年7月1日当日接待游客中30岁以下人数.(2)完成表格,求出K 2=≈4.04<5.024,从而得到没有97.5%地把握认为在观花游客中"年龄达到50岁以上"与"性别"相关.(3)由分层抽样应从这10人中抽取50岁以上人数:10×0.2=2人,50岁以下人数ξ地取值可能0,1,2,分别求出相应地概率,由此能求出ξ地分布列.【解答】解:(1)完成表(一),如下表:年龄频数频率男女[0,10)100.155[10,20)150.1578[20,30)250.251213[30,40)200.21010[40,50)100.164[50,60)100.137[60,70)50.0514[70,80)30.0312[80,90)20.0202合计100 1.004555完成频率分布直方图如下:30岁以下频率为:0.1+0.15+0.25=0.5,以频率作为概率,估计2023年7月1日当日接待游客中30岁以下人数为:12000×0.5=6000.(2)完成表格,如下:50岁以上50岁以下合计男生54045女生154055合计2080100K2==≈4.04<5.024,所以没有97.5%地把握认为在观花游客中"年龄达到50岁以上"与"性别"相关.(3)由分层抽样应从这10人中抽取50岁以上人数:10×0.2=2人,50岁以下人数ξ地取值可能0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.∴ξ地分布列为:ξ012P20.给定椭圆C:=1(a>b>0),称圆心在原点O,半径为地圆是椭圆C地"准圆".若椭圆C地一个焦点为F(,0),其短轴上地一个端点到F地距离为.(Ⅰ)求椭圆C地方程和其"准圆"方程;(Ⅱ)点P是椭圆C地"准圆"上地动点,过点P作椭圆地切线l1,l2交"准圆"于点M,N.(ⅰ)当点P为"准圆"与y轴正半轴地交点时,求直线l1,l2地方程并证明l1⊥l2;(ⅱ)求证:线段MN地长为定值.【考点】KH:直线与圆锥曲线地综合问题.【分析】(Ⅰ)利用已知椭圆地标准方程及其即可得出;(Ⅱ)(i)把直线方程代入椭圆方程转化为关于x地一元二次方程,利用直线与椭圆相切⇔△=0,即可解得k地值,进而利用垂直与斜率地关系即可证明;(ii)分类讨论:l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,无论两条直线中地斜率是否存在,都有l1,l2垂直.即可得出线段MN为准圆x2+y2=4地直径.【解答】(Ⅰ)解:∵椭圆C地一个焦点为F(,0),其短轴上地一个端点到F地距离为.∴,,∴=1,∴椭圆方程为,∴准圆方程为x2+y2=4.(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴地交点为P(0,2),设过点P(0,2)且与椭圆相切地直线为y=kx+2,联立得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l1,l2方程为y=x+2,y=﹣x+2.∵,∴l1⊥l2.(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:,当l1:时,l1与准圆交于点,此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中.设经过点P(x0,y0)与椭圆相切地直线为y=t(x﹣x0)+y0,∴由得.由△=0化简整理得,∵,∴有.设l1,l2地斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4地直径,|MN|=4,∴线段MN地长为定值.21.已知函数f(x)=x2﹣alnx(a∈R)(1)若函数f(x)在x=2处地切线方程为y=x+b,求a,b地值;(2)讨论方程f(x)=0解地个数,并说明理由.【考点】6K:导数在最大值、最小值问题中地应用;54:根地存在性及根地个数判断;6H:利用导数研究曲线上某点切线方程.【分析】(1)求出导函数,利用f(x)在x=2处地切线方程为y=x+b,列出方程组求解a,b.(2)通过a=0,a<0,判断方程地解.a>0,求出函数地导数判断函数地单调性,求出极小值,分析出当a∈[0,e)时,方程无解;当a<0或a=e时,方程有惟一解;当a >e时方程有两解.【解答】解:(1)因为:(x>0),又f(x)在x=2处地切线方程为y=x+b所以解得:a=2,b=﹣2ln2…(2)当a=0时,f(x)在定义域(0,+∞)上恒大于0,此时方程无解;…当a<0时,在(0,+∞)上恒成立,所以f(x)在定义域(0,+∞)上为增函数.∵,,所以方程有惟一解.…当a>0时,因为当时,f'(x)>0,f(x)在内为减函数;当时,f(x)在内为增函数.所以当时,有极小值即为最小值…当a∈(0,e)时,,此方程无解;当a=e时,.此方程有惟一解.当a∈(e,+∞)时,,因为且,所以方程f(x)=0在区间上有惟一解,因为当x>1时,(x﹣lnx)'>0,所以x﹣lnx>1,所以,,因为,所以,所以方程f(x)=0在区间上有惟一解.所以方程f(x)=0在区间(e,+∞)上有惟两解.…综上所述:当a∈[0,e)时,方程无解;当a<0或a=e时,方程有惟一解;当a>e时方程有两解.…[选修4-4:坐标系与参数方程]22.已知曲线C地极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,以极点为原点,极轴为x 轴地正半轴建立平面直角坐标系,直线l地参数方程为(t为参数).(I)写出直线l地一般方程与曲线C地直角坐标方程,并判断它们地位置关系;(II)将曲线C向左平移2个单位长度,向上平移3个单位长度,得到曲线D,设曲线D经过伸缩变换得到曲线E,设曲线E上任一点为M(x,y),求地取值范围.【考点】Q4:简单曲线地极坐标方程;O7:伸缩变换.【分析】(I)直线l地参数方程消去数t,能求出直线l地一般方程,由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,能求出曲线C地直角坐标方程,由圆心(2,3)到直线l地距离d=r,得到直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换,得到曲线E地方程为,从而点M地参数方程为(θ为参数),由此能求出地取值范围.【解答】解:(I)∵直线l地参数方程为(t为参数).∴消去数t,得直线l地一般方程为,∵曲线C地极坐标方程是ρ2=4ρcosθ+6ρsinθ﹣12,∴由ρcosθ=x,ρsinθ=y,ρ2=x2+y2,得曲线C地直角坐标方程为(x﹣2)2+(y﹣3)2=1.∵圆心(2,3)到直线l地距离d==r,∴直线l和曲线C相切.(II)曲线D为x2+y2=1.曲线D经过伸缩变换,得到曲线E地方程为,则点M地参数方程为(θ为参数),∴,∴地取值范围为[﹣2,2].[选修4-5:不等式选讲]23.设f(x)=|x﹣a|,a∈R(Ⅰ)当a=5,解不等式f(x)≤3;(Ⅱ)当a=1时,若∃x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求实数m 地取值范围.【考点】R2:绝对值不等式.【分析】(Ⅰ)将a=5代入解析式,然后解绝对值不等式,根据绝对值不等式地解法解之即可;(Ⅱ)先利用根据绝对值不等式地解法去绝对值,然后利用图象研究函数地最小值,使得1﹣2m大于等于不等式左侧地最小值即可.【解答】解:(I)a=5时原不等式等价于|x﹣5|≤3即﹣3≤x﹣5≤3,2≤x≤8,∴解集为{x|2≤x≤8};(II)当a=1时,f(x)=|x﹣1|,令,由图象知:当时,g(x)取得最小值,由题意知:,∴实数m地取值范围为.2023年7月23日31。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考密码猜题卷[新课标版]注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上、考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题,共60分)参考公式:球的表面积公式:S =4πR 2,其中R 是球的半径. 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率: P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ). 如果事件 A .B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件 A .B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}6,5,4=P ,{}3,2,1=Q ,定义{}Q q P p q p x x Q P ∈∈-==⊕,,|,则集合Q P ⊕的所有真子集的个数为( )A .32B .31C .30D .以上都不对 2.已知函数()cos 2f x x π=+(x R ∈),则下列叙述错误的是( )A .()f x 的最大值与最小值之和等于π B .()f x 是偶函数C .()f x 在[]4,7上是增函数D .()f x 的图像关于点,22ππ⎛⎫⎪⎝⎭成中心对称3.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。

公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是 ( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法4.在圆x y x522=+内,过点)23,25(有n 条弦的长度成等差数列,最短弦长为数列的首项1a ,最长弦长为n a ,若公差]31,61(∈d ,那么n 的取值集合为( )A .}6,5,4{B .}9,8,7,6{C .}5,4,3{D .}6,5,4,3{5.已知两个不同的平面α、β和两条不重合的直线,m 、n ,有下列四个命题: ①若α⊥m n m ,//,则α⊥n②若βαβα//,,则⊥⊥m m ;③若βαβα⊥⊂⊥则,,//,n n m m ;④若n m n m //,,,//则=βααI其中不正确的命题的个数是 ( )A .0个B .1个C .2个D .3个6.右图是一个空间几何体的三视图,根据图中尺寸(单位:cm ),可知几何体的表面积是( ) A .183+B .1623+C .173+D .183+7.在ABC ∆中,c b a ,,分别为三个内角A 、B 、C 所对的边,设向量m (),,b c c a =--n (),b c a =+,若向量m ⊥n ,则角A 的大小为( )A .6π B .3π C .2π D .32π8.定义{}⎩⎨⎧<≥=),(),(,maxb a b b a a b a 设实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤≤,2,2y x且{}y x y x z -+=3,4m ax ,则z 的取值范围为( )A .]0,6[-B .]10,7[-C .]8,6[-D .]8,7[-9.对任意x R ∈,2234x x a a -++≥-恒成立,则a 的取值范围是 ( )A .15a -≤≤B.15a -<≤C .15a -≤<D .15a -<<10.如右图所示的曲线是以锐角ABC ∆的顶点B 、C 为焦点,且经过点A 的双曲线,若ABC ∆的内角的对边分别为,,a b c ,且sin 34,6,c A a b a === ) A 37+B 37-C .37D .3711.在113)23(x x -的展开式中任取一项,则所取项为有理项的概率为α,则=⎰-11αx( )A .61B .712 C .98 D .512 12.如图所示,为了测量该工件上面凹槽的圆弧半径R ,由于没有直接的测量工具,工人用三个 半径均为r (r 相对R 较小)的圆柱棒123,,O O O 放在如图与工件圆弧相切的位置上,通过深度卡 尺测出卡尺水平面到中间量棒2O 顶侧面的垂直 深度h ,若10,4rmm h mm ==时,则R 的值为 ( ) A .25mmB .5mmC .50mmD .15mm第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。

13.若复数z =sin α-i (1-cos α)是纯虚数,则α= ;14.若函数f (x )=x 3-3bx +b 在区间(0,1)内有极小值,则b 应满足的条件是 ;15.根据如图所示的算法流程图,可知输出的结果T 为 ;16.设面积为S 的平面四边形的第i 条边的边长记为(1,2,3,4)i a i =,P 是该四边形内任意一点,P 点到第i 条边的距离记为i a ,若31241234a a a a k ====,则412()i i S ih k ==∑.类比上述结论,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i=,Q 是该三棱锥内的任意一点,Q 点到第i 个面的距离记为i H ,相应的正确 命题是 ;三、解答题:共大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤 17.(本小题满分12分)在△ABC 中,已知AB =3,BC =2。

(Ⅰ)若cos B =-36,求sin C 的值; (Ⅱ)求角C 的取值范围.18.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面 ABCD ,AB=3,BC =1,P A =2,E 为PD 的中点. (Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面P AB 内找一点N ,使NE ⊥面P AC ,并求出点N 到AB 和AP 的距离.19.(本小题满分12分)设两球队A , B 进行友谊比赛,在每局比赛中A 队获胜的概率都是 p (0≤p ≤1), (Ⅰ)若比赛6局,且p =23,求其中一队至多获胜4局的概率是多少?(Ⅱ)若比赛6局,求A 队恰好获胜3局的概率的最大值是多少?(Ⅲ)若采用“五局三胜”制,求A 队获胜时的比赛局数ξ的分布列和数学期望.20.(本小题满分12分)已知函数f(x)=log a 1-mxx-1是奇函数(a>0,a≠1)。

(Ⅰ)求m的值;(Ⅱ)求f′(x)和函数f(x)的单调区间;(Ⅲ)若当x∈(1,a-2)时,f(x)的值域为(1,+∞),求实数a的值。

21.(本小题满分12分)已知M 是以点C 为圆心的圆22(1)8x y ++=上的动点,定点(1,0)D .点P在DM 上,点N 在CM 上,且满足2,0DM DP NP DM =⋅=u u u u r u u u r u u u r u u u u r.动点N 的轨迹为曲线E 。

(Ⅰ)求曲线E 的方程; (Ⅱ)线段AB 是曲线E 的长为2的动弦,O 为坐标原点,求AOB ∆面积S 的取值范围。

22.(本小题满分14分)已知数列{a n }中,a 1=12,点(n ,2a n +1-a n )(n ∈N )在直线y =x 上,(Ⅰ)计算a 2,a 3,a 4的值;(Ⅱ)令b n =a n +1-a n -1,求证:数列{b n }是等比数列;(Ⅲ)设S n 、T n 分别为数列{a n }、{b n }的前n 项和,是否存在实数λ,使得数列{S n +λT nn}为等差数列?若存在,试求出λ的值;若不存在,请说明理由.参考答案1.解析:B ,由所定义的运算可知{}5,4,3,2,1=⊕Q P ,Q P ⊕∴的所有真子集的个数为31125=-.故选B 。

2.解析:C ,由题意得()cos cos 22f x x x ππ=+=+,因此结合各选项知()f x 在[]4,7上是增函数是错误的,选C 。

3.解析:B ;① 因为抽取销售点与地区有关,因此要采用分层抽样法;②从20个特大型销售点中抽取7个调查,总体和样本都比较少,适合采用简单随机抽样法。

4.解析:A ;由题意得4])023()2525[()25(22221=-+--=a ,5225=⨯=n a ,1111-=--=∴n n a a d n ,3161≤<d Θ,311161≤-<∴n ,613<-≤∴n ,74<≤∴n ,*N ∈n Θ,6,5,4=∴n .故选A 。

5.解析:B,真命题有①,②,③.假命题是④,这可以举出反例。

6.解析:D ,由三视图可得,该几何是一个底面边长为2高为3的正三棱柱,其表面积22332322182 3 S cm =⨯⨯+⨯⨯=+。

7.解析:B ;m ⊥n ⇒m ⋅n 0=⇒2221()()()0cos 2b c b c a c a b c a bc A -+-+=⇒+-=⇒=3A π⇒=。

8.解析:B ,y x y x y x 2)3()4(+=--+Θ,⎩⎨⎧-+=∴y x yx z 34 ).02(),02(<+≥+y x y x 直线02=+y x 将约束条件⎪⎩⎪⎨⎧≤≤22y x 所确定的平面区域分为两部分.如图,令y x z +=41,点),(y x 在四边形ABCD 上及其内部,求得1071≤≤-z ;令y x z -=32,点),(y x 在四边形ABEF 上及其内部(除AB 边),求得872≤≤-z .综上可知,z 的取值范围为]10,7[-.故选 B .评析:表面上看约束条件和目标函数都是静态的,实际上二者都是动态变化的,目标函数是y x z +=4还是y x z -=3并没有明确确定下来,直线02=+y x 又将原可行域分为两部分.本H题看似风平浪静,实际暗藏玄机,化动为静,在静态状态下,从容破解问题 9.解析:A ,因为235x x -++≥,要2234x x a a-++≥-恒成立,即:254aa ≥-,解得:15a -≤≤。

10.解析:D ,sin 33sin 2sin sin 232c A a c C a A C=⇒==⇒=,因为C 为锐角, 所以C=3π,由余弦定理知2222212cos 4624628,272ca b ab C c =+-=+-⨯⨯⨯== 37627a ebc ===+--评析:离心率是圆锥曲线的一个重要特征量,是高考“经久不衰”的重点和热点内容,必须高度重视.本题以椭圆为载体,巧妙地将光的反射融于其中,对平面几何及解析几何的考查均非常深刻,对计算能力要求较高,极富思考性和挑战性,具有较好的区分和选拔功能11.解析:A ,因为展开后展开式一共12项,其通项公式为r r r r x x C T )2()3(311111-⋅⋅=-+6331111)2(3r rrrxC --⋅-⋅⋅=,,11,,1,0Λ=r其中只有第4项和第10项是有理项, 故所求概率为61122=. 12.解析C ,如图所示,在H O O 21∆中, 2021=O O ,4)(2=-+=r h r H O 。

相关文档
最新文档