高中物理力学实验完美知识点版本
力学实验知识点总结高考

力学实验知识点总结高考力学实验是物理学中的重要分支之一,通过实验研究物体运动和力的作用,可以帮助我们更好地理解和掌握力学的基本理论。
在高考物理考试中,力学实验也是常见的一种考查形式。
下面对一些力学实验的知识点进行总结。
弹簧振子实验是力学实验中常见的一个实验。
通过测量弹簧振动的周期与弹簧的劲度系数之间的关系,可以得到弹簧振动的频率公式:f=1/2π√(k/m),其中f为振动的频率,k为弹簧的劲度系数,m为振子的质量。
通过这个实验,我们可以研究弹簧振动的规律,以及劲度系数和质量之间的关系。
受力分析实验是力学实验中另一个重要的实验。
通过测量物体在不同斜面上的运动情况,可以研究物体在斜面上受力分析的规律。
根据实验结果,我们可以得到物体在斜面上滑动和静止的条件,进一步了解物体在受力情况下的运动规律。
平衡条件实验是力学实验中常见的一种实验。
通过测量物体在杠杆上的平衡位置和平衡条件关系,可以研究物体在平衡时力的作用规律。
通过这个实验,我们可以了解杠杆的平衡条件,以及通过调节力臂和力的大小来实现杠杆平衡的原理。
摩擦力实验是力学实验中常见的一种实验。
通过测量不同物体在不同表面上的滑动或静止摩擦力,可以研究摩擦力的大小和摩擦系数与物体性质、表面性质之间的关系。
通过这个实验,我们可以了解物体在受摩擦力作用下的运动规律,以及摩擦力的大小与物体特性和表面条件的关系。
牛顿定律实验是力学实验中重要的一种实验。
通过测量物体在外力作用下的加速度和力的大小,可以验证牛顿第二定律:F=ma,其中F 为力的大小,m为物体的质量,a为物体的加速度。
通过这个实验,我们可以了解牛顿定律的基本原理,以及力与物体质量和加速度之间的关系。
上述实验只是力学实验中的一小部分,通过这些实验的研究,我们可以更好地理解和掌握力学的基本理论。
在高考物理考试中,力学实验也是重要的考查内容,通过对实验的理解和分析,可以帮助我们更好地解决与实验相关的问题。
因此,对这些实验的知识点进行总结和复习,对我们备考物理非常有帮助。
高中物理力学实验知识点总结

高中物理力学实验知识点总结力学是物理学的一个重要分支,主要研究物体的运动规律和相互作用。
在高中物理课程中,力学实验是非常重要的一部分,通过实验可以帮助学生更好地理解物理学原理,掌握实验方法和技巧。
下面对高中物理力学实验的知识点进行总结。
一、测量长度的实验1. 使用游标卡尺测量物体长度:在实验中,要正确使用游标卡尺,保持测量精确度。
先将游标卡尺的两个测头对准要测量的物体两端,然后读出游标尺上的刻度值,注意估读。
2. 使用光栅测量物体的长度:利用光栅可以更加精确地测量物体的长度,实验中要注意调整好放置光栅和光源的位置,确保测量准确。
二、测量时间的实验1. 使用秒表测量时间:秒表是测量时间的常用工具,实验中要注意操作规范,按下开始按钮和停止按钮时要准确及时。
2. 利用摆钟测量时间:通过摆钟实验可以研究物体摆动的规律,要注意测量摆动周期和频率,以及摆长和振幅的影响。
三、小球自由落体实验1. 自由落体实验的原理:自由落体是一种重力作用下物体的运动方式,实验中要注意测量下落物体的时间和高度,根据实验数据计算出加速度等物理量。
2. 利用计时器测量自由落体时间:在实验中可以利用计时器准确测量自由落体的时间,通过多次实验取平均值得出准确结果。
四、力的平衡实验1. 力的合成实验:力的平衡实验可以通过力的合成和分解来研究物体在受力作用下的平衡情况,实验中要注意施加力的方向和大小,观察物体是否平衡。
2. 利用弹簧测力计测量力的大小:在力的平衡实验中,可以使用弹簧测力计来准确测量力的大小,通过拉伸弹簧的长度来得出力的大小。
五、牛顿运动定律实验1. 牛顿第一定律实验:通过实验验证牛顿第一定律,即物体静止或匀速直线运动时,受力平衡的原理。
实验中可以利用滑动和静止摩擦力的对比来说明该定律。
2. 牛顿第二定律实验:通过实验验证牛顿第二定律,即物体受力时产生加速度和力的大小和加速度成正比的原理。
实验中要测量物体受力后的加速度并得出结论。
高中物理力学实验必考知识点归纳

(每日一练)高中物理力学实验必考知识点归纳单选题1、如图为“探究加速度与力、质量的关系”的实验装置,砂和砂桶的总质量为m,小车(含车内砝码)总质量为M,实验中用砂和砂桶总重力的大小作为细线对小车拉力的大小,小车运动加速度用a表示。
实验中,为了使细线对小车的拉力等于小车所受的合外力,先调节长木板一端滑轮的高度,使细线与长木板平行。
接下来还需要进行的一项操作是()A.将长木板水平放置,让小车连着已经穿过打点计时器的纸带,给打点计时器通电,调节m的大小,使小车在砂和砂桶的牵引下运动,从打出的纸带判断小车是否做匀速运动B.将长木板的一端垫起适当的高度,撤去纸带以及砂和砂桶,轻推小车,观察判断小车是否做匀速运动C.将长木板带有定滑轮的一端垫起适当的高度,让小车连着已经穿过打点计时器的纸带,撤去砂和砂桶,给打点计时器通电,轻推小车,从打出的纸带判断小车是否做匀速运动D.将长木板远离定滑轮的一端垫起适当的高度,让小车连着已经穿过打点计时器的纸带,撤去砂和砂桶,给打点计时器通电,轻推小车,从打出的纸带判断小车是否做匀速运动答案:D解析:实验中接下来还需要进行的一项操作是平衡摩擦力,题中给出的是砂和砂桶的总质量为m,即实验中用砂和砂桶的总重力代替拉力,在平衡摩擦时应将沙和沙桶撤去,具体操作为将长木板远离定滑轮的一端垫起适当的高度,让小车连着已经穿过打点计时器的纸带,撤去砂和砂桶,给打点计时器通电,轻推小车,从打出的纸带判断小车是否做匀速运动,D正确;故选D。
2、利用气垫导轨做“探究碰撞中的不变量”的实验时,不需要测量的物理量是()A.滑块的质量B.挡光时间C.挡光片的宽度D.滑块移动的距离答案:D解析:根据实验原理可知,滑块的质量、挡光时间、挡光片的宽度都是需要测量的物理量,其中滑块的质量用天平测量,挡光时间用光电计时器测量,挡光片的宽度可事先用刻度尺测量;只有滑块移动的距离不需要测量,ABC 错误,D正确。
故选D。
人教版高中物理力学实验笔记重点大全

(每日一练)人教版高中物理力学实验笔记重点大全单选题1、在使用如图所示的向心力演示器探究向心力大小与哪些因素相关的实验中,通过本实验可以得到的结果有()A.在半径和角速度一定的情况下,向心力的大小与质量成正比B.在质量和半径一定的情况下,向心力的大小与角速度成反比C.在质量和半径一定的情况下,向心力的大小与角速度成正比D.在质量和角速度一定的情况下,向心力的大小与半径成反比答案:A解析:A.在半径和角速度一定的情况下,F=mω2r,向心力的大小与质量成正比,故A正确;B.在质量和半径一定的情况下,F=mω2r,向心力的大小与角速度平方成正比,故B错误;C.在质量和半径一定的情况下,F=mω2r,向心力的大小与角速度平方成正比,故C错误;D.在质量和角速度一定的情况下,F=mω2r,向心力的大小与半径成正比,故D错误。
故选A。
2、某同学利用如图所示的装置探究两个互成角度的力的合成规律,橡皮条一端固定在木板上的A点,轻质小圆环挂在橡皮条的另一端,两个弹簧测力计分别通过细绳同时用拉力F1、F2将小圆环拉至O点;再用其中一个弹簧测力计通过细绳用拉力F将小圆环仍拉至O点。
关于该实验,下列说法正确的是()A.F1、F2两个力的大小一定要相等B.F1、F2两个力的方向一定要垂直C.拉动小圆环的细绳应尽可能粗一些且短一些D.拉橡皮条时,弹簧测力计、橡皮条、细绳应贴近木板且与木板平面平行答案:D解析:AB.验证力的合成满足平行四边形定则普遍成立,对两个分力的大小无特殊要求,不一定需要两个力相等,对两个分力的夹角无特殊要求,不一定需要两个力垂直,故AB错误;C.拉动小圆环的细绳应尽可能细一些且长一些,方便描细点,描较远的两点,作力的方向更准确,故C错误;D.拉橡皮条时,弹簧测力计、橡皮条、细绳应贴近木板且与木板平面平行,避免产生摩擦影响实验,故D正确;故选D。
3、在做“探究两个互成角度的力的合成规律”的实验时,先用两个弹簧测力计拉小圆环,再用一个弹簧测力计拉小圆环,两次须使小圆环达到同一位置,这样做是为了()A.便于测量力的大小B.便于测量力的方向C.使两个分力和它的合力产生相同的效果D.便于画出分力与合力的方向答案:C解析:两次必须使小圆环达到同一位置是为了让两个分力和它的合力产生相同的效果,而不是为了更容易测量分力和分力的方向。
高考力学实验知识点总结

高考力学实验知识点总结在高考物理考试中,力学实验是一个重要的知识点。
力学实验旨在通过实际操作,观察和测量来研究物体在受力下的变化规律,从而加深对力学原理的理解及应用能力。
下面我们将对高考力学实验常见的知识点进行总结,帮助大家更好地应对考试。
1. 弹簧伸长实验弹簧伸长实验是用来研究弹簧的弹性的实验。
实验中,我们可以改变弹簧的受力情况,观察并测量弹簧长度的变化。
根据胡克定律,弹簧伸长与所受力成正比,且与弹簧的劲度系数k有关。
通过实验,我们可以测量弹簧的劲度系数,并应用到解决实际问题中。
2. 斜面上滑动实验斜面上滑动实验是研究物体在斜面上受力下的运动规律的实验。
在实验中,我们可以通过改变斜面的倾角和物体的质量来观察物体在斜面上滑动的情况,并测量滑动的加速度。
这样的实验可以帮助我们理解牛顿第二定律以及重力、摩擦力等概念,并应用到解决相关问题中。
3. 牛顿第二定律实验牛顿第二定律实验是用来验证牛顿第二定律的实验。
在实验中,我们可以通过改变物体受力的大小和方向,观察物体的加速度的变化,并测量受力与加速度的关系。
根据牛顿第二定律,物体的加速度与受力成正比,与物体的质量成反比。
这个实验可以帮助我们进一步理解和应用牛顿第二定律。
4. 线热膨胀实验线热膨胀实验是用来研究物体在温度变化下的线膨胀规律的实验。
实验中,我们可以通过改变物体的温度,观察并测量物体长度的变化。
根据线膨胀的定义,物体的线膨胀系数与温度变化量成正比,与物体的初始长度有关。
通过实验,我们可以测量物体的线膨胀系数,并应用到相关问题中。
5. 动量守恒实验动量守恒实验是用来验证动量守恒定律的实验。
在实验中,我们可以通过改变物体的质量和速度,观察两个物体之间的碰撞过程,并测量碰撞前后动量的变化。
根据动量守恒定律,系统的总动量在碰撞过程中保持不变。
这个实验可以帮助我们更好地理解动量守恒定律,并应用到解决实际碰撞问题中。
通过以上总结,我们可以看到,力学实验在高考物理考试中占据较大的比重。
关于高考物理力学实验必考考点

关于高考物理力学实验必考考点高考物理历来是理综的的一大难点,尤其是后面的实验题,更需要掌握清楚掌握考点与实验方法,下面给大家分享关于高考物理力学实验必考考点,欢迎阅读!高考物理力学实验必考考点1.研究匀变速直线运动2.探究弹簧弹力和弹簧伸长量的关系3.验证力的平行四边形定则4.验证加速度与力、质量的关系5.探究动能与做功的关系6.验证机械能守恒定律7.验证动量守恒定律、动量定理如何对高考力学实验考点进行学习首先一定要背会物理的知识点和公式,明白物理力学各个知识点的含义。
其次要对每个实验常考的知识点进行总结和归纳,高考物理力学实验常考的考点有什么,明白每个实验每个步骤的含义和每个实验得出结论有什么。
最后做一些相关的练习题和经典的例题,对知识进行巩固,达到活学活用的目的,使知识融会贯通。
《蝶变笔记物理》对相关物理力学实验的知识点做了详细的归纳和总结,有考点解读,知识导图,考点梳理,案例分析,喜欢的小伙伴们可以看一看哦。
高中物理必背知识点1.力力学是高中物理的开山和基础,弹力的方向和弹簧、摩擦力应该是一轮复习的重中之重,受力分析的判断不仅关乎到这个部分,也会影响整个物理学科,所谓武学基础——“蹲马步”2. 运动学这个部分是看起来简单,但做起来易错,且计算不算死人不罢休的境界,各种刹车、追击、相遇、滑块板块、传送带,没有做题底蕴的支撑,你会感到深深的恶意。
3. 牛顿定律牛顿就是力学中的隐藏高手,就是王者荣耀中的法师,攻击力本来就不错,还可以对运动学、电场进行加持,让你面对的陡然上升了几个level功力。
连接体是这里面一轮要拿下的核心考点。
4. 曲线运动两大法宝:平抛和圆周,不能说难,但是高考年年出现,平抛的计算、水平圆周模型、竖直圆周模型、向心和离心的机车拐弯,这四个点重点拿下,然后给自己大大的微笑吧5. 天体运动天体会的人觉得可爱简单送分,不会的人觉得变态、恶心、惹人烦,这个部分的核心公式之后很长的一组,但是出题的方式确异常灵活,且题目和实际结合多变,总从意想不到的地方出手,高手过招,就是毫厘之间定胜负,数量级运算可以帮助你不少哦。
高中物理力学知识点总结

高中物理力学知识点总结高中物理力学知识点总结一、力学基本概念1、力的定义:力是一个物体对另一个物体的作用,它使物体发生形变或运动状态改变。
2、力的三要素:力的大小、方向和作用点。
3、力的单位:牛顿(N),它等于1千克物体在加速度为1米/秒²时所受的力。
4、力的性质:力是矢量,即有大小和方向;力是可传的,即作用在物体上的力可以沿着力的方向传递。
二、力学公式与理论1、牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比,比例系数为常数k。
即 F=kma。
2、重力加速度:物体在地球表面自由落体的加速度约为9.8米/秒²。
3、摩擦力:摩擦力的大小等于正压力与摩擦系数的乘积,方向与相对运动方向相反。
即 F=μN。
4、惯性:物体保持静止或匀速直线运动状态的性质称为惯性。
惯性的大小用质量来表示,质量越大,惯性越大。
5、动量定理:力在一个过程中的冲量等于物体动量的变化量。
即Ft=mv2-mv1。
6、机械能守恒定律:在只有重力或弹力做功的物体系统中,动能和势能可以相互转化,但总能量保持不变。
三、力学实验方法1、实验设计:根据实验目的选择合适的实验器材,设计实验步骤和数据记录表格。
2、数据记录:在实验过程中准确记录实验数据,并对其进行误差分析。
3、数据分析:根据实验数据,运用统计学方法进行分析,得出结论。
4、实验结论:根据数据分析结果,对实验结果进行总结和解释。
四、力学应用1、工程应用:力学在建筑工程、机械设计、航空航天等领域有着广泛的应用。
例如,建筑物的稳定性需要用到重力加速度和摩擦力等力学知识;机械设计中需要考虑物体的运动规律和受力情况;航空航天领域则需要深入研究空气动力学和火箭推进力学等。
2、日常生活应用:力学知识也贯穿于我们的日常生活中。
例如,车辆的制动和加速需要用到摩擦力和牛顿第二定律;人体的运动和健康需要考虑到动量和机械能守恒定律等。
3、科学研究:力学在物理学、化学、生物学等科学领域中也发挥着重要的作用。
高中物理力学实验知识点总结

高中物理力学实验知识点总结
力学基本实验仪器的使用,如打点计时器、天平、量筒等。
学会利用控制变量法进行实验数据的处理和解释。
掌握常见力的测量方法,如重力、弹力、摩擦力的测量。
其中,摩擦力的测量可以通过摩擦力实验了解静摩擦力和动摩擦力的特性,如与物体的接触面积、表面材质和受力大小的关系。
了解误差来源,包括仪器误差、人为误差、环境误差等,并学会减小误差的方法。
掌握验证力的平行四边形定则的实验,理解等效替代的思想。
该实验是要用互成角度的两个力和另一个力产生相同的效果,看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的合成的平行四边形定则。
理解牛顿第二定律的实验,包括加速度与力、质量的关系。
在力的平衡实验中,常使用杆的平衡来说明力的平衡条件,即F=ma,其中F为物体所受的合外力,m 为物体的质量,a为物体的加速度。
理解机械能守恒定律的实验,知道如何通过实验验证机械能守恒。
以上就是高中物理力学实验的主要知识点,具体内容会因不同的实验而异,需要具体掌握每个实验的相关内容。
如需更详尽的信息,建议查阅高中物理教材和教辅资料,或者咨询高中物理教师。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用实验原理设计方法1.控制变量法:如验证牛顿第二定律的实验中加速度、力和质量的关系控制。
2.等效替代法:某些量不易测量,可以用较易测量的量替代,从而简化实验。
如验证碰撞中的动量守恒的实验中,速度的测量就转化为对水平位移的测量。
3.理想模型法:用伏安法测电阻时,选择了合适的内外接方法,一般就忽略电表的非理想性。
4.比值定义法:用两个基本的物理量的“比”来定义一个新的物理量的方法。
如①物质密度②电阻③场强④磁通密度⑤电势差等。
5.微量放大法:微小量不易测量,勉强测量误差也较大,实验时常采用各种方法加以放大。
卡文迪许测定万有引力恒量,采用光路放大了金属丝的微小扭转。
6.模拟法:当实验情景不易创设或根本无法创设时,可以用物理模型或数学模型等效的情景代替,“描绘电场中的等势线”的实验就是用电流场模拟静电场。
实验一:验证力的合成[实验原理]此实验是要用互成角度的两个力与一个力产生相同的效果(即:使橡皮条在某一方向伸长一定的长度),看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的平行四边形定则。
[实验器材]木板一块,白纸,图钉若干,橡皮条一段,细绳,弹簧秤两个,三角板,刻度尺,量角器。
[实验步骤]1.用图钉把一张白纸钉在水平桌面上的方木板上。
2.用图钉把橡皮条的一端固定在板上的A点,用两条细绳套结在橡皮条的另一端。
3.用两个弹簧秤分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O。
4.用铅笔描下结点O的位置和两条细绳套的方向,并记录弹簧秤的读数。
在白纸上按比例作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板根椐平行四边形定则求出合力F。
5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧秤的读数和细绳的方向。
按同样的比例用刻度尺从O点起做出这个弹簧秤的拉力F'的图示。
6.比较F'与用平行四边形定则求得的合力F,在实验误差允许的范围内是否相等。
7.改变两个分力F1和F2的大小和夹角。
再重复实验两次,比较每次的F与F'是否在实验误差允许的范围内相等。
[注意事项]1.用弹簧秤测拉力时,应使拉力沿弹簧秤的轴线方向,橡皮条、弹簧秤和细绳套应位于与纸面平行的同一平面内。
2.同一次实验中,橡皮条拉长后的结点位置O必须保持不变。
实验二:测定加速度[实验原理]1.打点计时器是一种使用交流电源的计时仪器,它每隔0.02s打一次点(由于电源频率是50Hz)2.由纸带判断物体做匀变速直线运动的方法:如图所示,0、1、2……为时间间隔相等的各计数点,s1、s2、s3、……为相邻两计数点间的距离,若△s=s2-s1=s3-s2=……=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。
3.由纸带求物体运动加速度的方法:(1)用“逐差法”求加速度:即根据s4-s1=s5-s2=s6-s3=3aT2(T为相邻两计数点间的时间间隔)求出a1=、a2=、a3=,再算出a1、a2、a3的平均值即为物体运动的加速度。
(2)用v-t图法:即先根据v n=求出打第n点时纸带的瞬时速度,后作出v-t图线,图线的斜率即为物体运动的加速度。
[实验器材]小车,细绳,钩码,一端附有定滑轮的长木板,打点计时器,低压交流电源,导线,纸带,米尺。
[实验步骤]1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。
2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。
3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点,取下纸带,换上新纸带,重复实验三次。
4.选择一条比较理想的纸带,舍掉开头的比较密集的点子,确定好计数始点0,标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。
也可求出各计数点对应的速度,作v-t图线,求得直线的斜率即为物体运动的加速度。
[注意事项]1.纸带打完后及时断开电源。
2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。
3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。
4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。
实验三:探究胡克定律[实验原理]:弹簧受到拉力会伸长,平衡时弹簧产生的弹力和外力大小相等。
这样弹力的大小可以通过测定外力而得出(可以用悬挂钩码的方法给弹簧施加拉力);弹簧的伸长可用直尺测出。
多测几组数据,用列表或作图的方法探索出弹力和弹簧伸长的定量关系。
[实验仪器]:弹簧(不同的多根)、直尺、钩码(一盒)、细绳、定滑轮[实验步骤](1)用直尺测出弹簧的原长l0.(2)将弹簧一端固定,另一端用细绳连接,细绳跨过定滑轮后,下面挂上钩码,待弹簧平衡后1 2 3 4 5 6 7弹簧原长l0(cm)钩码重量F(N)弹簧现长l(cm)弹簧伸长量x(cm)(3)根据测量数据画出F-x图像。
实验结论:在弹性限度内,弹簧的伸长量与受到的拉力成正比。
实验四:验证牛顿第二定律[实验原理]1.如图所示装置,保持小车质量不变,改变小桶内砂的质量,从而改变细线对小车的牵引力,测出小车的对应加速度,作出加速度和力的关系图线,验证加速度是否与外力成正比。
2.保持小桶和砂的质量不变,在小车上加减砝码,改变小车的质量,测出小车的对应加速度,作出加速度和质量倒数的关系图线,验证加速度是否与质量成反比。
[实验器材]小车,砝码,小桶,砂,细线,附有定滑轮的长木板,垫木,打点计时器,低压交流电源,导线两根,纸带,托盘天平及砝码,米尺。
[实验步骤]1.用天平测出小车和小桶的质量M和M',把数据记录下来。
2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。
3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫木,反复移动垫木的位置,直至小车在斜面上运动时可以保持匀速直线运动状态(可以从纸带上打的点是否均匀来判断)。
4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量m和m'记录下来。
把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。
5.保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。
6.算出每条纸带对应的加速度的值。
7.用纵坐标表示加速度a,横坐标表示作用力,即砂和桶的总重力(M'+m')g,根据实验结果在坐标平面上描出相应的点,作图线。
若图线为一条过原点的直线,就证明了研究对象质量不变时其加速度与它所受作用力成正比。
8.保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,并做好记录,求出相应的加速度,用纵坐标表示加速度a,横坐标表示小车和车内砝码总质量的倒数,在坐标平面上根据实验结果描出相应的点并作图线,若图线为一条过原点的直线,就证明了研究对象所受作用力不变时其加速度与它的质量成反比。
[注意事项]1.砂和小桶的总质量不要超过小车和砝码的总质量的。
2.在平衡摩擦力时,不要悬挂小桶,但小车应连着纸带且接通电源。
用手给小车一个初速度,如果在纸带上打出的点的间隔是均匀的,表明小车受到的阻力跟它的重力沿斜面向下的分力平衡。
3.作图时应该使所作的直线通过尽可能多的点,不在直线上的点也要尽可能对称地分布在直线的两侧,但如遇个别特别偏离的点可舍去。
实验五:研究平抛运动[实验原理]平抛物体的运动可以看作是两个分运动的合运动:一是水平方向的匀速直线运动,另一个是竖直方向的自由落体运动。
令小球做平抛运动,利用描迹法描出小球的运动轨迹,即小球做平抛运动的曲线,建立坐标系,测出曲线上的某一点的坐标x和y,根据重力加速度g的数值,利用公式y=gt2求出小球的飞行时间t,再利用公式x=vt,求出小球的水平分速度,即为小球做平抛运动的初速度。
[实验器材]斜槽,竖直固定在铁架台上的木板,白纸,图钉,小球,有孔的卡片,刻度尺,重锤线。
[实验步骤]1.安装调整斜槽:用图钉把白纸钉在竖直板上,在木板的左上角固定斜槽,可用平衡法调整斜槽,即将小球轻放在斜槽平直部分的末端处,能使小球在平直轨道上的任意位置静止,就表明水平已调好。
2.调整木板:用悬挂在槽口的重锤线把木板调整到竖直方向,并使木板平面与小球下落的竖直面平行。
然后把重锤线方向记录到钉在木板的白纸上,固定木板,使在重复实验的过程中,木板与斜槽的相对位置保持不变。
3.确定坐标原点O:把小球放在槽口处,用铅笔记下球在槽口时球心在图板上的水平投影点O,O 点即为坐标原点。
4.描绘运动轨迹:在木板的平面上用手按住卡片,使卡片上有孔的一面保持水平,调整卡片的位置,使从槽上滚下的小球正好穿过卡片的孔,而不擦碰孔的边缘,然后用铅笔在卡片缺口上点个黑点,这就在白纸上记下了小球穿过孔时球心所对应的位置。
保证小球每次从槽上开始滚下的位置都相同,用同样的方法,可找出小球平抛轨迹上的一系列位置。
取下白纸用平滑的曲线把这些位置连接起来即得小球做平抛运动的轨迹。
5.计算初速度:以O点为原点画出竖直向下的y轴和水平向右的x轴,并在曲线上选取A、B、C、D、E、F六个不同的点,用刻度尺和三角板测出它们的坐标x和y,用公式x=v0t和y=gt2计算出小球的初速度v0,最后计算出v0的平均值,并将有关数据记入表格内。
[注意事项]1.实验中必须保持通过斜槽末端点的切线水平,方木板必须处在竖直面内且与小球运动轨迹所在的竖直平面平行,并使小球的运动靠近图板但不接触。
2.小球必须每次从斜槽上同一位置滚下。
3.坐标原点(小球做平抛运动的起点)不是槽口的端点,应是小球在槽口时,球的球心在木板上的水平投影点。
4.要在平抛轨道上选取距O 点远些的点来计算球的初速度,这样可使结果的误差较小。
实验六:验证机械能守恒定律[实验原理]当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒。
若某一时刻物体下落的瞬时速度为v ,下落高度为h ,则应有:mgh=mv 2,借助打点计时器,测出重物某时刻的下落高度h 和该时刻的瞬时速度v ,即可验证机械能是否守恒,实验装置如图所示。
测定第n 点的瞬时速度的方法是:测出第n 点的相邻前、后两段相等时间T 内下落的距离s n 和s n+1,由公式v n =,或由v n =算出,如图所示。