汽轮机汽动给水泵组培训教材

合集下载

汽轮机培训

汽轮机培训

第一章汽轮机概述◆一、什么是汽轮机汽轮机是一种将蒸汽的能量转换为机械功的旋转式动力机械,又称蒸汽透平(英文:steam turbine)◆二、汽轮机的工作原理具有一定压力、温度的蒸汽进入汽轮机,在喷嘴中膨胀升速,将其热能转化为动能,高速汽流进入动叶珊,带动叶轮旋转,从而将动能转化为机械功。

◆三、汽轮机的分类1、按工作原理1>、冲动式汽轮机:蒸汽主要在喷嘴中进行膨胀加速,在动叶片中蒸汽不再膨胀或膨胀很少,而主要是改变汽流的方向。

2>、反动式汽轮机:蒸汽在喷嘴和动叶片中膨胀程度基本相同,各占50%,即反动度约为0.5。

此时,动叶片不仅受到汽流冲击作用力,还受到因蒸汽膨胀加速引起的反作用力。

→轴向推力较大。

3>、混合式汽轮机:压力级既有冲动式,又有反动式,一般前几级采用冲动式,后几级采用反动式。

→咱公司设计采用。

2、按热力过程1>、凝汽式汽轮机:汽轮机排汽压力<0.1MPa(1个大气压),蒸汽需进入凝汽器进行冷却,凝结成水,再返回锅炉。

水冷:循环水→凝汽器→冷却塔→循环水空冷:蒸汽→排汽装置→空冷器→凝结水进入排汽装置→给水系统2>、背压式汽轮机:汽轮机排汽压力>0.1MPa(1个大气压),直接排出,用于供热或工业用汽。

3>、抽汽式汽轮机:从汽轮机中间某一压力级后抽出一部分蒸汽用于热用户。

分为:1)调整抽汽:抽汽压力有一定的调整范围,配有调节汽阀;2)非调整抽汽:抽汽压力不需要调整,为抽汽口压力(当然会有一定的管道压力损失)4>、中间再热式汽轮机:进入汽轮机的蒸汽膨胀作功,到一定压力后全部抽出,送入再热器中再次加热,温度升高后再送入汽轮机继续膨胀作功。

在汽缸抽汽口后设计专门的隔板,将再热前后的蒸汽隔开。

5>、补汽式汽轮机:近几年我公司设计研发的,在汽轮机中间级补入低压蒸汽,进行作功,属于余热利用,广泛应用于水泥窑、钢铁等行业。

符合国家节能降耗政策要求,市场很大。

汽动给水泵结构及控制PPT课件

汽动给水泵结构及控制PPT课件
2)转子有六级叶轮。由于与其驱动汽轮机配套,最高转速比电动给 水泵低,而并联运行泵的出口额定压力应相同,故汽动给水泵相应 增加一级,因此,轴向长度也相应增加。
3)采用迷宫式轴封。由于其驱动小汽轮机在启动前需要长时间盘车, 如果给水泵的轴封采用机械密封,在盘车期间其密封面不能形成润 滑水膜,易产生干摩擦使密封面磨损, 因此采用迷宫式轴封。
Байду номын сангаас
1.9速关组件
1.10小汽机技术参数
汽机型式:单缸、单流程、反动式、纯冷凝 运行方式:多汽源、滑参数、变转速、变功率 额定转速/功率:5584r/min(主机额定工况)9557kw 最大连续功率:12190kw(转速5943r/min) 额定进汽参数:1.011MPa/368℃(低压蒸汽) 高压进汽参数:4.181MPa/309.4℃ 高/低压汽源切换点:≤40%负荷(定压)或≤30%负荷(滑压) 额定排气压力/温度:6.6KPa(夏季13.5KPa)37.9℃ 调速范围:2950-6000r/min 跳闸转速:6150r/min(电超速)、6200r/min(机械超速) 盘车转速:80-120r/min 与水泵连接方式:鼓形齿式叠片式挠性联轴器直连 联轴节不传递振动和轴向力,只传递运动和扭矩。 快速启动性能:能在15分钟内由盘车转速升至额定转速
d、反动式汽轮机转子上的配有平衡活塞汽封(内汽封),以减 少轴向推力。平衡腔室的蒸汽大部分经外接平衡管路引至 低压段继续做功,剩余部分沿外汽封泄露。
1.7小汽轮机径向轴承和推力轴承
小汽机转子由前后2个径向轴 承支撑,分别放置在前、后 轴承箱内。径向轴承为两油 楔椭圆轴承,失稳转速为 8000r/m,在任何运行转速都 不会发生油膜振荡。 推力轴承为双面可倾瓦轴承 布置在前轴承箱内,对转子 进行轴向定位,承受转子轴 向推力,推力瓦块与推力盘 之间总的轴向间隙为0.4mm。 轴向位移保护定值±0.8mm

汽机运行培训指导手册(330MW汽轮机)

汽机运行培训指导手册(330MW汽轮机)

汽机运行各岗位培训指导手册330MW机组各岗位:(运规根据指导手册进行修编,指导手册中有的知识点运规中需找到答案。

另外还有几点要求:1、规程中加入近几年典型案例,如盘车投入步骤后面加入北海电投盘车时人员受伤的案例及预防措施,防汽轮机超速措施后面加入邹平二电汽轮机超速的案例,让运行人员在注意事项,事故预防方面有直观的认识。

2、针对典型事故分厂制定的预案加入。

3、感觉指导手册中还不全的,根据各分厂实际运行情况可以再加入,感觉没有必要的知识点可以备注,后续根据意见再进行修编。

4、所有修改内容变色,需删除内容备注,禁止私自删除!)一、值班员:应了解内容:汽轮机主辅设备规范、工作原理。

汽轮机主要系统流程及就地各阀门位置。

汽轮机主辅系统巡检项目及注意事项。

汽轮机各设备作用。

本厂汽轮机的相关特性(对于值班员有点难度,巡操以上的学会这个就行)。

汽机侧定期工作执行的意义及方法。

汽轮机设备启停操作方法。

汽轮机启停步骤。

(对于值班员有点难度,巡操以上的学会这个就行)应熟悉内容:值班员相关职责、工作范围。

循环水泵、凉水塔巡检内容。

循环水系统流程以及凉水塔、循环水系统阀门位置。

循环水泵启动条件。

循环水泵联锁启动条件。

循环水泵出口蝶阀联锁作用。

采暖站作用、系统及设备规范。

采暖站巡检项目。

电动机运行规定。

电动机就地巡检注意事项。

电动机启动应具备的条件。

应掌握内容:听针、测温仪、测振仪的使用方法。

阀门操作注意事项。

汽轮机本体异常的现象。

电动机运行异常的现象。

转动设备异常的现象。

循环水泵启动前应检查的项目。

循环水泵启动、停运操作就地操作步骤。

循环水泵启动试运就地检查注意事项。

循环水泵运行中就地各表计参数范围。

循环水泵出口蝶阀就地电动、手动开关方法及注意事项。

循环水泵及凉水塔隔离、恢复就地操作。

(对于值班员有点难度,巡操以上的学会这个就行)采暖站投运步骤。

采暖站停运操作步骤。

采暖站温度调节方法。

二、巡操:应了解内容:单元制机组热力系统流程。

汽动给水泵结构及控制

汽动给水泵结构及控制

3.1MEH控制画面
MEH包括3个操作面板: a、控制方式
可进行手动和自动、自动 和遥控之间的无扰切换。
b、操作面板
可进行小机挂闸、打闸、 速关阀试验、超速试验。
c、转速设定
在自动方式下进行目标转 速和升速率设置,改变小 机转速。
MEH控制方式
MEH三种控制方式:
a、手动控制方式(MANUL)
b、转速自动方式(ຫໍສະໝຸດ UTO) c、遥控方式(REMOTE)
1.7小汽轮机径向轴承和推力轴承
小汽机转子由前后2个径向轴 承支撑,分别放置在前、后 轴承箱内。径向轴承为两油 楔椭圆轴承,失稳转速为 8000r/m,在任何运行转速都 不会发生油膜振荡。 推力轴承为双面可倾瓦轴承 布置在前轴承箱内,对转子 进行轴向定位,承受转子轴 向推力,推力瓦块与推力盘 之间总的轴向间隙为0.4mm。 轴向位移保护定值±0.8mm
2、汽动给水泵概述及结构
2.1本机组配置两套50%BMCR的汽动给水泵组,每套由卧式双吸单级定
速前置泵和卧式多级变速给水泵组成。单台汽泵运行时可保证机组 60%B-MCR给水量。2台汽泵工作时,保证机组100%B-MCR给水量
2.3汽动给水泵结构特点:
1)由于汽动给水泵布置在汽机13.7米层,进/出水口设置在外筒体的 下部,进水室的顶部设有排气口;中间抽头的设置在外筒体的上部。 2)转子有六级叶轮。由于与其驱动汽轮机配套,最高转速比电动给 水泵低,而并联运行泵的出口额定压力应相同,故汽动给水泵相应 增加一级,因此,轴向长度也相应增加。 3)采用迷宫式轴封。由于其驱动小汽轮机在启动前需要长时间盘车, 如果给水泵的轴封采用机械密封,在盘车期间其密封面不能形成润 滑水膜,易产生干摩擦使密封面磨损, 因此采用迷宫式轴封。

汽动给水泵控制技术讲解

汽动给水泵控制技术讲解
度调整。
4、确定满度(以LVDT1 为例)
通过人为设定使 DPU 控制器送到VC 卡的控制指令V 为100
%,即使得最终伺服阀
控制指令为+10V,保证调门全开。在调门全开的情况下,利
用D 命令读出此时的
LVDTAD1 值,并将ADF1 设置为该值,这样就完成了
LVDT1 的满度调整。
同理可完成 LVDT2 的满度调整。
LVDT 传感器故障自动检测
手操/自动开关
手操增/减量
±10V/4~20mA/-10~10mA 模拟量输出
接口及系统隔离电压:1500V
硬件看门狗
支持热插拔
实时状态显示
阀门控制输出信号
25/27 AO1+
26/28 AO1-
LVDT1 输入
LVDT2 输入
LVDT 采用传感器方式时
及传感器桶体底部之间留
有6mm空间余量,防止当
油动机活塞向下移动达到
最大行程时,将传感器拉
杆打坏,另外须保证传感
器拉杆及桶体之间不发生
刮蹭!
小机转速测量
就地三个转速探头,接至44DPU,在柜内端子排并成两路,
分别接到两块A1、A2卡件(SD卡),A1、A2卡件根据接入
的三个转速信号选出选中的2个转速(高选),再参及逻辑
5、确定全开和全关时的输出指令
适当设定 VH 和VHO、VL 和VLO,使得当控制器指令为100
%时,最终伺服阀控
制指令为一正向电压,以保证调门全开;当控制器指令为0
%时,最终伺服阀控制指令
为一负向电压,以保证调门全关。
VC 卡调整步骤
输出类型为-10V~+10V(用于燃油型DEH)

汽轮机培训教案

汽轮机培训教案

汽轮机培训教学大纲总则:培训原则上以现场培训为主,理论讲课为副,教材选用:地方电厂岗位运行培训教材,《汽轮机运行》(辽宁电力中心第二版)。

要求职工边工作边学习,先组织学习人员集中学习电力生产工作安全规程和运行管理制度、两票三制等;后组织本专业基础知识及操作规程,重点是熟悉一厂本专业设备、系统及操作。

目标:通过本计划的认真实施,要求都要能独立进行各项生产工作,达到正式上岗。

(不包括少数在工作学习中表现不好及在历次考试中被淘汰者)。

一、培训原则及方法:培训的具体方法和要求:1、第一阶段集中授课(一个月):在课堂内统一进行授课,授课重点按第二部分要求范围具体内容执行(约120课时,每课时45分钟),主要分为理论基础课程及汽轮机专业课程;授课结束后进行理论学习考试,考试合格后进入现场实习,授课学习结束后的考试,由各授课老师出题考核,试卷交给总工室汽轮机专业组批改、评定成绩,然后由专业组组长交公司人力资源培训部审查、评估和备案。

2、第二阶段现场实习(七个月):实习分为三个阶段进行,具体内容按第三部分进行(1)实习一阶段,汽机专业基础知识和现场工作基础技能熟悉及训练(2个月):本阶段实习间主要由汽轮机专业主值负责,根据实际情况每月每人进行考问讲解10次,考问解答情况要记录在《学习记录簿》上;每月每人完成思考题至少15题,并要求有书面解答;一阶段实习结束后由人力资源培训部出题考试,测试卷交由总工室专业组批改,评定成绩,后交人力资源培训部审查、评估和备案。

(2)实习二阶段,汽机专业知识及工作实际操作技能训练(3个月):本阶段实习间主要由全能主值负责,每月每人进行操作演练10次,现场考问讲解6次,思考题至少10题,考问解答及演练情况要记录在《学习记录簿》上,思考题有书面解答;具体演练题、操作题和思考题由专业主值出题,全能主值或值长监督;二阶段实习结束后由人力资源培训部出题考试,测试卷交由总工室专业组批改,评定成绩,后交人力资源培训部审查、评估和备案。

电厂汽动给水泵专题讲义

电厂汽动给水泵专题讲义汽动给水泵专题讲义第一节概述一、汽动给水泵的特点本机组给水泵在正常运行时采用小型汽轮机来驱动(备用水泵采用电动机来驱动),与电动给水泵相比,汽轮机驱动给水泵具有如下优点:⑴汽动给水泵转速高、轴短、刚度大、安全性好。

当系统故障或全厂停电时,仍可保证锅炉用水。

⑵采用大型电动机驱动给水泵时启动电流大,启动困难,而汽动给水泵不但便于启动,而且可配合主机的滑压运行进行滑压调节。

⑶大型机组若采用电动给水泵,其耗电约为全厂厂用电的50%,采用汽动给水泵则可降低厂用电,增加供电量3~4%。

⑷可以变速运行来调节给水泵的流量,因而可省去电动给水泵的变速器及液压联轴器。

但是,因汽轮机的启动时间长,汽水管路复杂,还需要设置备用汽源等,因此汽轮机驱动给水泵也有其缺点。

给水泵的驱动汽轮机也称驱动汽轮机或小汽轮机。

二、驱动汽轮机的特点本机组驱动汽轮机采用国产杭州汽轮机股份有限公司引进西门子公司技术制造的单缸、单轴、变转速、变功率、多汽源、纯凝汽、反动式汽机。

其纵剖面图见图1。

该汽轮机为单缸、轴流、反动式。

进汽速关阀与汽缸法兰连接,速关阀的作用是紧急情况下在尽可能短的时间内切断进入汽轮机的蒸汽。

该汽轮机有三路汽源,一个工作汽源,为主机的四段抽汽,其蒸汽压力较低。

另一个备用和启动汽源为主机再热冷段蒸汽,其蒸汽压力较高。

辅助蒸汽是作为调试汽源,辅助蒸汽参数约为0.8~1.3MPa、350℃。

无论工作汽源或备用汽源均由调节器控制,汽源的切换也由调节器自动控制完成。

工作蒸汽经速关阀进入蒸汽室。

蒸汽室内装有提板式调节汽阀,油动机通过杠杆机构操纵提板(阀梁),决定阀门开度,控制蒸汽流量。

蒸汽通过喷嘴导入调节级或直接导入轮室。

备用蒸汽由调节阀控制。

调节阀法兰连接在速关阀上。

备用蒸汽经管道调节后经速关阀和调节汽阀进入喷嘴作功。

这时调节汽阀全开,不起调节作用。

整个汽轮机安装在底盘上,底盘通过地脚螺栓固定在水泥基础上。

汽轮机前猫爪搁在前轴承座上。

火电厂集控运行专业《知识点4 给水泵小汽轮机热力系统》


1.小汽轮机的汽源 (1)正常运行汽源
主机四段抽汽。抽汽压力较低,抽 汽量较大,热经济性好,低压汽源。
(2)低负荷汽源(机组故障后的汽源)
3轮冷汽低力21))机段源负 高采高新的蒸。荷,用压汽启汽备抽厂缸:动作用汽用排有汽为量汽蒸汽的源低较源汽:机和负少,(有组故荷,高辅的采障备热压汽机用汽用经汽)组主源汽济源作采蒸。源性。为用汽,差抽小再作高。汽汽热为压
再热冷段备用汽源实例
低负荷汽源再 热冷段来汽。
启动汽源辅 助蒸汽供汽。
正常运行用 四段抽汽。
b)新蒸汽的内切换
用主蒸汽管上的新蒸汽作 小汽机的高压内切换汽源 。
⑶并汽相⑴⑵机切换阀连小各当的换正系→汽自主 到常供统配分机蒸新汽汽中制别设汽汽源高由有与置负为压主→两相高荷中汽汽高个应压<压源机压独的汽缸切的汽管立主源抽换低源道的和汽汽点压取上低蒸阀或时抽消减压汽和排了压汽→室调汽汽外阀小汽→节源汽源切A
再热冷段备用汽源实例
低负荷汽源再 热冷段来汽。
启动汽源辅 助蒸汽供汽。
正常运行用 四段抽汽。
低负荷汽源 主蒸汽来汽。
两组进汽调节 两组喷嘴室。
正常运行用 四段抽汽。
启动汽源辅 助蒸汽供汽。
2.小汽轮机的汽源切换
a)高压蒸汽外切换系统
图3-53—只设一个蒸汽室 Ⅰ、正常工况:小汽机由主汽机中压
缸3抽)汽切供换汽后,低压汽源停止进入 Ⅱ汽、机主,汽小机汽负机荷完↓到全低由压高汽压源缸不能排满汽 足供小汽汽时机→需此要时时随主汽机负荷↓→蒸 →压入汽门⑴ 阀 汽参的打 A机数蒸→开↓汽则→小损高汽减失压机压蒸逐高阀汽渐压A经蒸↓不阀汽A断管节开道流上↑后→的进阀减
(2)由于小汽机和给水泵效率随负荷↓而↓→当负荷↓到 一(定4)程当度机(组<负7荷0%继M续C降R)低小至汽3机0%产以生下动,力抽不汽能不满足足以给提水供 泵足耗够功的蒸→汽量动时泵,转必速须↓→设不置能备满用足的给辅水助的蒸需汽要汽量源,来不满能足 与要主求机。相匹配,故70%负荷以下时,自平衡能力明显减 弱,此时只能开大调节汽阀,使用富裕抽汽量。

300MW培训教材解析

第一阶段:设备认识了解本阶段培训目标✓熟悉生产现场,熟悉生产过程。

✓熟悉发电厂主、辅设备规范及现场布置,了解设备工作原理和用途,熟悉发电设备运行检查方法。

[1] 简述主机设备结构。

答:我厂1、2号汽轮机组为300MW亚临界、中间一次再热、三缸两排汽、凝汽式机组,与1025t/h锅炉及300MW发电机配套,锅炉及汽机热力系统采用单元制布置;在电网中以带基本负荷为主,也可承担部分调峰任务。

3~8号汽轮机机组型式为亚临界中间再热两缸两排汽式汽轮机。

型号为N300-16.7/537-5型(合缸),额定功率(ECR)为300MW,最大连续功率(MCR)为312MW,最大功率(VWO)为330MW, 汽轮机允许最小稳定负荷为30%MCR。

通流级数共28级,其中高压缸1个调节级+9个压力级,中压缸6个压力级,低压缸2×6个压力级。

1、本体结构:本机组采用高、中压汽缸分缸,通流部分反向布置;高压缸高温部分采用双层缸结构;内缸材料为ZG15Cr2M01,允许工作温度不大于566 ℃;外缸材料为ZG20CrM0 ,允许工作温度不大于500℃,外缸最大壁厚95mm;内、外缸均为下猫爪中分面支承结构;内缸设置隔热环将夹层分为两区。

低压缸为对称分流式,也采用双层缸结构,内缸为通流部分,内外缸夹层为排汽,并在低压缸排汽处设置了喷水装置;低压下外缸排汽口与凝汽器采用刚性联接,并在上外缸顶部装有4个大气阀,其1mm厚的石棉橡胶板破裂压力为0.118~0.137 MPa(绝)。

高压转子采用整锻结构,高压部分由一个单列调节级和九个压力级组成;中压转子采用整锻结构,中压部分由七个压力级组成;高、中压转子材料均为30Cr1M 1V,其脆性转变温度(FA TT)为121℃,中心孔直径为Φ110mm 。

低压转子采用整锻结构,由2×6 0个压力级组成,材料为25Cr2Ni4MoV,中心孔直径为Φ160mm;高中压转子与低压转子,低压转子与发电机转子均采用刚性连接方式。

第十章 给水泵汽轮机BFPT控制系统介绍


9
2010-11-18
7
华中电力培训中心
小机转速基准的形成原理
自动控制时,系统用两个速度测量 通道,用双测量选择获得转速信号
2010-11-18
8
华中电力培训中心
选择出的速度 信号然后与速 度基准求偏差, 进行PI运算, 去控制小机调 门开度,如图 所示。最终实 现转速=速度 基准。
2010-11-18
华中电力培训中心
第十章 给水泵汽轮机 BFPT控制系统 BFPT控制系统
2010-11-18
1
华中电力培训中心
概述
现代大型机组给水泵的配置, 现代大型机组给水泵的配置,一般都是配备两台汽动给水 泵作正常运行,一台电动给水泵为备用。 泵作正常运行,一台电动给水泵为备用。三台给水泵的型 容量都一样,容量都为锅炉给水量的50%,只是驱动 式、容量都一样,容量都为锅炉给水量的 , 方式有所不同。 方式有所不同。 控制给水泵汽轮机BFPT控制系统又称MEH系统。 控制给水泵汽轮机BFPT控制系统又称MEH系统。 BFPT控制系统又称MEH系统 BFPT控制系统的任务就是控制小汽轮机的低压进汽调门 控制系统的任务就是控制小汽轮机的低压进汽调门 以及高压进汽调门的开度, 以及高压进汽调门的开度,继而将小汽轮机的转速控制在 希望的值上(目标值)。 希望的值上(目标值)。
一是运行人员在CRT上,通过“控制设定值”窗口画面设定。
二是当目标转速为锅炉给水控制系统来的 遥控指令时 ,系统选用基准速率,
2010-11-18
4
华中电力培训中心
首先看一下转速基准变化速率的形成过程。 (1)不在遥控方式时速率的形成 运行人员将通过CRT修改转速基准。运行人员首先输入一个目标值并确认, T1将记录下这个新的目标值;根据当时的情况,运行人员可从CRT画面上设定 一个转速变化速率,并确认,T2将记录下这个新的速率值,速率值始终为正值, 不管是要增加转速还是要减小转速。因不在遥控方式,T3将选择这个新的速率。 新的目标值与当前基准值REFA(对于B泵则记为REFB)将在在减法器4中进 行比较,其后由一个高、低值监视器5判断新的目标值是比以前的基准值大还是 小,如果基准值小于新的目标值,则说明应该增加基准值,这样切换开关T7将 选择运行人员输入的速率(正值);反之,若是要求降低转速,运行人员输入的 是一个比当前基准小的目标值,这样,T7将选择负的速率(K=-1)。 当运行人员从CRT画面按下GO按钮后,T8将选中这个速率(RATE)。此后, 基准值每经过一次程序循环,将增加一个RATE(当基准小于目标时RATE为正, 否则为负),基准值开始以一定速率向目标靠近,参见图12-3。 运行 人员在CRT上按下HOLD按钮,则取消GO信号,T8选择0作为RATE。 基准不再变化。 大选9的作用是取目标与基准的偏差的绝对值,因为小选6的输入总是要求正 值。随着基准值的变化,基准与目标的偏差越来越小,大选9输出的偏差绝对值 越来越小,当该绝对值小于运行人员输入的速率值时,小选6将取这个偏差绝对 值作为速率。因为程序执行时,是在每次循环(LOOP)时,将在基准值加上一 个速率值作为新的基准值,这样,在经过这一次循环后,基准值将正好等于目标 值。 2010-11-18 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机汽动给水泵组培训教材汽前泵汽动给水泵前置泵是上海电力修造总厂生产的HZB253-640离心泵,为卧式、单级双吸垂直进出、单蜗壳泵。

前置泵由电机驱动,通过柔性叠片联轴器进行功率传递,一个支撑在近中心线的壳体以允许轴向和径向自由膨胀,从而保持对轴线中心一致。

泵整体安装在装有适合的排水装置的刚性结构的泵座上。

前置泵主要由泵壳、叶轮、轴、叶轮密封环、轴承、轴、联轴器及泵座等部件组成。

前置泵主要技术规范序号参数名称单位额定工况点最大工况点单泵最小点10 正常轴承振动值mm 0.0511 旋转方向顺时针(从传动端向自由端看)12 轴承形式滑动轴承+ 推力轴承13 汽前泵电机功率KW 60014 汽前泵电机型号YKK500-415 极数 416 额定电流 A 43.317 轴承形式滚动轴承右图为汽泵前置泵结构示意图。

壳体结构为单蜗壳型、水平中心线分开、进出口水管在壳体下半部,材质为高质量的碳钢铸件。

设计成双蜗壳的目的时为了平衡泵在运行时的径向力,因为径向力的产生对泵的工作极为不利,使泵产生较大的挠度,甚至导致密封环、套筒发生摩擦而损坏;同时径向力对于转动的泵轴来说使一个交变的载荷,容易使轴因疲劳而损坏。

壳体通过一个与其浇铸在一起的泵脚,支撑在箱式结构钢焊接的泵座上,壳体和泵座的接合面接近轴的中心线,而键的配置可保持纵向与横向的对中以适合热膨胀,壳体上盖设有排气阀。

叶轮是双吸式不锈钢铸件,精密加工制造而成,流道表面光滑并经过动平衡校验以保证较高的通流效率。

双吸式结构可降低泵的进口流速,使其在较低的进口静压头下也不发生汽蚀;同时保证叶轮的轴向力基本平衡稳定运行。

叶轮由键固定在轴上,轴向位置是由其两端轮毂的螺母所确定,这种布置使得叶轮能定位在涡壳的中心线上。

叶轮密封环用于减少泄漏量,安装于壳体腔内由防转动定位销定位。

汽动给水泵前置泵轴承采用滚动轴承+滑动轴承,润滑方式为稀油润滑并装有冷却水室及温度测点。

轴承安装于与泵壳体端部牢固连接的轴承支架上。

泵体装有平衡型机械密封,由弹簧支撑的动环和水冷却的静环所组成。

机械密封工作时,在动环和静环之间形成一层液膜,而液膜必须保持一定的厚度才能使机械密封有效地吸收摩擦热,否则动静间的液膜会发生汽化,造成部件老化、变形,影响使用寿命和密封效果。

为此分开的填料箱设有一套水冷系统,将来自机组的闭式冷却水输送至密封腔内,直接冲洗、冷却密封端面。

设计每台汽前泵机械密封水量7.8t/h。

机械密封是靠一对相对运动的环的端面A (一个固定,另一个与轴一起旋转,) 相互贴合形成的微小轴向间隙起密封作用,这种装置称为机械密封。

机械密封通常由动环、静环、压紧元件和密封元件组成,其中动环和静环的端面组成一对摩擦副,动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。

压紧元件产生压力,可使泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。

密封元件起密封动环与轴的间隙B、静环与压盖的间隙C的作用,同时对泵的振动、冲击起缓冲作用。

下图为汽前泵机械密封结构图汽动给水泵汽动给水泵是上海电力修造总厂有限公司生产的HPT300-340-6S型离心泵,为卧式、水平、六级筒体式离心泵;泵的芯包从英国SULZER公司原装进口。

汽泵主要由泵的芯包、内外泵壳、水力部件、中间抽头、平衡装置、轴承、轴封以及泵座等部件组成。

汽泵的转子是SULZER公司生产的刚性转子,具有极高的机械可靠性。

另外,由于采用刚性转子汽动给水泵无须设暖泵系统,只需在启动泵之前先开启前置泵15分钟即可。

芯包组件包括所有的旋转部件、导叶、内泵壳、轴承和所有磨损部件。

该设计可使部件的更换既快速又方便,大大地缩短了维护所需的停机时间。

内泵壳由单独的螺栓联结在一起,避免了长螺栓联结引起的振动问题。

内泵壳间的密封是通过精确加工的金属表面之间的金属对金属密封实现的,最终,密封金属面通过作用在末级内泵壳上的水压力紧贴在一起。

泵轴为马氏体不锈钢锻件,经粗加工、热处理、磨削和精磨加工而成,径向轴承档镀以铬层以防止咬轴,轴上所有螺纹用单头刀具按高标准加工成形,所有截面变化处和螺纹尾部都采用圆角过渡,所有热处理都在轴垂直放置时进行,避免发生热变形。

泵轴采用较大的径长比(直径和轴承跨距)使得轴具有非常大的刚度。

轴上没有螺纹,从而消除了应力集中和轴的变形。

轴套通过紧力套装在轴上。

用空气间隙作为隔热措施。

轴套可以沿轴向自由膨胀。

该设计可将瞬态和热备用条件下轴的变形降低到最小程度。

叶轮由精密铸造而成。

叶轮与轴的套装设计可保证在最严重的瞬态变化过程中的对中和密封。

双键确保了扭矩的传递,叶轮卡环吸收轴向推力。

导叶由精密铸造而成,确保尺寸符合要求。

外泵壳主要由泵筒体、端盖及进、出口水管等组成。

泵体由进口侧泵脚下的一对横向键轴向定位在联轴器端,筒体下另有一轴向键。

这种布置使泵能在所有温度情况下保持与驱动机械的对中性,并将管道载荷传递到泵座上。

在泵脚与泵座间的键连接部位装有铜质滑块,从而保证能自由地热膨胀和良好的接触。

筒体为具有良好焊接性能的锰钢锻件,进出口支管同样采用锰钢锻件焊接在筒体上。

筒体由锻造加工而成,以中心线方式安装,并具有导向系统以便于各方向的对正。

该设计可确保与底板安装牢固,并可允许泵在各个方向的自由热膨胀。

大端盖由与筒体材料相同的锻件加工而成。

通过缠绕垫片及成型密封垫实现高压密封。

端盖螺栓由液压张紧装置拆卸,可最大限度地缩短拆卸时间,精确设置螺栓拉伸负荷,并可测量螺栓拉伸量通过止口与末级导叶套接。

在大端盖和筒体之间有一密封垫形成一高效的密封,密封垫为不锈钢石棉缠绕垫,这个密封垫嵌在筒体的凹槽内并通过大端盖面上的凸缘定位,这种结构方式确保大端盖和筒体的面与面接触并在密封垫上产生紧力。

选择这种材料所制造的弹性密封垫,可以进一步防止由于密封面一部分表面受损所引起的泄漏,降低密封比压系数特性,从而降低大端盖螺栓载荷。

大端盖螺栓借助于液压装置张紧,液压装置能给予螺栓精确地加载,使大端盖发生变形的可能性减至最低。

大端盖与筒体的结合面高度光洁,最内一级内泵壳与筒体之间装有垫圈,该垫圈为镀铜钢圈,两面都经研磨加工到很好的光洁度,可以防止发生碰磨、卡涩现象。

内泵壳选用耐腐蚀和冲蚀的13%铬钢,相邻内泵壳间的接口为金属对金属式,相对的配合面都加工到高的光洁度并经研磨。

导叶环同样是13%的铬钢,各级导叶内定位销定位于前级泵壳上。

各级间销子都是全封闭式,不与泵输送液体相接触,如果出现销子失效或松动,销子不会从泵出口处排出。

每个内泵壳和导叶的内孔上都装有可更换的磨损环,末级导叶和出口大端盖间的碟型弹簧在组装和停机时给结合面提供足够的静压力,并允许内部组件自由膨胀,当泵运行时,水压建立,从而保证结合面严实的密封。

每个磨损环内孔都加工有一组浅的平行槽,这种形式使其能保持光滑衬套的水力刚度,同时大大地减少泄漏,不需要其它复杂的防泄漏装置。

筒体内所有受高速水流冲击的区域都堆焊以奥氏体不锈钢层以防止冲蚀。

所有接合面也是用同样的方法加以保护。

泵中所用的叶轮和导叶均为13%铬不锈钢精密浇铸,流道采用陶瓷芯法成型,由此而获得高的表面光洁度和强度、高精度和高重复性的叶形,以保证具有非常高的流通效率。

叶轮上不装磨损环,但在其易磨部位留有足够的金属以备万一运行磨损时可车去并配上环。

叶轮和静磨损环采用不同硬度的材料,叶轮的硬度为235-321VPN,静磨损环为380-430VPN。

叶轮轴向由卡环定位,卡环为两片式嵌在轴上,卡环定位在叶轮的凹糟内以防其转动时飞出。

叶轮在轮毂位置热套在轴上以固定叶轮并起到叶轮的级间密封,扭矩是由与之相配的键传递。

选用键槽的最小内圆角保证最大应力集中系数为3.0。

在泵的第二级上设有一中间抽头,为再热器减温装置提供减温水。

中间抽头是单管结构,抽头水从筒体壁上的径向孔流出。

从内泵壳到外部管路之间的连接管材料采用不锈钢,并且连接管外端的法兰夹在筒体外壁与外部管路端的法兰之间,借助于挠性金属垫来实现密封。

在抽头连管内部,连接管在内泵壳径向孔处密封,虽然结构简单,但必须考虑由下列因素而引起的内泵壳和筒体间的中心位置误差:A、芯包互换引起的角度和轴向误差;B、芯包和筒体间的温差引起的轴向和径向误差;C、泵冷态启动开始变热或由于冷水通过引起抽头连接管自身的轴向膨胀、收缩;D、泵停转后零部件不均匀的冷却引起的芯包与筒体间的微量随机性偏移。

泵的水力平衡装置为单平衡鼓装置配合推力轴承形成的平衡机构。

由于给水泵为多级离心泵,工作时,由于给泵的出口和入口之间压差很大,这样就会产生一个由出口侧(高压侧)沿轴向向入口侧(低压侧)的轴向推力,在该轴向推力的作用下,使给泵的转子产生轴向位移,方向也是有出口侧向入口侧移动,为平衡给泵在工作时产生的轴向推力,控制轴向位移在给泵的动、静间隙安全范围内,所以在给泵的高压侧末级叶轮后装有平衡鼓(盘)装置,随转子一起旋转。

平衡鼓外圆表面与泵体间形成径向间隙,一端是末级叶轮的高压区,另一端是与吸入口相连通的低压区。

这样作用在平衡鼓上的压差,形成了与叶轮上的轴向力方向相反的平衡力,其大小由平衡鼓直径决定。

平衡鼓平衡轴向力的效果也是减小轴向力,而不能完全平衡轴向力。

控制轴向位移。

高压水最后通过这个平衡管,回到给泵的入口,简单的理解平衡鼓(盘)其原理就和汽轮机上推力轴承相似,平衡管就和推力轴承的回油管作用类似。

推力轴承采用大容量双向轴承,可以承受非设计工况下的附加推力和反向推力。

由于结构原因发生轴向位移时,平衡鼓装置不会与其外部节流衬套发生摩擦和咬死现象,但它不能完全平衡轴向推力,剩余推力由加装的推力轴承承受。

平衡鼓压装在轴上,轴向由轴肩定位,并在低压侧由一平衡螺母锁定。

平衡鼓与轴的密封通过铅箔垫圈和衬圈实现。

平衡鼓用不锈钢锻件制造,在节流衬套内转动。

节流衬套材料进行特别选择,以保持其与平衡鼓的硬度差与叶轮及其衬套间的硬度差相同。

泵轴是由一对普通圆柱型径向滑动轴承所支承,轴承为巴氏合金内衬强制油润滑型。

轴承由轴承压盖固定,轴承压盖由螺栓固定在下半部轴承支架上。

当上半部轴承支架装上后,整个轴承支架形成一360°的法兰支承面直接连在进口端盖或大端盖上。

整个组件由销子定位,以保证能精确地重新组装,在大修时,轴承与轴可在原位一起拆卸。

自位瓦块式推力轴承:自位瓦块式推力轴承对两个方向的推力载荷具有相同的承受容量,适用于正反两个方面的旋转。

推力环组件由支承环组成,瓦块均匀分布于支承环上各单独的定位件之间,瓦块外径嵌在支承环的法兰内,瓦块通过定位件的头部嵌在其两侧的凹槽内定位,使得工作时瓦块能自由倾斜但不会掉下来。

推力轴承安装在一轴向中分的轴承腔内,该腔体在自由端轴承支架上,而轴承支架本身也是轴向中分的。

相关文档
最新文档