八年级全等三角形知识点归纳及典型习题
人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
(文末带解析)八年级数学全等三角形常考必考知识点总结

(文末带解析)八年级数学全等三角形常考必考知识点总结单选题1、工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS2、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块 C.第3块D.第4块3、如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )A.AB=EDB.AC=EFC.AC∥EFD.BF=DC4、如图,AB//DC,AB=DC,要使∠A=∠C,直接利用三角形全等的判定方法是()A.AASB.SASC.ASAD.SSS∠AOB,则OC是∠AOB的平分线③a>b,则5、下列说法:①若AC=BC,则C为AB的中点②若∠AOC=12a2>b2④若a=b,则|a|=|b|,其中正确的有()A.1个B.2个C.3个D.4个6、如图是作ΔABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7、作∠AOB平分线的作图过程如下:作法:(1)在OA和OB上分别截取OD、OE,使OD=OE.DE的长为半径作弧,两弧交于点C.(2)分别以D,E为圆心,大于12(3)作射线OC,则OC就是∠AOB的平分线.用下面的三角形全等的判定解释作图原理,最为恰当的是()A.SSS B.SAS C.ASA D.AAS8、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个填空题9、如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是_____.(不添加任何字母和辅助线)10、如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,若∠A=50°,则∠DFE的度数为________.11、如图,△ABC≌△DEF,BE=5,BF=1,则CF=_____.12、如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动______分钟后△CAP与△PQB全等.13、如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=_____cm.解答题14、如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.15、如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E.求证:BD=2CE.(文末带解析)八年级数学全等三角形_009参考答案1、答案:D解析:根据全等三角形的判定条件判断即可.解:由题意可知OC=OD,MC=MD在△OCM和△ODM中{OC=OD OM=OM MC=MD∴△OCM≅△ODM(SSS)∴∠COM=∠DOM∴OM就是∠AOB的平分线故选:D小提示:本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.2、答案:B解析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、答案:C解析:根据全等三角形的判定方法即可判断.A. AB=ED,可用ASA判定△ABC≌△EDF;B. AC=EF,可用AAS判定△ABC≌△EDF;C. AC∥EF,不能用AAA判定△ABC≌△EDF,故错误;D. BF=DC,可用AAS判定△ABC≌△EDF;故选C.小提示:此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.4、答案:B解析:根据平行线性质得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出△ABD≌△CDB,从而推出∠A=∠C,即可得出答案.∵AB//DC,∴∠ABD=∠CDB,在△ABD和△CDB中,{AB=CD∠ABD=∠CDBBD=BD,∴△ABD≌△CDB(SAS),∴∠A=∠C,故选B.小提示:本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.5、答案:A解析:根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于∠AOB的内部时候,此结论成立,故错误;当a、b为负数时,a2<b2,故错误;若a=b,则|a|=|b|,故正确;故选:A.小提示:此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.6、答案:C解析:观察ΔABC的作图痕迹,可得此作图的条件.解:观察ΔABC的作图痕迹,可得此作图的已知条件为:∠α,∠β,及线段AB,故已知条件为:两角及夹边,故选C.小提示:本题主要考查三角形作图及三角形全等的相关知识.7、答案:A解析:根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明△OCE≌△OCD,即可得答案.∵分别以D,E为圆心,大于12DE的长为半径作弧,两弧交于点C;∴CE=CD,在△OCE和△OCD中,{OE=OD CD=CE OC=OC,∴△OCE≌△OCD(SSS),故选:A.小提示:本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键.8、答案:C解析:根据全等三角形对应边相等,对应角相等,结合图象逐个分析即可.解:∵△ABC≌△AEF,∴AC=AF,EF=BC,∠EAF=∠BAC,故①③正确;∵∠EAF=∠EAB+∠BAF,∠BAC=∠FAC+∠BAF,∴∠EAB=∠FAC,故④正确;条件不足,无法证明∠FAB=∠EAB,故②错误;综上所述,结论正确的是①③④共3个.故选:C.小提示:本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.9、答案:AB=AC或∠ADC=∠AEB或∠ABE=∠ACD.解析:根据图形可知证明△ADC≌△AEB已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;小提示:本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.10、答案:40°解析:先利用HL定理证明Rt△ABC≌Rt△DEF,得出∠D的度数,再根据直角三角形两锐角互余即可得出∠DFE的度数.解:在Rt△ABC与Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.所以答案是:40°.小提示:此题主要考查直角三角形全等的HL定理.理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键.11、答案:3解析:先利用线段和差求EF=BE﹣BF=4,根据全等三角形的性质BC=EF,再结合线段和差求出FC 可得答案.解:∵BE=5,BF=1,∴EF=BE﹣BF=4,∵△ABC≌△DEF,∴BC=EF=4,∴CF=BC﹣BF=4-1=3,所以答案是:3.小提示:本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF.12、答案:4解析:分当△CPA≌△PQB时和当△CPA≌△PQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立.当△CPA≌△PQB时,BP=AC=4(米),则BQ=AP=AB-BP=12-4=8(米),P的运动时间是:4÷1=4(分钟),Q的运动时间是:8÷2=4(分钟),则当t=4分钟时,两个三角形全等;当△CPA≌△QPB时,BQ=AC=4(米),AB=6(米),AP=BP=12则P运动的时间是:6÷1=6(分钟),Q运动的时间是:4÷2=2(分钟),故不能成立.综上,运动4分钟后,△CPA与△PQB全等,所以答案是:4.小提示:本题考查了全等三角形的判定,注意分△CPA≌△PQB和△CPA≌△QPB两种情况讨论是关键.13、答案:5解析:由D为AC的中点可得AD=CD,由CF∥AB可得∠AED=∠F,∠A=∠FCD,根据全等三角形的判定定理AAS证得结论即可.解:∵D为AC的中点∴AD=CD∵CF∥AB∴∠AED=∠F,∠A=∠FCD在△AED和△CFD中{AD=CD∠AED=∠F∠A=∠FCD∴△AED≌△CFD(AAS)∴AE=CF∵AB=15cm,CF=10cm,BE=AB-AE=AB-CF=15-10=5cm所以答案是:5小提示:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL根据具体情况选择恰当的判定方法是解题关键14、答案:(1)全等,理由见详解;PC⊥PQ,理由见解析;(2)存在,{t=1x=1或{t=2x=32.解析:(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可. 解:(1)当t =1时,AP =BQ =1,BP =AC =3,又∵∠A =∠B =90°,在ΔACP 和ΔBPQ 中,{AP =BQ ∠A =∠B AC =BP∴ΔACP ≅ΔBPQ (SAS ).∴∠ACP =∠BPQ ,∴∠APC +∠BPQ =∠APC +∠ACP =90°.∴∠CPQ =90°,即线段PC 与线段PQ 垂直.(2)①若ΔACP ≅ΔBPC ,则AC =BP ,AP =BQ ,则{3=4−t t =xt, 解得:{t =1x =1; ②若ΔACP ≅ΔBQP ,则AC =BQ ,AP =BP ,则{3=xt t =4−t, 解得:{t =2x =32 ;综上所述,存在{t =1x =1 或{t =2x =32使得ΔACP 与ΔBPQ 全等. 小提示:本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.15、答案:证明见解析.解析:延长CE 、BA 交于F ,根据角边角定理,证明△BEF ≌△BEC ,进而得到CF=2CE 的关系.再证明∠ACF=∠1,根据角边角定理证明△ACF ≌△ABD ,得到BD=CF ,至此问题得解.证明:分别延长BA ,CE 交于点F.∵BE ⊥CE ,∴∠BEF =∠BEC =90°.又∵∠1=∠2,BE =BE ,∴△BEF ≌△BEC(ASA),∴CE =FE =12CF. ∵∠1+∠F =90°,∠ACF +∠F =90°,∴∠1=∠ACF.又∵AB =AC ,∠BAD =∠CAF =90°,∴△ABD ≌△ACF(ASA),∴BD=CF,∴BD=2CE小提示:本题考查了全等三角形的判定与性质.解题的关键是恰当添加辅助线,构造全等三角形,将所求问题转化为全等三角形内边间的关系来解决.。
人教版八年级数学上册 第十二章 全等三角形 知识点归纳

人教版八年级数学上册第十二章全等三角形知识点归纳12.1全等三角形经过平移、翻折、旋转,能够完全重合的两个图形叫做全等形。
经过平移、翻折、旋转,能够完全重合的两个三角形叫作全等三角形。
全等用符号“≌”表示,读作“全等于”。
例1、△ABC≌△DEF读作:三角形ABC全等于三角形DEF。
把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
用“≌”表示两个图形全等的时候,必须把对应的顶点写在对应的位置上。
例2、已知△ABC≌△DEF,那么就说明:①点A对应点D,点B对应点E,点C对应点F②∠A=∠D,∠B=∠E,∠C=∠F③AB=DE,AC=DF,BC=EF用“全等于”这个词表示两个图形全等的时候,顶点不一定有一一对应关系。
例3、已知△ABC全等于△DEF,那么点A不一定对应D,点A也可能对应点E或者点F 。
全等三角形的性质:①对应边相等②对应角相等③角平分线、中线、高分别对应相等④周长相等⑤面积相等12.2三角形全等的判定全等三角形的判定依据:①三边对应相等的两个三角形全等,简称“边边边”或“SSS ”。
②两边一夹角对应相等的两个三角形全等,简称“边角边”或“SAS ”。
③两角一夹边对应相等的两个三角形全等,简称“角边角”或“ASA ”。
④两角一对边对应相等的两个三角形全等,简称“角角边”或“AAS ”。
⑤一条斜边和一条直角边对应相等的两个直角三角形全等,简称“斜边直角边”或“HL ”。
温馨提示:“SSA ”和“AAA ”不能证明两个三角形全等。
全等三角形的证明格式:SSS 、SAS 、ASA 、AAS 的证明格式: HL 的证明格式:在△ABC 与△DEF 中 在Rt △ABC 与Rt △DEF 中∵{ 条件1条件2条件3∵{条件1条件2 ∴△ABC ≌△DEF (条件) ∴△ABC ≌△DEF (HL )12.3角的平分线的性质如果从一个角的顶点引出一条射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线。
人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
人教版八年级上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
全等三角形定义 :能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
全等三角形的基础和经典例题含有答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13-3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。
图13-5表示图形的全等时,要把对应顶点写在对应的位置。
(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
八年级上册数学第二单元:全等三角形知识点与练习

第二单元全等三角形本单元的学习目标①重点:全等三角形的性质;三角形全等的判定;角平分线的性质及应用②难点:三角形全等的判断方法及应用;角平分线的性质及应用在中考中的重要性:①中考热点,初中数学中的重点内容②考察内容多样化,有的独立考三角形全等,有的考全等三角形结合其他知识点综合,有的探究三角形全等条件或结论的开放性题目③题型以选择题、填空题、解答题为主【知识归纳】1.全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。
(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点。
重合的边叫做对应边。
重合的角叫做对应角。
(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12.全等三角形的性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等3.全等三角形的判定方法(1)三边相等(SSS);(2)两边和它们的夹角相等(SAS);(3)两角和其中一角的对应边相等(AAS);(4)两角和它们的夹边相等(ASA);(5)斜边和直角边相等的两直角三角形(HL).(该判定只适合直角三角形)注意:没有“AAA”和“SSA”的判定方法,这是因为“三角对应相等的两个三角形”和“两边及其中一边的对角对应相等的两个三角形”未必全等。
如图2,△ABC和△ADE中,∠A=∠A,∠1=∠3,∠2=∠4,即三个角对应相等,但它们只是形状相同而大小并不相等,故它们不全等;如图3,△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,即两边及其中一边的对角对应相等,但它们并不全等。
4.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。
5.角平分线推论:角的内部到角的两边距离相等的点在角的平分线上。
判定三角形全等常用思路公理及定理练笔1、一般三角形全等的判定(如图)(1) 边角边(SSS) AAB=A′B′ BC=B′C ′ _______=_____∴△ABC≌△A′B′C′(2)边角边(SAS)AB=A′B′∠B=∠B′ _______=_____ B C∴△ABC≌△A′B′C′A′(3) 角边角(ASA)∠B=∠B′ ____=_____ ∠C=∠C′∴△ABC≌△A′B′C′B ′ C′(4) 角角边(AAS)∠A=∠A′∠C=∠C′ _______=_____∴△ABC≌△A′B′C′2、直角三角形全等的判定:斜边直角边定理(HL)AB=AB _____=_____∴Rt△ABC≌Rt△A′B′C′B C B′ C′二、全等三角形的性质1、全等三角形的对应角_____2、全等三角形的对应边、对应中线、对应高、对应角平分线_______注意:1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。
人教版八年级数学上册 第十二章 全等三角形知识归纳与题型突破(12类题型清单)

第十二章全等三角形知识归纳与题型突破(题型清单)01思维导图02知识速记一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定五、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 16 页 共 16 页
25.如图,已知 AB=DC ,AC=DB .求证:∠ 1=∠ 2.
21.如图,在△ ABC 中, AD 是△ ABC 的中线,分别过点 B、C 作 AD 及其延长 线的垂线 BE 、CF ,垂足分别为点 E、 F. 求证: BE=CF .
22.一个平分角的仪器如图所示, 其中 AB=AD ,BC=DC .求证:∠BAC= ∠DAC .
第 15 页 共 15 页
23.在数学课上,林老师在黑板上画出如图所示的图形(其中点
第 13 页 共 13 页
19.已知:点 A、C、 B、 D 在同一条直线,∠ M= ∠N,AM=CN .请你添加一
个条件,使△ ABM ≌△ CDN ,并给出证明.
( 1)你添加的条件是:
;
( 2)证明:
.
20.如图, AB=AC , AD=AE .求证:∠ B=∠C.
第 14 页 共 14 页
8.如图,点 B、E、C、F 在同一条直线上, AB=DE,AC=DF,BE=CF,求证: AB∥ DE.
第 8页 共 8页
9.如图,点 D 是 AB上一点, DF交 AC于点 E,DE=FE,FC∥AB 求证: AE=CE.
10.如图,点 A、C、D、B 四点共线,且 AC=BD,∠A=∠ B,∠ ADE=∠ BCF,求证: DE=CF.
2.如图,已知点 B, E, C, F 在一条直线上, AB=DF, AC=DE,∠ A=∠D. (1)求证: AC∥DE; (2)若 BF=13,EC=5,求 BC的长.
第 5页 共 5页
3.如图, BD⊥AC于点 D,CE⊥ AB于点 E, AD=AE.求证: BE=CD.
4.如图,点 O是线段 AB和线段 CD的中点. (1)求证:△ AOD≌△ BOC; (2)求证: AD∥BC.
易发现其对应元素
第 3页 共 3页
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素 平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
第 4页 共 4页
全等三角形经典题型
1.四边形 ABCD中, AD=BC,BE=DF, AE⊥ BD,CF⊥BD,垂足分别为 E、F. (1)求证:△ ADE≌△ CBF; (2)若 AC与 BD相交于点 O,求证: AO=CO.
第 1页 共 1页
4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上
二、知识网络
全等形
全等三角形
对应角相等 性质
对应边相等
判定
边边边
SSS
边角边
SAS
角边角
ASA
角角边
AAS
斜边、直角边
HL
角平分线
作图 性质与判定定理
应用
第 2页 共 2页
第 6页 共 6页
5.如图:点 C 是 AE的中点,∠ A=∠ECD, AB=CD,求证:∠ B=∠ D.
6.如图,已知△ ABC和△ DAE,D 是 AC上一点, AD=AB, DE∥AB,DE=AC.求证: AE=BC.
第 7页 共 7页
7.如图, AB∥CD,E 是 CD上一点, BE交 AD于点 F,EF=BF.求证: AF=DF.
16.如图, Rt△ ABC ≌ Rt △DBF ,∠ ACB= ∠DFB=90 °,∠ D=28°,求∠ GBF 的 度数.
第 12 页 共 12 页
17.如图,已知 AC ⊥BC ,BD ⊥AD ,AC 与 BD 交于 O,AC=BD .求证:△ ABC ≌△ BAD .
18.已知:如图,点 B、F、C、E 在一条直线上, BF=CE ,AC=DF ,且 AC ∥ DF . 求9页
11.如图,点 A,B,C,D在同一条直线上, CE∥DF,EC=BD,AC=FD.求证:AE=FB.
12.已知△ ABN和△ ACM位置如图所示, AB=AC,AD=AE,∠ 1=∠ 2. (1)求证: BD=CE; (2)求证:∠ M=∠N.
第 10 页 共 10 页
13.如图, BE⊥ AC,CD⊥AB,垂足分别为 E,D,BE=CD.求证: AB=AC.
全等三角形
一、基本概念 1、全等的图形必须满足:
( 1)形状相同的图形; (2)大小相等的图形; 即能够完全重合的两个图形叫全等形。 同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质 (1)全等三角形对应边相等; ( 2)全等三角形对应角相等;
3、全等三角形的判定方法
( SSS) (1)三边对应相等的两个三角形全等。 (ASA) (2)两角和它们的夹边对应相等的两个三角形全等。 (AAS) (3)两角和其中一角的对边对应相等的两个三角形全等。 (SAS) (4)两边和它们的夹角对应相等的两个三角形全等。 (HL) ( 5)斜边和一条直角边对应相等的两个直角三角形全等。
B、F、C、E 在
同一直线上),并写出四个条件: ① AB=DE ,② BF=EC ,③ ∠ B=∠E ,④ ∠ 1=
∠2.
请你从这四个条件中选出三个作为题设,另一个作为结论,
组成一个真命题,并给予证明.
题设:
;结论:
.(均填写序号)
证明:
24.如图,在△ ABC 和△ DEF 中, AB=DE ,BE=CF ,∠ B=∠1. 求证: AC=DF .(要求:写出证明过程中的重要依据)
三、证题的思路:
已知两边
找夹角( SAS ) 找直角( HL ) 找第三边( SSS)
若边为角的对边,则找
任意角( AAS )
已知一边一角
边为角的邻边
找已知角的另一边(
SAS )
找已知边的对角(
AAS )
找夹已知边的另一角(
ASA )
已知两角
找两角的夹边( ASA ) 找任意一边( AAS )
7.全等三角形基本图形 翻折法: 找到中心线经此翻折后能互相重合的两个三角形,
14.如图,在△ ABC和△ CED中, AB∥ CD,AB=CE,AC=CD.求证:∠ B=∠E.
第 11 页 共 11 页
15.如图,在△ ABC中, AD平分∠ BAC,且 BD=CD, DE⊥AB于点 E,DF⊥ AC于点 F. (1)求证: AB=AC; (2)若 AD=2 ,∠ DAC=30°,求 AC的长.