平面及其方程,空间直线及其方程
《高等数学》教学课件:第1章 曲线与曲面 第2节

1
1
2
2x py z 6 0
数学与生物信息学教研室 Mathematics & Bioinformatics
2.1.两直线的夹角
两直线的方向向量的夹角(介于0与 间)叫做两直线的夹角
2cos s1 s2 Nhomakorabea| m1m2 n1n2 p1 p2 |
| s1 || s2 |
m12 n12 p12 m22 n22 p22
问题:两直线平行、重合?两直线垂直(相交、 不交)?
数学与生物信息学教研室 Mathematics & Bioinformatics
直线L的位置就完全确定下来
参数的含义?方程的
特殊形式?
x x0 tm,
y
y0
tn,
tR
z z0 tp.
参数方程
x x0 y y0 z z0
m
n
p
对称式方程
点向式方程
数学与生物信息学教研室 Mathematics & Bioinformatics
二、空间直线及其方程 10
1、空间直线的方程 1.2.直线的一般方程
4
1、平面方程 法向量(normal vector):与一平面垂直的向量(vector)称为该平面的法向 量(normal vector).
一般方程
Ax By Cz D 0
它是三元一次方程.事实上任何三元一次方程在三维几 何空间都表示平面.因此对于任给的三元一次方程,其 三个未知量的系数就是该方程所表示平面的一个方向量
第一章 曲线与曲面
第一节 空间形式概述 第二节 平面与空间直线的方程 第三节 曲面及其方程 第四节 曲线的表示形式
数学与生物信息学教研室 Mathematics & Bioinformatics Group
空间直线及其方程

x1,y2,z2.
例6 求过点(2,1,3)且与直线 x 1 y 1 z 3 2 1
垂直相交的直线的方程.
P
L
M
例6 求过点(2,1,3)且与直线 x 1 y 1 z 3 2 1
垂直相交的直线的方程.
解 先作一个过已知点且与已知直线垂直的平面,这个平面 的方程为
直线L 的平面束方程.
通过直线L:
A1x A2 x
B1 y C1z D1 0, B2 y C2 z D2 0
的平面束方程
A 1xB 1yC 1zD 1l( A 2xB 2yC 2zD 2)0.
L
例7
求直线
x y z 1 0, x y z 1 0
的方程.
在平面xyz0上的投影直线
与L的方向向量 s 平行.所以两向量的对应坐标成比例,由于
M 0M {xx 0,yy 0,zz 0}, s{m,n,p}, 从而有
z
s
M
x x0 y y0 z z0 ,
M0
m
n
p
此方程组就是直线 L 的方程,叫做 直线的对称式方程或点向式方程.
O
y
x
方向数: 直线的任一方向向量的坐标m、n、p叫做这直线的一组方向
条直线的方向向量. z
确定直线的条件:
当直线L上一点M0(x0,y0,x0)
s
和它的一方向向量 s{m,n,p}
M0
为已知时,直线L的位置就完全确定了.
O
y
x
直线的对称式方程:
设直线L上一点M0(x0 , y0 , x0)和它的一方向向量 s {m, n, p}
高数下册常用常见知识点

高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
平面及其方程,空间直线及其方程

cos
n1 n2 n1 n2
特别有下列结论:
n2
ted
(1) 1 2 Evalun1ationn2 only. with Aspose.SliAd1eAs2 foBr1.BN2ETC31 C.52
1
C l0ient
Pron1f2ile
5.2
(2)
Co1p//yri2ght
机动 目录 上页 下页 返回 结束
2.平面与平面之间的关系
平面 1 : A1x B1y C1z D1 0, n1 ( A1, B1,C1) 平面 2 : A2 x B2 y C2 z D2 0, n2 ( A2 , B2 ,C2 )
垂直:
EvaluatioAn1Ao2nlyB.1B2 C1C2 0
例2. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程.
解: 因平面通过 x 轴 , 故 A D 0
设所求平面方程为
By ECvzalu0ation only. ted w代it入h A已s知po点se(4.S, lid3,es1)fo得r .NET 3.5 Client Profile 5.2
5B D 0, EDvalu5aBt,ion only. ted with A所s求po平s面e.方Sl程 ide为syfor5 .N0E. T 3.5 Client Profile 5.2
C(3)o由p题yr意ig设h所t 2求0平0面4-方2程01为1BAy sCpzosDeP0,ty Ltd. 将点A4,0,-2和点B5,1,7 代入上式,
因此有 2C(x 1) C( y 1) C(z 1) 0
约去C , 得 2(x 1) ( y 1) (z 1) 0
高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。
下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。
2.平面与平面的位置关系:两个平面可以相交、平行或重合。
二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。
2.向量的表示方法:向量可以用有向线段或坐标表示。
3.向量的加法:向量的加法满足平行四边形法则。
4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。
5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。
6.向量的乘法运算法则:分配律、结合律和交换律。
三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。
2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。
3.直线的性质:平行、垂直、斜率、倾斜角等。
4.直线的位置关系:两条直线可以相交、平行或重合。
四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。
2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。
3.曲线的性质:焦点、准线、离心率等概念的理解。
4.曲线的位置关系:两条曲线可以相交、相切或没有交点。
五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。
2.空间直线的位置关系:两条空间直线可以相交、平行或重合。
3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。
六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。
2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。
七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。
2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。
75个高中数学高考知识点总结

75个高中数学高考知识点总结高中数学高考知识点总结(共75个)1.数集与函数:数集的性质,集合的表示方法,集合的运算,函数的定义及性质,一元二次函数的图像与性质,复合函数的概念与性质等。
2.数论与代数:整数与有理数的运算性质,整式的运算性质,整式的因式分解与化简,多项式函数的概念与性质,复数的概念与运算性质等。
4.空间几何与立体几何:空间直线及其方程,空间平面及其方程,空间曲线及其方程,球面的定义与性质,空间几何体的表面积与体积等。
5.三角函数与三角恒等式:二次角与辅助角的概念,三角函数的定义及性质,三角函数的图像与变换,三角函数的基本恒等式等。
6.三角函数的应用:三角函数在坐标系中的应用,三角函数在三角恒等式中的应用,三角函数在物理问题中的应用等。
7.数列与数列的极限:数列的概念及性质,数列的极限及其性质,数列极限的运算法则,常用数列的极限等。
8.函数的极限与连续:函数的极限的定义及性质,函数的极限的运算法则,函数的连续性及其性质,连续函数的运算与初等函数的连续性等。
9.导数与导数应用:导数的定义及性质,函数的导数与函数的图像,导数的四则运算法则,函数的单调性与极值点等。
10.积分与定积分:定积分的概念及性质,定积分的计算方法,不定积分的概念与性质,不定积分的计算方法等。
11.微分方程:微分方程的基本概念与解法,可分离变量的微分方程,一阶线性微分方程,二阶齐次线性微分方程等。
12.概率与统计:随机事件与概率,随机变量及其分布,频率与概率的估计,统计图表的绘制与分析等。
13.线性规划:线性规划问题的建模,线性规划的基本概念与性质,线性规划的图形解法与解的存在性等。
14.解析几何:平面解析几何的基本概念与性质,平面曲线的方程与性质,空间解析几何的基本概念与性质等。
15.逻辑与集合论:命题与命题的连接词,逻辑等价命题,简单命题与复合命题,命题的充分必要条件与等价条件等。
以上是高中数学高考的主要知识点总结,包含了数学的基本概念、性质和应用。
空间直线与平面的方程及其位置关系

空间直线与平面的方程以及位置关系高天仪 20101105295数学科学学院 数学与应用数学专业 10级汉二班指导教师 李树霞摘 要 解析几何中,在建立平面与空间直线的方程与讨论他们的性质时,充分运用了向量这一工具,通过向量来处理这类问题的好处是与坐标的选取是无关的。
平面与空间直线方程的建立,就使得有关平面与空间直线的几何问题转化为这些稽核对象的方程的代数问题了。
关键词 空间直线、方向向量、参数方程、方向数1 空间直线的方程1.1 直线的对称式(点向式)方程空间给定了一点0M 与一个非零向量v ,那么通过点0M 且与向量v 平行的直线l 就被唯一确定,向量v叫直线l 的方向向量.任何一个与直线l 平行的非零向量都可以作为直线l 的方向向量.直线l 过点),,(0000z y x M ,方向向量{}Z Y X v ,,= .设),,(z y x M 为l 上任意一点,00r OM =, r OM =,由于M M 0与v (非零向量)共线, 则 v t r r =-0 即 v t r r +=0 (1.1-1)叫做直线l 的向量式参数方程,(其中t 为参数)。
如果设},,{0000z y x r = ,},,{z y x r = 又设},,{Z Y X v = ,那么(1.1-1)式得⎪⎩⎪⎨⎧+=+=+=Zt z z Yt y y Xt x x 000 (1.1-2)(1.1-1)叫做直线l 的坐标式参数方程。
消参数t 即得 Z z z Y y y X x x 000-=-=- (1.1-3) 则(1.1-3)叫做直线l 的对称式方程或称直线l 准方程。
例1 求通过空间两点),,(1111z y x M ,),,(2222z y x M 的直线方程。
解 取21M M v =作为直线l 的方向向量,设),,(z y x M 为直线l 上的任意点(如右图),那么},,,{12121212z z y y x x r r M O r ---=-== 所以直线l 的向量式参数方程为:);(121r r t r r -+= (1.1-4)坐标式参数方程为 ⎪⎩⎪⎨⎧-+=-==-+=)()()(121121121z z t z z y y y y x x t x x (1.1-5)对称式方程为 121121121z z z z y y y y x x x x --=--=-- (1.1-6) 方程(1.4-4)(1.4-5)(1.4-6)都叫做直线l 的两点式方程。
第七章第三节空间平面与直线及其方程

A 4C 0 , 即 A 4C ,
代入所设方程并消去C (C 0) , 得所求的平面方程为
4x z 0 .
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
三、空间直线的方程
1.空间直线的点向式方程与参数方程 (1) 直线的方向向量的定义 与直线平行的非零向量, 称为这条直线的一个方向向量. 直线的方向向量有无数多个.
i 1 0 j 1 1 k 0 1
n
M1
M3 M2
(1 , 1 , 1)
又 M1 , 利用点法式得平面 的方程为:
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.1 求过三点
的平面 的方程.
解: 平面 的法向量垂直于该平面内任一向量, 于是可取平面 的法向量为:
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.2 设一平面与
轴的交点分别为
R(0,0, c ) (其中 a 0,b 0,c 0 ), 求该平面的方程.
分析: 可用平面的一般方程做 或平面的点法式方程做. 解: 设平面的方程为
Ax By Cz D 0,
x x0 y y0 n m 得 y y0 z z0 p n
法2: 先找直线上两点A, B; AB 就是直线的方向向量.
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.5 用点向式方程及参数方程表示直线
分析: 先找直线上一点; 再找直线的方向向量. 解: 先在直线上找一点 M0 ( x0 , y0 , z0 ) . y0 z 0 1 0 , 令 x0 0 , 代入原方程组得 2 y0 z 0 1 0 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
机动 目录 上页 下页 返回 结束
2. 直线与平面的夹角
当直线与平面不垂直时, 直线和它在平面上的投影直
线所夹锐角 称为直线与平面间的夹角;
当直线与平面垂直时,规定其夹角
设直线 L 的方向向量为 s (m, n, p) 平面 的法向量为 n ( A, B ,C )
则直线与平面夹角 满足
第6节
平面及其方程
一、平面的点法式方程 二、平面的一般方程 三、两平面的夹角
第八章
机动 目录 上页 下页 返回 结束
一、平面的点法式方程
设一平面通过已知点 M 0 (x0 , y0 , z0 ) 且垂直于非零向
量 n ( A , B , C), 求该平面的方程.
任取点M (x, y, z) , 则有
y y1 y2 y1 y3 y1
z z1 z2 z1 0 z3 z1
机动 目录 上页 下页 返回 结束
2.平面与平面之间的关系
平面 1 : A1x B1y C1z D1 0, n1 ( A1, B1,C1) 平面 2 : A2 x B2 y C2 z D2 0, n2 ( A2 , B2 ,C2 )
题8 1 :由题意设所求平面方程为: By D 0, 将点2,-5,3 代入上述方程,得
5B D 0, D 5B, 所求平面方程为y 5 0.
(3)由题意设所求平面方程为By Cz D 0,
将点A4,0,-2和点B5,1,7 代入上式,
有 B-+27CC++DD==00, D=2C,B=-9C, 所求方程为-9y+z+2=0.
机动 目录 上页 下页 返回 结束
练习:习题8-6 题1,题3.
• 题1. • 题3.
3x 7y 5z 4 0
x 3y 2z 0
二、平面的一般方程
设有三元一次方程
Ax B y Cz D 0 ( A2 B2 C2 0) ② 任取一组满足上述方程的数 x0 , y0 , z0 , 则
的平面方程为
机动 目录 上页 下页 返回 结束
特别,当平面与三坐标轴的交点分别为
时, 平面方程为
x y z 1 (a ,b,c 0) abc
此式称为平面的截距式方程.
分析:利用三点式
xa y z a b 0 0
a 0 c 按第一行展开得 (x a)bc y(a)c zab 0
即 bcx acy abz abc
s
则
M (x, y, z)
故有
x x0 y y0 z z0
m
n
p
M 0 (x0 , y0 , z0 )
此式称为直线的对称式方程(也称为点向式方程)
说明: 某些分母为零时, 其分子也理解为零.
例如, 当 m n 0, p 0 时, 直线方程为
x y
x0 y0
机动 目录 上页 下页 返回 结束
垂直:
A1A2 B1B2 C1C2 0
平行: n1 n2 0
A1 B1 C1 A2 B2 C2
夹角公式: cos n1 n2
n1 n2
机动 目录 上页 下页 返回 结束
求过点 (1,1,1)且垂直于二平面
和
的平面方程.
解: 已知二平面的法向量为
n1 (1, 1, 1), n2 (3, 2, 12)
︿ sin cos( s , n )
ns L
sn
sn
Am Bn C p m2 n2 p2 A2 B2 C2
机动 目录 上页 下页 返回 结束
特别有:
(1) L
s // n
(2) L //
sn
ABC mn p Am BnC p 0
例3. 求过点(1,-2 , 4) 且与平面
参数式
xy
x0 y0
mt nt
z z0 p t
n2 n1
2
1
机动 目录 上页 下页 返回 结束
例4. 一平面通过两点 M1( 1, 1, 1 )和 M 2 ( 0, 1, 1 ), 且
垂直于平面∏: x + y + z = 0, 求其方程 .
解: 设所求平面的法向量为
则所求平面
方程为 A(x 1) B( y 1) C(z 1) 0
n M1M 2
• By+C z = 0 表示经过x轴的平面; • A x+C z = 0 表示经过y轴的平面; • A x+By = 0 表示经过z轴的平面;
机动 目录 上页 下页 返回 结束
• C z + D = 0 表示平行于 xoy 面 的平面; • A x + D =0 表示平行于 yoz 面 的平面; • B y + D =0 表示平行于 zox 面 的平面.
机动 目录 上页 下页 返回 结束
练习:习题8-7 题1,题2,4
题1: 由题意可设所求直线方程的方向向量
s 2t, t, 5t,
则直线方程为x 4 y 1 z 3 ,
2t
t
5t
即x 4 y 1 z 3.
2
1
5
题2: 由题意AB 1 3, 0 2, 2 1 4, 2, 1, 所求直线方向向量s平行AB, 可设s 4t, 2t, t,
机动 目录 上页 下页 返回 结束
一、空间直线方程
1. 一般式方程 直线可视为两平面交线,因此其一般式方程
A1x B1y C1z D1 0
z
L 1
o x
y 2
机动 目录 上页 下页 返回 结束
2. 对称式方程
已知直线上一点 M 0 (x0 , y0 , z0 )和它的方向向量
设直线上的动点为 M (x, y, z)
d A x0 B y0 C z0 D A2 B2 C2
(点到平面的距离公式)
机动 目录 上页 下页 返回 结束
内容小结
1.平面基本方程:
一般式 Ax By Cz D 0 ( A2 B2 C 2 0 )
点法式
截距式
x y z 1 abc
(abc 0)
三点式
x x1 x2 x1 x3 x1
得所求直线方程为x 3 y 2 z 1 ,
4t 2t
t
即x 3 y 2 z 1.
-4
2
1
8 7 题4: 解:设所求平面方程的法线向量为n,
则所求平面的法线向量与给定直线的
方向向量平行.
n1
1,2,4,
n2
3,5,2, 则
ij n n1 n2 1 2
k
4 16i 14 j 11k .
外一点,求 P0 到平面的距离d . 解:设平面法向量为 n ( A, B , C), 在平面上取一点
P1(x1, y1, z1) ,则P0 到平面的距离为
d Prj n P1P0
P1P0 n n
n P0
A(x0 x1) B( y0 y1) C(z0 z1)
d
A2 B2 C2
P1
z 2
是直线上一点 .
再求直线的方向向量 s .
已知直线的两平面的法向量为
s n1 , s n2
s n1 n2
机动 目录 上页 下页 返回 结束
i jk
s n1 n2 1 1 1 (4, 1, 3)
2 1 3
故所给直线的对称式方程为 x 1 y
t
4 1
参数式方程为
解题思路: 先找直线上一点; 再找直线的方向向量.
A x0 B y0 C z0 D 0
以上两式相减 , 得平面的点法式方程
显然方程②与此点法式方程等价,因此方程②的图形是
法向量为 n ( A, B,C)的平面, 此方程称为平面的一般
方程.
机动 目录 上页 下页 返回 结束
Ax By Cz D 0 ( A2 B2 C 2 0)
垂
直的直线方程.
解: 取已知平面的法向量 n (2, 3, 1)
n
为所求直线的方向向量.
则直线的对称式方程为
x 1 y 2 z 4 2 3 1
机动 目录 上页 下页 返回 结束
内容小结
1. 空间直线方程
一般式
A1x A2 x
B1 B2
y y
C1z C2 z
D1 D2
0 0
对称式
n1
n2
1
机动 目录 上页 下页 返回 结束
1 : n1 ( A1, B1, C1) 2 : n2 ( A2 , B2 , C2 )
cos
n1 n2 n1 n2
特别有下列结论:
n2
(1) 1 2
n1 n2
1
A1 A2 B1 B2 C1 C2 0
n1
2
(2) 1 // 2
n1 // n2 A1 B1 C1 A2 B2 C2
例2. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程.
解: 因平面通过 x 轴 , 故 A D 0
设所求平面方程为
By Cz 0 代入已知点 (4, 3, 1)得
化简,得所求平面方程
例3.用平面的一般式方程导出平面的截距式方程.
(自己练习)
机动 目录 上页 下页 返回 结束
习题8.6 题8 (1)(3)
M0M n
故
M0M n 0
zn
M
M0
o
x
y
A(x x0 ) B( y y0 ) C(z z0 ) 0
①
称①式为平面的点法式方程, 称 n 为平面 的法向量.
机动 目录 上页 下页 返回 结束
例1.求过三点
的平面 的方程.
解: 取该平面 的法向量为
n
n M1M 2 M1M3
M1