随机过程基本概念
随机过程的基本概念

随机过程的基本概念
1、随机过程的两种定义
①随机过程是所有样本函数的集合,记为ξ(t)。
样本函数:实验过程中一个确定的时间函数x i(t),即指某一次具体的实现。
②随机过程是在时间进程中处于不同时刻的随机变量的集合。
随机变量:某一固定时刻t1,不同样本函数的取值即为一个随机变量ξ(t1)。
2.随机过程的分布函数
(1)n维分布函数的定义
(2)n维概率密度函数的定义
如果
存在,则称其为ξ(t)的n维概率密度函数。
3.随机过程的数字特征
(1)均值(数学期望)
①均值的定义
随机过程ξ(t)的均值或数学期望定义为
②均值的意义
E[ξ(t)]是时间的确定函数,记为a(t),表示随机过程的n个样本函数曲线的摆动中心。
(2)方差
①方差的定义
随机过程ξ(t)的方差定义为
常记为σ2(t)。
②方差的意义
方差等于均方差与均值平方之差,表示随机过程在时刻t相对于均值a(t)的偏离程度。
(3)相关函数
①协方差函数
协方差函数的定义为
②自相关函数
自相关函数的定义为
③R(t1,t2)与B(t1,t2)的关系
④R(t1,t2)与B(t1,t2)的意义
衡量随机过程在任意两个时刻上获得的随机变量之间的关联程度。
⑤互相关函数
设ξ(t)和η(t)分别表示两个随机过程,则互相关函数定义为。
随机过程基本概念及随机游走的应用

随机过程基本概念及随机游走的应用随机过程是一类随时间变化而变化的随机现象的数学模型。
随机过程可以用来描述许多自然科学、社会科学和工程技术中的随机现象。
本文将介绍随机过程的基本概念和随机游走的应用。
一、随机过程的基本概念随机过程是一个随时间变化而变化的随机变量序列。
具体而言,假设我们有一个时间轴{t1, t2, …, tn},那么对于每个时刻ti,我们都会得到一个随机变量Xi,这就构成了一个随机过程。
一个随机过程可以用集合{Xt}表示,其中Xt表示在时刻t的随机变量。
对于一个随机过程,我们通常关心的是它的均值函数和相关函数。
均值函数E(Xt)表示在时刻t的随机变量的期望值,相关函数R(Xt, Xs)表示在时刻t和时刻s的随机变量的协方差,即E((Xt -E(Xt)) * (Xs - E(Xs)))。
在实际应用中,我们经常需要用到自协方差函数Cov(Xt, Xt+h),表示在时刻t和时刻t+h的随机变量的协方差。
二、随机游走的应用随机游走是一种常见的随机过程,它可以用来描述一些随机漂移现象。
具体而言,假设我们有一个随机过程{Xt},每次时刻t+1的随机变量都是时刻t的随机变量加上一个随机扰动,即Xt+1=Xt+Wt,其中Wt是一个独立同分布的随机变量,它的期望值为0,方差为σ^2。
随机游走可以用来描述许多自然现象,例如股票价格的波动、航空器的空气动力学特性等。
在股票价格的模型中,我们通常使用随机游走来描述价格的漂移现象,其中Wt表示股票价格的逐日波动。
在航空器模型中,我们使用随机游走来描述飞机的剧烈晃动现象,其中Wt表示飞机扰动的随机性。
除了股票价格和航空器的模型,随机游走还可以用来描述许多其他随机漂移现象,例如天气的变迁、金融市场的波动等。
三、结论本文介绍了随机过程的基本概念和随机游走的应用。
随机过程是一类随时间变化而变化的随机现象的数学模型,它可以用来描述许多自然科学、社会科学和工程技术中的随机现象。
第2讲 第二章随机过程的概念

RXY ( s, t ) E[ X ( s)Y t ]
互协方差函数为
BXY ( s, t ) Cov[ X ( s), Y t ]
E{[ X ( s) mX ( s)][Y (t ) mY (t )]}
例7 已知实随机过程X(t)具有自相关函数R(s,t), 令 Y(t)=X(t+a)-X(t) 求RXY(s, t), RYY(s, t).
设m n,
j 1
BY (n, m) min n, m pq,
RY (n, m) BY (n, m) E[Yn ]E[Ym ]
min n, m pq nmp 2
定义 设 X t , t T 和 Y t , t T 是两个随机过程,
2 1 2
x 1 t2
2 2
1 t 1 s
2
2 x1 x2
s, t 0, s t
例4 若从t=0开始每隔1/2秒抛掷一枚均匀的硬币做试 验,定义一个随机过程: t时出现正面; cos t , X (t ) t时出现反面. 2t 求 1) 一维分布函数F(1/2;x)和F(1,x); 2) 二维分布函数F(1/2, 1;x, y). 解(1) 这是独立随机过程(即在不同时刻的随机变量 相互独立) ,所以过程的有限维统计特性由一维确 定。 X(t cosπt 2t ) p 1/2 1/2
X t 的值称为随机过程在t时所处的状态。 X t 所有可能的值的集合,称状态空间, 记为I.
根据时间集和状态空间的不同,随机过程分为 四类: 1) T, I 均为离散;
2) T 离散, I 连续;
第2章随机过程的基本概念

F ?? { F ?t1 , t2 ,? , tn ; x 1 , x 2 ,? , x n ?:
ti ? T , x i ? Ri , i ? 1,2, ? , n , n ? 0} 称F为XT 的有限维分布函数族. 定义3 过程 { X(t), t的? nT维} 特征函数定义为
φ?t1 , t2 ,? , tn;?1 ,θ 2 ,? ,θ n ?
? E{e i[θ 1 X (t1 )? ? } ?θ n X (tn )]
称 {φ(t1, t2 ,? , tn;θ 1 ,θ 2 ,? ,θ n ) : t1 , t2 ,? , tn ? T, n ? 1}
为XT 的有限维特征函数族. 特征函数和分布函数是相互唯一确定.
定义2 过程 { X(t),对t ?任T给} 的
t1 , t2 ,? , tn ? T ,
随机向量
?X (t1 ), X (t2 ),? , X (tn )?
的联合分布函数
F (t1 , t2 ,? , tn; x1 , x2 ,? , xn ) ?
P{ X (t1 ) ? x1 , X (t2 ) ? x2 ,? , X (tn ) ? xn }
X(t1,ω)
X(t2,ω)
t1
t2
X(t,ω1) X(t,ω2) X(t,ω3) tn
定义 对每一固定 ω?,Ω称 { X(t, ? ), t的? 一T}个样本函数.
X是t ?随ω?机过程
也称轨道, 路径,现实.
Ex.5 利用抛硬币的试验定义一个随机过程,
X(t)
?
?cos? t, ?
?2t
出现正面; 出现反面. t ? R.
过程识别
第一章 随机过程 第二节 随机过程的基本概念

FX ( x1 , t1 ) f X ( x1 , t1 ) x1
2 、二维概率分布 为了描述S.P在任意两个时刻t1和t2的状态间的 内在联系,可以引入二维随机变量[X(t1),X(t2)]的分 布函数FX(x1,x2;t1,t2),它是二随机事件{X(t1)≤x1} 和{X(t2)≤x2}同时出现的概率,即
FX(x1,x2;t1,t2)=P{ X(t1)≤x1,X(t2)≤x2}
称为随机过程X(t)的二维分布函数。 若FX(x1,x2;t1,t2)对x1,x2的二阶混合偏导存在, 则 2 F ( x , x ;t ,t )
f X ( x1 , x2 ; t1 , t 2 )
X 1 2 1 2
x1x2
E[cos ] cos f ( )d cos
0 0
2
2
同理
1 d 0 2
E[sin ] 0
mx (t ) 0
2 2 x (t ) 2 (t ) mx (t ) 2 (t ) E[ x2 (t )] x x (2)
2 = E[sin (0t )] E [1 cos(20t 2 )]
t 离散型随机过程:对随机过程任一时刻1 的取值X (t1 ) 都是离散型随机变量。
连续随机序列:随机过程的时间t只能取 t 某些时刻,如 t , 2 ,…..,n t,且这 时得到的随机变量 X ( nt ) 是连续型随机变 量,即时间是离散的。相当于对连续型随 机过程的采样。 离散随机序列:随机过程的时间t只能取 t 某些时刻,如 t , 2 ,…..,n t,且这 时得到的随机变量 X ( nt ) 是离散型随机变 量,即时间和状态是离散的。相当于采样 后再量化 。
第二章 随机过程的基本概念_2.3 2.4

4 2 0 -2 -4 10 5 0 -5 -10
0
50
100
0
50
100
0 1
2015/5/12
0 100
14
两个不同相关时间随机过程的样本函数
2.3.4 循环平稳的概念
广义循环平稳:
如果随机过程X(t)的均值和自相关函数满足下列关系
2T
0
(1
2T
2 )[ RX ( ) mX ]d 0
平稳随机过程X(t)具有相关函数遍历性的充要条件
1 lim T T
2T
0
(1
2T
2 )[ R ( ) RX ( )]d 0
(t ) X (t ) X (t )
2015/5/12 22
第二章随机过程的基本概念
mX mX
其中
RX ( ) RX ( )
RX ( )
1 lim T 2T
T T
x(t
) x(t )dt
则X(t)为遍历(各态历经)过程。
2015/5/12 19
2.3.5 随机过程的各态历经性
X (t ) X (t )
t
t
(a)
(b)
各态历经过程与非各态历经过程示意图 各态历经过程的一个样本函数经历了随机过程 所有可能的状态
如果
f XY ( x1 ,..., xN , t1 ,..., t N , y1 ,..., yM , t '1 ,..., t 'M ) f X ( x1 ,..., xN , t1 ,..., t N ) fY ( y1 ,..., yM , t '1 ,..., t 'M )
随机过程的基本概念及类型

第七章 随机过程的基本概念及类型
第一章 概率论基础
目录 Contents
7.1
随机过程的基本概念
7.2
随机过程的分布率和数字特征
7.3
复随机过程
7.4
几种重要的随机过程
7.1 随机过程的基本概念
通俗地讲, 用于研究随机现象变化过程的随机变量 族称为随机过程.
7.1.1 随机过程的实例
当 t1 t2 t 时,
DX (t )
2 X
(t)
BX
(t,t)
RX
(t,t
)
m
2 X
(t)
最主要的数字特征
mX (t) E[X (t)]
均值函数
RX(t1, t2 ) E[X (t1 )X (t2 )] 自相关函数
7.2 随机过程的分布律和数字特征
例7.2 设随机过程 X (t ) Y cos( t) Z sin( t), t 0, 其中 Y , Z 是相互独立的随机变量, 且 EY EZ 0, DY DZ 2 , 求 {X (t ) t 0}的均值函数 mX (t) 和 协方差函数 BX (s, t).
RW (s, t) E[W (s)W (t)] E[( X (s) Y (s))( X (t ) Y (t ))]
E[ X (s)X (t) X (s)Y (t) Y (s)X (t ) Y (s)Y (t)]
7.2 随机过程的分布律和数字特征
E[ X (s)X (t)] E[ X (s)Y (t)] E[Y (s)X (t)] E[Y (s)Y (t)]
◎ 显然有关系式 BX (s, t) RX (s, t) mX (s)mX (t) , s, t T .
随机过程的基本概念和分类

随机过程的基本概念和分类随机过程是一种随时间和其他随机变量而变化的数学对象,是概率论和统计学中的重要概念。
它被广泛应用于自然科学、工程学、经济学、金融学和社会科学等领域。
本文将介绍随机过程的基本概念和分类,帮助读者更好地理解随机过程的本质和应用。
1. 随机过程的基本概念随机过程是由一组随机变量组成的序列或函数,它表示在一定随机环境下某个系统或现象的发展过程。
在随机过程中,时间通常是一个自变量,而随机变量则是随时间变化的函数或序列。
根据定义域的不同,随机过程可以分为离散时间和连续时间两种类型。
离散时间的随机过程是在离散时间点上的序列,例如投骰子的过程。
连续时间的随机过程是在连续时间上的函数,例如天气的变化。
在通常情况下,连续时间的随机过程被认为是一个时间的连续函数,而离散时间的随机过程则表示为时间的离散序列。
随机过程可以用概率分布函数来表达。
对于连续时间的随机过程,它的概率分布函数是一个满足概率公理的函数。
对于离散时间的随机过程,概率分布可以用概率质量函数来描述。
概率分布函数可以通过研究随机过程的瞬时状态来推导。
随机过程的瞬时状态指位置和方向的一切资料,包括当前位置、速度和加速度等。
2. 随机过程的分类随机过程可以按照多种方式进行分类。
以下是一些常见的分类方式。
2.1 马尔可夫过程马尔可夫过程是一种随机过程,它的状态转移只与它的当前状态有关,而与过去状态和未来状态无关。
马尔可夫过程被广泛应用于物理、经济、金融和信号处理等领域。
根据定义域的不同,马尔可夫过程可以分为离散时间和连续时间两种类型。
离散时间的马尔可夫过程可以用转移矩阵来描述,而连续时间的马尔可夫过程则可以用转移概率密度函数来描述。
2.2 平稳过程平稳过程是指在不同时间段内,随机过程的统计分布不随时间而改变的随机过程。
这意味着它的瞬时状态空间必须一致,并且在不同的时间点上具有相同的概率分布。
平稳过程的例子包括白噪声、布朗运动和马尔可夫过程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义
随机过程{(X(t),Y(T)), tÎT}的任意有限维分布都是正态分布
随机过程{X(t), tÎT}和{Y(t), tÎT}相互独立的充要条件是不相关
复值二阶矩过程
数字特征
独立增量过程
实值随机过程{X(t), tÎT},对任意的 相互独立
,随机变量
二阶矩过程{X(t), tÎT}是独立增量过程,其中T=[a,¥),且X(a)=c,c为实常数
性质
非负性 对称性 非负定性
换算
二维随机过程和复值随机过程
二维随机过程 复值随机过程
两个随机过程{X(t), tÎT}和{Y(t), tÎT},{(X(t),Y(T)), tÎT}为二维随机过程,可 简记为{(X(t),Y(T))}或(X(t),Y(T))
二维随机过程{(X(t),Y(T)), tÎT}为m+n维分布函数:
有限维分布族
二维随机过程{(X(t),Y(T)), tÎT}的所有1+1维分布函数、1+2维分布函数、2+1 维分布函数···构成的分布函数族为二维随机过程{(X(t),Y(T)), tÎT}有限维分布函 数组
独立
随机过程{X(t), tÎT}和{Y(t), tÎT}相互独立
数字特征
二维随机过程{(X(t),Y(T)), tÎT},随机过程{X(t), tÎT}和{Y(t), tÎT}的互相关函 数
有限维分布函数族:一维,二维···分布函数族的全体
有限维分布函数的性质
对称性 相容性
对(1,2,···,n)的任一排列(j1,j2,···,jn)有 对m<n,有
密度函数
一维密度函数:对每一个tÎT,X(t)有密度函数 一维密度函数族: n维密度函数: n维密度函数族:
有限维密度函数族:一维,二维···密度函数族的全体
正态过程(高斯过程)
随机过程{X(t), tÎT}的任意有限维分布都是正态分布,即对任意正整数n和任意 服从n维正态分布
数字特征
二阶矩过程
定义
对任意的tÎT,都有
均值函数(最基本)
均方值函数
方差函数
,随机过程{X(t), tÎT}为二阶矩过程
均方差函数(标准差函数)
数字特征
(自)相关函数(最基本)
协方差函数
独立过程
前n次的成功次数,Nn~B(n,p),补充N0=0,{Nn,n ³0}是平稳独立增量过程
参数p的伯努利过程
Wn表示第n次成功出现时的总实验次数,Wn服从参数为n,p的帕斯卡分布
如果f(1),f(2),···绝对收敛,即
引理
则
Tn表示第1次成功出现时的总实验次数,Tn服从几何分布
正交过程
复值二阶矩过程{Zn,n ³1}满足
分类
状态空间{X(t), tÎT}
离散状态随机过程 连续状态随机过程
离散状态离散参数的随机过程
分类
连续状态离散参数的随机过程 离散状态连续参数的随机过程
连续状态连续参数的随机过程
样本函数x(t)(tÎT)
分布函数
一维分布 二维分布 n维分布
一维分布函数:对每一个tÎT,X(t)是一个随机变量,其分布函数为 一维分布函数族: 二维分布函数: 二维分布函数族: n维分布函数: n维分布函数族:
常用随机过程
平稳增量过程/齐次增量过程
对任意的
,
与
服从相同分布
பைடு நூலகம்平稳独立增量过程
泊松过程 布朗运动
独立过程
如果X1,X2,···,Xn,···是相互独立的随机变量序列,则称{Xn,n ³1}为独立过程(独立 随机序列)
如果X1,X2,···,Xn,···是相互独立且服从相同分布的随机变量序列,Xi服从0-1分布 B(1,p),则称{Xn,n ³1}为参数p的伯努利过程
正交增量过程
复值随机过程{Z(t), tÎT},对任意的t1<t2£t3<t4,有
定理
随机过程{Z(t), tÎT}为具有零均值的复值二阶矩过程
如果{Z(t), tÎT}是独立增量过程,那么{Z(t), tÎT}为正交增量过程 {Z(t), tÎT}为正交增量过程,T=[a,¥),且Z(a)=0,
随机过程基本概念
定义 分布
如果对一个tÎT,X(t)是一个随机变量,则称随机变量族{X(t), tÎT}为随机过程 (随机函数),其中T称为指标集或参数集。随机过程{X(t), tÎT}也可以记为 {X(t)}或X(t)
时间集T
离散时间(离散参数)随机过程/随机序列(时间序列) 连续时间(连续参数)随机过程
随机过程{X(t), tÎT}和{Y(t), tÎT}的互协方差函数
随机过程{X(t), tÎT}和{Y(t), tÎT}不相关
不相关
二维随机过程{(X(t),Y(T)), tÎT}满足:对任意的tÎT, ,那么随机过程{X(t), tÎT}和{Y(t), tÎT}相互独立可以
推出不相关
二维正态过程