马西森定则讨论导体绝缘体和半导体的划分
固体物理学:5-3 导体、绝缘体和半导体的能带论解释

所有固体中都包含大量的电子,但是,电子的 导电性却相差非常大 。
特鲁特关于一些金属导电电子数等于原子的价电子
数的假设是相当成功。但是,其它一些固体却不是这 样,导体、半导体和绝缘体的区别在哪里?
1
晶体按导电性能的高低可以分为
导体
半导体
绝缘体
它们的导电性能不同, 是因为它们的能带结构不同。
以上分析说明,一个晶体是否为导体,取决于电子在能带中的 分布情况,关键在于它是否具有不满的能带。 原子结合成晶体后,原子的能级转化为相应的能带。原子内层 电子能级是充满的,相应的内层能带也是满带,是不导电的。 所以,晶体是否导电取决于与价电子能级对应的价带是否被电 子充满。由于每个能带可容纳2N个电子,N是晶体原胞数目, 因此价带是否被电子填满取决于每个原胞(固体物理学原胞)所 含的价电子数目,以及能带是否有交叠。 例如: Li、Na、K等碱金属元素,是半满带导体。 二价元素Ba、Mg、Zn等是重叠带导体。 金刚石,每个原胞有两个原子共8个电子,能带又不重叠,所 以是典型的绝缘体。
因而具有导电能力。 热激发到导带中的电子数目随温度按指数规律变
化,半导体的电导率随温度的升高按指数形式增大。
半金属 :V族元素Bi、Sb、As, 三角晶格结构,原胞 有偶数个电子,具有金属的导电性,导电能力远小 于金属,能带交叠较小,对导电有贡献的载流子数远 远小于普通的金属。
10
二、导体、绝缘体与半导体
jh
(k
)
1 V
[qv
(k
)]
0
近满带的电流密度:
jh
(k
)
1 V
qv (k
)
其中 V是晶体体积
导体、半导体和绝缘体

导体、半导体和绝缘体概述在物理学中,根据不同的导电性质,物质可以被分为三类:导体、半导体和绝缘体。
导体的电导率较高,可以轻易地传导电流,如铜、铝等金属;半导体的电导率介于导体和绝缘体之间,可以通过添加杂质等方法改变其导电性能,如硅、锗等;而绝缘体的电导率非常低,电流不能在其内部传播,如玻璃、陶瓷等。
导体物理特性导体是一种材料,能够轻松地传导电子。
这种传导过程涉及到电子的自由移动。
在导体中,电子不受束缚,被电场作用下移动自如。
这样的电子被称为自由电子。
这些自由电子随时可以离开原子,进入导体中的其他位置,并与其他自由电子碰撞,形成导电电流。
根据欧姆定律,电流强度与两端电压成正比。
就是说,电流强度增加,导体中的自由电子数量也会增加。
如果将较大的电压施加在导体上,就会增加存储在导体中的自由电子数量,进而导致电流的增加。
应用导体的导电性质使它成为许多电子应用的理想材料。
这种材料最广泛的应用是在导线和电线的制造中。
导体材料还可以用于制造电路板、集成电路、变压器等。
导体材料的进一步发展和应用为电子技术开创了更加广阔的领域。
半导体物理特性半导体材料的电导率介于导体和绝缘体之间。
在半导体材料中,电子位于能级中,分布在两侧霍尔展区的堆积能带中。
在去霍尔展区,则是禁带区。
通常情况下,半导体材料的禁带宽度远小于绝缘体材料。
半导体的本征杂质往往增加了其中的自由电子或空穴的数量。
通过加热材料,我们可以激发半导体中的电子,使之跳过禁带,并像导体中的电子一样形成电流。
在半导体中添加不同种类、不同浓度的杂质,则可以控制其电导率和其他性质。
应用半导体材料的应用很广泛,例如晶体管、太阳能电池、场效应晶体管等。
半导体在计算机技术中也扮演着重要角色,例如应用于微处理器、光学学技术等。
半导体技术用于制造现代耳机、随身听等设备。
绝缘体物理特性绝缘体的最大特点是其电导率极低,等几乎可认为不导电。
它也被称为非导体,不具有自由电子。
在绝缘体中,电子位于原子和分子中,分布在不同的能级,形成气体状态的电子云。
马西森定则讨论----_导体、绝缘体与半导体的划分

2 R电阻
U I R
与材料的性质有关,还与材料的长度及截面积有 关 L R 单位:Ω(欧)
S
Material Performances
Shanghai Institute of Technology
SIT
一、导电性表征
3 ρ电阻率 只与材料本性有关,而与导体的几何尺寸无关 评定导电性的基本参数 单位:Ω· m(欧· 米) 4 σ电导率 愈大,材料导电性能就越好 单位:S/m (西/米) 5 材料分类
SIT
(3) 能带理论: 晶体中电子能级间隙很小,能级分布是准连续的, 或称能带;金属中由离子产生的势场是不均匀的,而且是 呈周期性变化的。 同样:金属中的价电子是公有化,能量是量子化
其中: l:电子两次碰撞之间运动的平均距离(自由程)
v :电子平均运动速度
n:单位体积内的自由电子数
m:电子质量 e:电子电荷
t
:两次碰撞之间的平均时间
Shanghai Institute of Technology
Material Performances
SIT
二 、导电机理
1 金属及半导体的导电机理 (1)经典电子理论 经典电子理论的缺点:
SIT
第八章
第一节
第二节 第三节
电学性能
导电性
介电性 热电性
第四节
第五节 第六节
压电性
热释电性 铁电性
Material Performances
Shanghai Institute of Technology
SIT
第一节 导电性能 一、导电性表征
1 导电
当在材料的两端施加电压时,材料中有电流流过 欧姆定律
h2
导体、超导体、半导体和绝缘体的区别

导体、超导体、半导体和绝缘体的区别标题:导体、超导体、半导体和绝缘体的区别导体、超导体、半导体和绝缘体是固体材料中常见的几种类型。
它们在电学和热学性质上表现出明显的差异,这些差异是由它们的电子结构和能带特性所决定的。
本文将深入探讨这些材料的基本特点和区别,并且分析它们在科学和工程领域中的应用。
一、导体导体是一种能够自由传导电荷的材料。
它们具有高电导率和低电阻率。
在导体中,电子处于自由态,可以自由移动。
这是因为导体的价带和导带之间的能量差低于其他材料。
常见的导体包括金属(例如铜、铝等)和某些碳化合物(如石墨)。
导体的电子在外电场或外电压的作用下,能够迅速流动,传输电流和热量。
二、超导体超导体是一类在零摄氏度以下具有零电阻的材料。
与其他导体不同,超导体在低温下能够表现出特殊的电学性质,称为超导性。
当超导体的温度降低到临界温度以下时,其电阻会突然变为零,电流可以在其内部无耗散地流动。
超导体的几个重要特性是零电阻、磁场排斥和迈斯纳效应。
尽管超导体的应用还受到低温和昂贵的冷却设备的限制,但它们在科学研究和磁悬浮技术等领域具有巨大的潜力。
三、半导体半导体是介于导体和绝缘体之间的一类材料。
它们的电导率介于导体和绝缘体之间,并且可以通过掺杂和温度来调节。
半导体材料通常由硅(Si)和锗(Ge)等元素组成。
在半导体中,电子可以在一定条件下(例如外加电场或温度)下变得更容易导电。
半导体的导电性质对于电子器件的制造至关重要,如晶体管、光电二极管和太阳能电池等。
四、绝缘体绝缘体是指电流难以通过的一类材料。
它们具有非常高的电阻率,几乎不导电。
在绝缘体中,导带和价带之间存在较大的能量差,电子难以克服这个能量差而进行导电,所以电流在绝缘体中几乎无法流动。
绝缘体常常用于隔离电路、绝缘导线和电子器件的外包装等应用中。
综上所述,导体、超导体、半导体和绝缘体是固体材料中具有不同电学性质的种类。
导体具有高电导率和低电阻率,能够自由传导电荷;超导体在低温下表现出零电阻的特点;半导体介于导体和绝缘体之间,具有可调控的导电性;绝缘体则几乎不导电,电流难以通过。
一、导体、绝缘体和半导体:

一、导体、绝缘体和半导体:大家知道,金属、石墨和电解液具有良好的导电性能,这些有良好导电性能的材料称为导体。
如电线是用铜或铝制成的,因为它们有很强的导电性和良好的延展性。
金属的导电性能由强到弱的顺序为:银、铜、金、铝、锌、铂、锡、铁、铅、汞。
居第一位的银,但因其产量少、价格贵,只在某些电气元件中少量用到。
石墨有良好的导电性,硬度低,在空气中不燃烧,是制造电极和碳刷的好材料。
金属和石墨所以具有良好的导电性,是因为它们中存在大量自由电子,。
酸、碱和盐类的熔化液也能导电。
这些溶解于水或在熔化状态下能导电的物质叫电解质。
电解质和水分子相互作用,能在溶液中分离为正离子和负离子,这些正、负离子能自由活动,形成导电溶液。
如包在电线外面的橡胶、塑料都是不导电的物质,成为绝缘体。
常用的绝缘体材料还有陶瓷、云母、胶木、硅胶、绝缘纸和绝缘油等,空气也是良好的绝缘物质。
绝缘物质的原子结构和金属不同,其原子中最外层的电子受原子核的束缚作用很强不容易离开原子而自由活动,因而绝缘体的导电作用很差。
导体和绝缘体的区别决定于物体内部是否存在大量自由电子,导体和绝缘体的界限也不是绝对的,在一定条件下可以相互转化。
例如玻璃在常温下是绝缘体,高温时就转变为导体。
此外,还有一些物质,如硅、锗、硒等,其原子的最外层电子既不象金属那样容易挣脱原子核的束缚而成为自由电子,也不象绝缘体那样受到原子核的紧紧束缚,这就决定了这类物质的导电性能介于导体和绝缘体之间,并且随着外界条件及掺入微量杂质而显著改变这类物质称为半导体。
一、导体、绝缘体和半导体:大家知道,金属、石墨和电解液具有良好的导电性能,这些有良好导电性能的材料称为导体。
如电线是用铜或铝制成的,因为它们有很强的导电性和良好的延展性。
金属的导电性能由强到弱的顺序为:银、铜、金、铝、锌、铂、锡、铁、铅、汞。
居第一位的银,但因其产量少、价格贵,只在某些电气元件中少量用到。
石墨有良好的导电性,硬度低,在空气中不燃烧,是制造电极和碳刷的好材料。
导体 半导体 绝缘体

导体半导体绝缘体导体、半导体和绝缘体是固体材料根据其导电性能的不同而分类的。
在电子学和材料科学中,对于这三类材料的研究和应用具有重要意义。
本文将分别介绍导体、半导体和绝缘体的特点和应用。
一、导体导体是一类具有良好导电性能的材料。
它的导电性主要来源于其自由电子。
在导体中,原子的外层电子能够自由移动,形成电子云。
当导体受到外界电场的作用时,电子云中的自由电子会沿着电场方向移动,形成电流。
导体的导电性能主要取决于其电子的浓度和迁移率。
导体具有低电阻和高导电性的特点。
常见的导体材料有金属,如铜、铝和铁等。
由于导体的导电性能好,因此广泛应用于电力输配、电子器件和电路等领域。
例如,电线材料多采用铜线,因为铜具有良好的导电性能,可以减少能量损耗。
二、半导体半导体是一类介于导体和绝缘体之间的材料。
与导体相比,半导体的导电性能较差,但比绝缘体强。
半导体的导电性主要来源于其掺杂和温度的影响。
在纯净的半导体中,自由电子和空穴的浓度较低,几乎没有电流通过。
但通过掺杂可以改变半导体的导电性能。
掺杂是将少量的杂质原子引入半导体晶体中,改变其原子结构和电子能级分布。
掺杂分为n型和p型两种。
n型半导体的导电性主要来源于额外加入的自由电子,而p型半导体的导电性主要来源于额外加入的空穴。
半导体的导电性能还受温度的影响。
在常温下,半导体的导电性能较低。
但当温度升高时,半导体的导电性会增强。
这是因为温度升高会使半导体中的电子和空穴的激发增多,从而增加了导电性。
半导体广泛应用于电子器件和集成电路中。
例如,晶体管就是一种典型的半导体器件。
半导体材料的导电性能可以通过控制电场或电流来实现信号的放大、开关和整形等功能。
三、绝缘体绝缘体是一类具有很高电阻和几乎不导电的材料。
在绝缘体中,几乎没有自由电子可供移动。
绝缘体的导电性能主要取决于其材料的特性和结构。
绝缘体通常具有较高的电阻和绝缘性能,可以有效地阻止电流的流动。
绝缘体的导电性能可以通过控制温度和应力来改变。
论导体、绝缘体、半导体的区别与联系

!
No. 5
T ME I EDUCATI ON Ma y
论导体 、 绝缘体 、 半导体 的 区别 与联 系
王韶 宇
摘要 : 导体 、 绝缘 体、 导体 可以从 定义和 实质 两方面来区别。定义划分 : 半 物理学 中, 导体 、 绝缘 体、 导体 主要 是根据导 电性 能的 半 强弱来 区分 的; 实质 区别 : 导体 、 绝缘 体、 导体 实质 上的 区别在 于构成 它们 的物质的微观结构 不同。但 是 , 半 导体 、 绝缘体 、 导体之 间 半 没有绝对的界 线 , 在外部条件 ( 如温度、 高压等 ) 生变化时 , f ̄ N可以相 互转化 。 发 它- l ' ]
用下 , 、 正 负离子向相反的方向发生定 向移动形成 电流 , 正离子移
意义重 大。如有 的半导 体 , 在受到压力后 电阻发生较 大变化 , 利 用这种半导体可 以做成体积很小的压敏元件 , 它可以把压力的变 化 转变成电流的变化 , 使人们测 出电流变化后 而知 压力 变化 。有 的半导体在受 热后电阻随温度的升高而迅速减小 , 利用 这种半 导 体 可以做成体积很小 的热敏电阻 , 热敏 电阻可 以用来测量大 范围 内的温度变化 , 反应快 , 而且精 确度 高。另外还有许多重要应用 , 如半导体二极管 的单 向导 电性 、 三极管 的放大作用等 。 导 体 、 缘体 、 绝 半导体之 间没有绝对 的界线 , 在外部条件 ( 如 温度 、 高压等 ) 发生变化 时 , 它们之间可 以相互转化 。有些绝缘体 可转化为导体 。如干燥 的木柴通常情况下不 导电 , 变湿后就成为 导体能 导电 了; 玻璃是相 当好的绝缘体 , 给玻璃加热 到红炽状 但
马西森定则讨论----_导体、绝缘体和半导体的划分

1
5 材料分类
导体
半导体 绝缘体
10-5
109
导电能力相差很大,决定于材料的结构与导电本质
Material Performances
Sy
Ω·m
二 、导电机理
1 金属及半导体的导电机理 (1)经典电子理论
电子气
离子构成了晶格点阵,形成一个均匀电场
1 金属及半导体的导电机理 (1)经典电子理论
其中:
金属的导电性取决于自由 电子的数量、平均自由程
和平均运动速度
l:电子两次碰撞之间运动的平均距离(自由程)
v :电子平均运动速度
n:单位体积内的自由电子数
m:电子质量
e:电子电荷
t :两次碰撞之间的平均时间
Material Performances
Shanghai Institute of Technology
马西森定则讨论----_导体、绝缘体和半导体 的划分
Material Performances
Shanghai Institute of Technology
第一节 导电性能 一、导电性表征
1 导电
当在材料的两端施加电压时,材料中有电流流过
2 R电阻
欧姆定律
IU R
与材料的性质有关,还与材料的长度及截面积有关
二 、导电机理
1 金属及半导体的导电机理 (1)经典电子理论
经典电子理论的缺点: 自由电子数越多导电性越好:二、三价金属比一价金 属自由电子数多,但导电性差; 不能解释电阻率与温度间的定量关系; 不能解释超导现象。
Material Performances
Shanghai Institute of Technology
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SIT
ቤተ መጻሕፍቲ ባይዱ
2、应力
弹性拉应力,使原子间距增大,点阵畸变增大,电阻增大
❖ 关系如下
0(1)
❖ ρ0-未加载荷时的电阻率,α-应力系数,σ-拉应力
压应力使原子间距减小,点阵动畸变减小,电阻率降低
❖ 关系如下
0(1p)
❖ ρ0-真空下的电阻率,φ-压力系数(负数),p-压力
Material Performances
Shanghai Institute of Technology
SIT
Material Performances
Shanghai Institute of Technology
SIT
Material Performances
Shanghai Institute of Technology
SIT
SIT
二 、导电机理
2 无机非金属导电机理 玻璃的导电机理:
高温
ρ↓
原因:某些离子在结构中的可动性(在空位之间跳跃)所导致的。 玻璃的组成对玻璃的电阻影响很大
Material Performances
Shanghai Institute of Technology
SIT
三、影响材料导电性的因素
主要有温度、化学成分、晶体结构、杂质及缺陷浓度及 迁移率等。
2m n ef e 2
1 t
2m n ef e 2
p
n e单f 位体积内参与导电电子数, 称为有效自由电子数;
t两次反射之间的平均时间;
p单位时间内散射的次数,称为
散射几率。
解释了金属导电本质 但是离子所产生的势场是均匀的,与实际情况相悖。
Material Performances
Shanghai Institute of Technology
Material Performances
Shanghai Institute of Technology
SIT
2.2.3 固溶体的电阻率
Material Performances
Shanghai Institute of Technology
SIT
Material Performances
Shanghai Institute of Technology
SIT
(3) 能带理论:
晶体中电子能级间隙很小,能级分布是准连续的,或 称能带;金属中由离子产生的势场是不均匀的,而且是呈 周期性变化的。
同样:金属中的价电子是公有化,能量是量子化 不同:金属中由离子所造成的势场是成周期性变化的 价电子在金属中的运动要受到周期场的作用 结果导致:不同能量状态分布的能带发生分裂,即有某 些能态是电子不能取值的
Shanghai Institute of Technology
二、导电SIT机
二、导
量子自由电子理论:价电子却按量子化规律
(2)量原子子自的同由内电的层子电能理子级论保。持着单二个同量、原的导子子能电自时级机由的。理电能子量理状论态:价电子却按量
价电子按量子化具有不同的能级
二、导电机理
其中, 电子质量; 电同量的子子能自具级由有。电mh波子 理粒论hp二:象价电性子.却同量运按的子量能动自 子级m由h着化。电的规子hp律电理具论子有:作不价同为电的子物能m却质量按状波量态其子:,化中即规,具律有m具不电有不子
为常数 关系曲线为抛物线 自M一a由动te价r电能ial金子PeKE8r属fho22mr122mmE8an2hce228sm为波12h22数常mmK频数2 率2 ,它E8表hK征22关m金系属K曲中2线一KE8自为h2由2常KE8价m12抛2h电m数金物22m子1222线属具mE8为波有中h222数常m的,KK频数能28自率为波量h,2由2状数常m它态E电K频数表S2K子h征率a关n动金g系,属h能曲a它中iE线:In自表为st由Ki抛t征u电t关物e子金线o系具f属T有e曲c中的h线n能o自lo为量g由y状抛态电物子线
SIT
Material Performances
Shanghai Institute of Technology
SIT
Material Performances
Shanghai Institute of Technology
SIT
Material Performances
SIT
二 、导电机理
1 金属及半导体的导电机理 (1)经典电子理论
其中:
金属的导电性取决于自由 电子的数量、平均自由程
和平均运动速度
l:电子两次碰撞之间运动的平均距离(自由程)
v :电子平均运动速度
n:单位体积内的自由电子数
m:电子质量
e:电子电荷
t :两次碰撞之间的平均时间
Material Performances
离子晶体中空位的迁移。涉及离子运动
离子移位产生电流
晶体的离子电导可以分为两类
本征电导:晶体点阵中基本离子的运动产生电导。
s
As
exp(E) kT
杂质电导:结合力弱的离子运动造成,主要是杂质离子。Aiexp(Bi )
T
Material Performances
Shanghai Institute of Technology
2 R电阻
欧姆定律
IU R
与材料的性质有关,还与材料的长度及截面积有关
单位:Ω(欧)
R L
S
Material Performances
Shanghai Institute of Technology
SIT
一、导电性表征
3 ρ电阻率 只与材料本性有关,而与导体的几何尺寸无关 评定导电性的基本参数 单位:Ω·m(欧·米)
SIT
(2)量子自由电子理论
粒子的观点: E-K曲线表示自由电子的能量与速度(或动量)之间的关系
波动的观点: E-K曲线表示电子的能量和波数之间的关系。 电子的波数越大,则能量越高
没有加外加电场,自 由电子沿正、反方向 运动的电子数量相同,
没有电流产生
外加电场作用下,正向 移动电子能量降低;反 向运动的电子能量升高, 使金属导电;即不是所 有自由电子参与导电, 仅高能态电子参与导电
SIT
第八章 电学性能
第一节 导电性 第二节 介电性 第三节 热电性 第四节 压电性 第五节 热释电性 第六节 铁电性
Material Performances
Shanghai Institute of Technology
SIT
第一节 导电性能 一、导电性表征
1 导电
当在材料的两端施加电压时,材料中有电流流过
电子气
离子构成了晶格点阵,形成一个均匀电场
价电子是完全自由的(自由电子弥散)
遵循经典力学气体分子的运动规律:
无E
有E
正离子 自由电子
自由电子沿各个方向运动几率相同 Material Performan不ces产生电流
自由电子加速运动形成电流 自由电子S与han正gh离ai 子Ins碰titu撞te 形of T成ec电hno阻logy
3、冷加工变形
一般单向固溶体经过冷加工后,电阻可增加10%~20%,而有序固溶体 电阻增加100%,甚至更高,也有极个别相反情况的例子
使晶体点阵畸变、晶格缺陷增加(特别是空位浓度), 造成点阵电场的不均匀而加剧对电子的散射,原子间距改 变,导致电阻率改变
马西森定则:
(T)
式中:ρ(T):与温度有关的退火金属电阻率 Δρ:冷加工变形产生的附加电阻率,与温度无关
Material Performances
Shanghai Institute of Technology
SIT
(2)量子自由电子理论
此外:实际情况中,金属内部存在缺陷和杂质。 缺陷和杂质产生的静态点阵畸变和热振动引起的动态点阵 畸变,对电磁波造成散射,形成电阻
电导率 电阻率
n ef e 2 t n ef e 2 2m 2mp
Material Performances
Shanghai Institute of Technology
SIT
(3) 能带理论: 能带发生分裂,即有某些能态是电子不能取值的
能隙,禁带 能隙,禁带
Material Performances
允带
允带 允带
允
带
E2
和 禁
定义?
带
E1
交
替
结
构
Shanghai Institute of Technology
普朗克常数。 波长:
频率:
h 2h m p
2m
h 2 2m 2p
h
h
2h其普p 中朗,克2m常一电2mh数2价子m。hp质2金2量hmp属;中2电hp,子速自度其普由;中朗p电,克电m常子子电数动子动普。量质能朗;量h:;克常电子数速
一价一金属价中,金自属由电中子动,能:自 由h 电h 子动能:
取决于温度造成的点阵畸变,金属的电阻取决于离子的热振动 (3)纯金属的电阻率与温度关系
T >D
2<T<D
0<T<2 T 0
t 0(1T)
AT5
D/T 0
4x2dx ex 1
T2
残留电阻率
Material Performances
Shanghai Institute of Technology
Shanghai Institute of Technology
SIT
(3) 能带理论:
半导体:Eg ≈0.2~3.5eV
例如:Si: Eg=1.1eV Ge:Eg=0.71eV
绝缘体:Eg>3.5eV 例如:金刚石Eg=6.0eV