汽动给水泵控制技术讲解

合集下载

汽动给水泵结构及控制

汽动给水泵结构及控制

3.1MEH控制画面
MEH包括3个操作面板: a、控制方式
可进行手动和自动、自动 和遥控之间的无扰切换。
b、操作面板
可进行小机挂闸、打闸、 速关阀试验、超速试验。
c、转速设定
在自动方式下进行目标转 速和升速率设置,改变小 机转速。
MEH控制方式
MEH三种控制方式:
a、手动控制方式(MANUL)
b、转速自动方式(ຫໍສະໝຸດ UTO) c、遥控方式(REMOTE)
1.7小汽轮机径向轴承和推力轴承
小汽机转子由前后2个径向轴 承支撑,分别放置在前、后 轴承箱内。径向轴承为两油 楔椭圆轴承,失稳转速为 8000r/m,在任何运行转速都 不会发生油膜振荡。 推力轴承为双面可倾瓦轴承 布置在前轴承箱内,对转子 进行轴向定位,承受转子轴 向推力,推力瓦块与推力盘 之间总的轴向间隙为0.4mm。 轴向位移保护定值±0.8mm
2、汽动给水泵概述及结构
2.1本机组配置两套50%BMCR的汽动给水泵组,每套由卧式双吸单级定
速前置泵和卧式多级变速给水泵组成。单台汽泵运行时可保证机组 60%B-MCR给水量。2台汽泵工作时,保证机组100%B-MCR给水量
2.3汽动给水泵结构特点:
1)由于汽动给水泵布置在汽机13.7米层,进/出水口设置在外筒体的 下部,进水室的顶部设有排气口;中间抽头的设置在外筒体的上部。 2)转子有六级叶轮。由于与其驱动汽轮机配套,最高转速比电动给 水泵低,而并联运行泵的出口额定压力应相同,故汽动给水泵相应 增加一级,因此,轴向长度也相应增加。 3)采用迷宫式轴封。由于其驱动小汽轮机在启动前需要长时间盘车, 如果给水泵的轴封采用机械密封,在盘车期间其密封面不能形成润 滑水膜,易产生干摩擦使密封面磨损, 因此采用迷宫式轴封。

汽动给水泵控制技术讲解

汽动给水泵控制技术讲解
度调整。
4、确定满度(以LVDT1 为例)
通过人为设定使 DPU 控制器送到VC 卡的控制指令V 为100
%,即使得最终伺服阀
控制指令为+10V,保证调门全开。在调门全开的情况下,利
用D 命令读出此时的
LVDTAD1 值,并将ADF1 设置为该值,这样就完成了
LVDT1 的满度调整。
同理可完成 LVDT2 的满度调整。
LVDT 传感器故障自动检测
手操/自动开关
手操增/减量
±10V/4~20mA/-10~10mA 模拟量输出
接口及系统隔离电压:1500V
硬件看门狗
支持热插拔
实时状态显示
阀门控制输出信号
25/27 AO1+
26/28 AO1-
LVDT1 输入
LVDT2 输入
LVDT 采用传感器方式时
及传感器桶体底部之间留
有6mm空间余量,防止当
油动机活塞向下移动达到
最大行程时,将传感器拉
杆打坏,另外须保证传感
器拉杆及桶体之间不发生
刮蹭!
小机转速测量
就地三个转速探头,接至44DPU,在柜内端子排并成两路,
分别接到两块A1、A2卡件(SD卡),A1、A2卡件根据接入
的三个转速信号选出选中的2个转速(高选),再参及逻辑
5、确定全开和全关时的输出指令
适当设定 VH 和VHO、VL 和VLO,使得当控制器指令为100
%时,最终伺服阀控
制指令为一正向电压,以保证调门全开;当控制器指令为0
%时,最终伺服阀控制指令
为一负向电压,以保证调门全关。
VC 卡调整步骤
输出类型为-10V~+10V(用于燃油型DEH)

核电厂汽动辅助给水泵转速控制

核电厂汽动辅助给水泵转速控制

核电厂汽动辅助给水泵转速控制
一、概述
核电厂是一个高度自动化的工厂,各种辅助设备都需要进行准确可靠的控制。

给水泵
是核电厂的重要设备之一,其转速控制对于保障核电厂的安全运行至关重要。

本文将介绍
核电厂汽动辅助给水泵转速控制的原理、优势及应用。

二、原理
核电厂汽动辅助给水泵转速控制是通过汽轮机控制系统实现的。

给水泵的转速控制是
为了保证给水泵在各种工况下都能够稳定地供水,以满足核电厂的发电需求,并且在发生
各类异常情况时能够迅速响应。

汽动辅助给水泵转速控制是利用汽轮机的蒸汽控制系统来
实现的,通过对汽轮机的控制,实现给水泵的转速控制。

三、优势
汽动辅助给水泵转速控制具有以下优势:
1. 稳定性好:通过汽轮机蒸汽控制系统实现给水泵的转速控制,可以保证给水泵的
稳定工作,不易受外部环境的干扰。

2. 可靠性高:汽动辅助给水泵转速控制采用汽轮机系统,通过多重保护和检测机制,能够保证给水泵在各种异常工况下都能够稳定工作,确保核电厂的安全运行。

3. 节能环保:汽动辅助给水泵转速控制采用汽轮机系统,可以实现对蒸汽的充分利用,提高能源利用效率,降低发电成本,同时减少环境污染。

四、应用
汽动辅助给水泵转速控制广泛应用于核电厂的给水泵系统中,通过对汽轮机的蒸汽控
制系统进行优化,实现对给水泵的转速控制,保证核电厂的安全运行。

汽动辅助给水泵转
速控制也可以应用于其他工业领域的给水泵系统中,提高设备的稳定性和可靠性,降低维
护成本,增加设备的使用寿命。

汽轮机介绍之给水泵汽轮机概述及主要技术规范

汽轮机介绍之给水泵汽轮机概述及主要技术规范

汽轮机介绍之给水泵汽轮机概述及主要技术规范给水泵汽轮机是一种利用汽轮机与给水泵集成在一起的动力装置。

它通过汽轮机产生的动力驱动给水泵,将冷却水从低处抽吸并提升到高处,然后将冷却水送往发电机和其他设备进行冷却。

给水泵汽轮机广泛应用于发电厂、化工厂和暖通设备中。

给水泵汽轮机具有很多技术规范,其中一些主要技术规范如下:1.装机容量:给水泵汽轮机的装机容量是指单位时间内给水泵所能提供的冷却水流量。

一般来说,装机容量越大,给水泵汽轮机的性能越好,但同时也会带来更高的投资和运行成本。

2.提升高度:给水泵汽轮机的提升高度是指冷却水从低处抽吸到高处的高度差。

提升高度越大,给水泵汽轮机的功耗就越大,因此需要更强大的汽轮机来驱动。

3.效率:给水泵汽轮机的效率是指单位功耗下所能提供的冷却水流量。

高效率的给水泵汽轮机能够以更低的能耗驱动给水泵,从而减少能源消耗和运营成本。

4.运行稳定性:给水泵汽轮机在运行中需要保持稳定性,避免发生振动、噪音和泄漏等问题。

因此,给水泵汽轮机需要具备可靠的结构设计和高质量的制造工艺。

5.自动化水平:给水泵汽轮机应具备一定的自动化水平,能够实现自动控制和监测,提高运行效率和安全性。

自动化功能包括启停控制、负荷分配、故障诊断等。

6.耐久性:给水泵汽轮机需要具备良好的耐久性,能够在长时间运行和重负荷工况下保持稳定性和可靠性,减少维修和更换的频率,降低运营成本。

7.安全性:给水泵汽轮机需要具备良好的安全性能,包括防火、防爆、防锈等措施,以确保设备在高温、高压和恶劣环境下安全运行。

综上所述,给水泵汽轮机是一种集成了汽轮机和给水泵的动力装置,应用于各种工业设备中。

它具有装机容量、提升高度、效率、运行稳定性、自动化水平、耐久性和安全性等主要技术规范,以满足不同领域的需求。

随着科技的不断进步,给水泵汽轮机将继续在工业领域发挥重要的作用。

核电厂汽动辅助给水泵转速控制

核电厂汽动辅助给水泵转速控制

核电厂汽动辅助给水泵转速控制核电厂是一种重要的能源生产设施,其正常运行对于维护国家能源安全和经济发展具有重要意义。

在核电厂中,给水泵是起到非常重要作用的设备之一,它们的运行状态直接关系到核电厂的安全和稳定。

为了确保给水泵运行的安全可靠,其控制系统也显得尤为重要。

本文将从核电厂汽动辅助给水泵转速控制方面进行介绍和探讨。

二、汽动辅助给水泵转速控制的特点1. 自动控制:汽动辅助给水泵的转速控制一般是自动完成的,即在发生故障或者停机时,控制系统会自动启动汽动辅助给水泵,并控制其转速达到设定值。

2. 灵活调整:由于核电厂运行状态的复杂性,汽动辅助给水泵的转速需要能够灵活调整,以适应不同的运行需求。

控制系统需要能够根据实际情况对汽动辅助给水泵的转速进行精确控制。

3. 安全稳定:给水泵是核电厂供水系统中的重要设备,其控制系统需要具有高可靠性和稳定性,确保在任何情况下都能够正常运行。

汽动辅助给水泵转速控制的实现方法主要包括以下几种:1. PID控制:PID控制是一种经典的控制方法,通过对汽动辅助给水泵的转速进行实时监测,然后根据其偏差值来调整控制参数,从而使得控制系统能够迅速、准确地调节汽动辅助给水泵的转速,确保其在设定范围内运行。

2. 进口控制:汽动辅助给水泵的转速控制也可以通过进口控制来实现,即通过对进口阀门的开度来控制汽动辅助给水泵的转速。

通过合理调整进口阀门的开度,能够有效控制汽动辅助给水泵的进水量,从而达到控制其转速的目的。

3. 马达控制:在实际应用中,汽动辅助给水泵的转速可通过控制电动机的速度来实现,即通过调节电动机的供电电压和频率来控制汽动辅助给水泵的转速。

1. 传感器的选择:为了实现对汽动辅助给水泵转速的实时监测,需要选择合适的传感器,以获得准确的汽动辅助给水泵转速数据。

2. 控制算法的优化:为了实现对汽动辅助给水泵转速的精确控制,需要优化控制算法,以提高对汽动辅助给水泵转速的控制精度和稳定性。

核电厂汽动辅助给水泵转速控制

核电厂汽动辅助给水泵转速控制

核电厂汽动辅助给水泵转速控制1. 引言1.1 研究背景核电厂汽动辅助给水泵是核电厂中一个重要的设备,其作用是在发生事故或紧急情况时,为主给水泵提供辅助水源,保证核电厂的安全运行。

当前,随着核电行业的快速发展,对汽动辅助给水泵转速控制的要求也越来越高。

研究背景:核电厂作为我国清洁能源的重要组成部分,具有着极其重要的地位。

而核电厂汽动辅助给水泵作为保障核电厂安全运行的关键设备之一,其转速控制对核电厂的安全性和可靠性有着直接影响。

现有的转速控制方法存在着一些问题,如控制精度不高、响应速度慢等,需要进一步加以改进和优化。

针对核电厂汽动辅助给水泵转速控制存在的问题,开展研究并采取有效的控制方法,对于提高核电厂的安全性和可靠性具有重要意义。

本文旨在探讨核电厂汽动辅助给水泵转速控制的原理、现有控制方法的优缺点以及改进控制方法的实施方案,以期为核电厂汽动辅助给水泵转速控制提供有益参考。

1.2 目的目的:核电厂汽动辅助给水泵转速控制是核电厂运行过程中的重要环节,其稳定性和可靠性直接影响到核电厂的安全运行。

本文旨在通过对核电厂汽动辅助给水泵转速控制的研究和探讨,提出改进控制方法,提高系统的控制效果和应用性能,为核电厂运营管理提供技术支持和指导。

具体来说,本文的目的如下:1. 分析汽动辅助给水泵的功能和作用,深入了解其在核电站中的重要性;2. 探讨核电厂汽动辅助给水泵转速控制的原理,揭示其控制机理和作用机制;3. 分析现有控制方法的优缺点,指出存在的问题和不足之处;4. 提出改进控制方法的实施方案,探讨如何提高控制精度和响应速度;5. 研究控制效果及应用情况,评估改进方法的实际效果和应用效果。

通过以上研究,旨在为核电厂汽动辅助给水泵转速控制的优化提供理论参考和实践指导,进一步提升核电站的运行水平和安全性。

2. 正文2.1 汽动辅助给水泵的功能和作用汽动辅助给水泵是核电厂中一个重要的设备,其主要功能是为主给水泵提供必要的启动辅助动力,保证主给水泵在启动过程中顺利运转。

汽动给水泵工作原理

汽动给水泵工作原理

汽动给水泵工作原理
汽动给水泵是一种利用汽动力驱动的水泵,其工作原理基于汽动力的转化和传递。

汽动给水泵主要由以下几个部分组成:汽缸、活塞、连杆、曲柄轴、水泵腔和进、出水管道等。

工作过程如下:
1. 气动力输入:通过供气系统供给压缩空气,将压缩空气进入汽缸。

2. 气缸往复运动:压缩空气进入汽缸后,推动活塞做往复运动,从而带动连杆和曲柄轴旋转。

3. 曲柄轴旋转转换力:活塞的往复运动使得曲柄轴旋转,将活塞高低运动转化为曲柄轴的旋转运动。

4. 水泵腔工作:曲柄轴的旋转运动带动水泵腔内的叶轮或活塞等工作元件产生相应运动,使水从进水管道吸入,并经过腔内工作元件的作用被推到出水管道中。

5. 出水和排放水:水泵腔将被推到出水管道中的水推向管道末端或其他需要的地方,起到给水的作用。

总之,汽动给水泵通过利用压缩空气驱动活塞做往复运动,然后通过连杆和曲柄轴将活塞运动转化为轴的旋转运动,最终带动水泵腔内的工作元件将水吸入并推向出水管道。

通过这一过程,实现了汽动力向机械运动的转换和水的输送,从而起到给水的作用。

第十章 给水泵汽轮机BFPT控制系统介绍

第十章 给水泵汽轮机BFPT控制系统介绍

9
2010-11-18
7
华中电力培训中心
小机转速基准的形成原理
自动控制时,系统用两个速度测量 通道,用双测量选择获得转速信号
2010-11-18
8
华中电力培训中心
选择出的速度 信号然后与速 度基准求偏差, 进行PI运算, 去控制小机调 门开度,如图 所示。最终实 现转速=速度 基准。
2010-11-18
华中电力培训中心
第十章 给水泵汽轮机 BFPT控制系统 BFPT控制系统
2010-11-18
1
华中电力培训中心
概述
现代大型机组给水泵的配置, 现代大型机组给水泵的配置,一般都是配备两台汽动给水 泵作正常运行,一台电动给水泵为备用。 泵作正常运行,一台电动给水泵为备用。三台给水泵的型 容量都一样,容量都为锅炉给水量的50%,只是驱动 式、容量都一样,容量都为锅炉给水量的 , 方式有所不同。 方式有所不同。 控制给水泵汽轮机BFPT控制系统又称MEH系统。 控制给水泵汽轮机BFPT控制系统又称MEH系统。 BFPT控制系统又称MEH系统 BFPT控制系统的任务就是控制小汽轮机的低压进汽调门 控制系统的任务就是控制小汽轮机的低压进汽调门 以及高压进汽调门的开度, 以及高压进汽调门的开度,继而将小汽轮机的转速控制在 希望的值上(目标值)。 希望的值上(目标值)。
一是运行人员在CRT上,通过“控制设定值”窗口画面设定。
二是当目标转速为锅炉给水控制系统来的 遥控指令时 ,系统选用基准速率,
2010-11-18
4
华中电力培训中心
首先看一下转速基准变化速率的形成过程。 (1)不在遥控方式时速率的形成 运行人员将通过CRT修改转速基准。运行人员首先输入一个目标值并确认, T1将记录下这个新的目标值;根据当时的情况,运行人员可从CRT画面上设定 一个转速变化速率,并确认,T2将记录下这个新的速率值,速率值始终为正值, 不管是要增加转速还是要减小转速。因不在遥控方式,T3将选择这个新的速率。 新的目标值与当前基准值REFA(对于B泵则记为REFB)将在在减法器4中进 行比较,其后由一个高、低值监视器5判断新的目标值是比以前的基准值大还是 小,如果基准值小于新的目标值,则说明应该增加基准值,这样切换开关T7将 选择运行人员输入的速率(正值);反之,若是要求降低转速,运行人员输入的 是一个比当前基准小的目标值,这样,T7将选择负的速率(K=-1)。 当运行人员从CRT画面按下GO按钮后,T8将选中这个速率(RATE)。此后, 基准值每经过一次程序循环,将增加一个RATE(当基准小于目标时RATE为正, 否则为负),基准值开始以一定速率向目标靠近,参见图12-3。 运行 人员在CRT上按下HOLD按钮,则取消GO信号,T8选择0作为RATE。 基准不再变化。 大选9的作用是取目标与基准的偏差的绝对值,因为小选6的输入总是要求正 值。随着基准值的变化,基准与目标的偏差越来越小,大选9输出的偏差绝对值 越来越小,当该绝对值小于运行人员输入的速率值时,小选6将取这个偏差绝对 值作为速率。因为程序执行时,是在每次循环(LOOP)时,将在基准值加上一 个速率值作为新的基准值,这样,在经过这一次循环后,基准值将正好等于目标 值。 2010-11-18 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机纯电调型DEH 伺服模块 EPDF-VC(三线制)系列模块 EDPF-VC0203(±10V)
EDPF-VC0213(4~20mA) EDPF-VC0223(±10mA) 特性 ������ 三线制 LVDT 测量接口 ������ 双 LVDT 测量通道 ������ LVDT 传感器故障自动检测 ������ 手操/自动开关 ������ 手操增/减量 ������ ±10V/4~20mA/-10~10mA 模拟量输出 ������ 接口与系统隔离电压:1500V ������ 硬件看门狗 ������ 支持热插拔 ������ 实时状态显示
EDPF-VC模块提供位移变送器接口,由变送器提供与位 移成线性比的电气信号,实现油动机控制。
EDPF-VC 卡上有通用终端通讯接口, 用户通过RS232 通讯电缆可在PCwin95,win98,winNT 超级终端软件里设置, 检查VC 模块功能,包括零点和满度调整、控制参数调整等 。 建立用户超级终端配置 在win95,win98,winNT 里,选“程序”->“附件”->“超级终端”, 双击Hypertrm,输入自定名称(如:VC_SET)“确定”,选“直 接连接到串口1”或“直接连接到串口2”(请检查RS232 通讯电 缆接在COM1 还是COM2)“确定”, 端口设置:波特率=9600,数据位=8,奇偶校验=无,停止位 =2,流控制=无。 启动终端,设置VC 模块 在“程序”->“附件”->“超级终端”中,双击VC_SET,进入终端程 序。 检查 RS232 通讯电缆两端分别与PC 机和VC 模块接好。 VC 模块上电,终端程序界面显示欢迎标题: 欢迎使用 EDPF2000-DEH 阀门控制模块(VC) 按?键在线帮助 您!
本型号汽轮机工作汽源可以使用单汽源,也可以使用双 汽源,使用单汽源运行的汽轮机只配备主汽门和低压喷 嘴,使用主机四段抽汽作为工作汽源;使用双汽源运行 的汽轮机配备有高(中)压主汽门、低压主汽门和高 (中)压喷嘴、低压喷嘴,高压汽源使用锅炉主蒸汽或 主机再热冷端蒸汽。
工作汽源使用双汽源的汽轮机,正常运行时采用主机四 段抽汽,低负荷或高负荷时采用再热冷端蒸汽,低压调速汽 门和高(中)压调速汽门有同一个油动机通过提板式配汽机 构控制,在给水泵汽轮机的启动过程中,在低压汽源不能满 足启动要求的情况下使用高压汽源启动给水泵汽轮机,在高 压汽源启动的条件下,至主机约15%主机额定符合式低压汽 开始能顶开低压主汽门前逆止阀,进入汽缸内,在约 15%~40%主机额定负荷范围内,高压汽与低压汽同时进入, 在约40%主机额定符合以上时,全部进入低压汽,高压主汽 门调门关断,高压汽不能进入,在低压气源能满足启动要求 的情况下也可以直接使用低压汽源启动给水泵汽轮机。
控制流程
本汽轮机采用数字电液控制系统(MEH),MEH接受 4~20mA锅炉给水信号和来自油动机LVDT的位移反馈信号, MEH产生的控制信号作用于电液伺服阀,使电液伺服阀开启 或关闭,进而控制油动机的行程,实现低压调速汽门和高( 中)压调速汽门开度的调节,控制汽轮机进汽量。
汽轮机纯电调型三线制阀门伺服模块
阀门控制输出信号 25/27 AO1+ 26/28 AO1-
LVDT1 输入 LVDT2 输入
LVDT 采用传感器方式时 接13,14,15(16,17,18)端子;
LVDT 采用变送器方式时 接19,20(21,22)端子。
工作原理
EDPF-VC系列模块是专门为DEH系统(Digital ElectroHydraulic Control System)设计的智能型伺服功放模块,模块 有LVDT(Linear Variable Differential Transducer 线性可变差动 传感器)检测电路,将LVDT位移信号变为数字信号。模块控 制器将控制信号与LVDT反馈信号比较,通过PI(微积分)运算 后控制功放输出,实现对油动机控制。
在低压主汽门前装有一只逆止阀,当四段抽汽升高到能 顶开逆止阀后,低压汽进入汽轮机,配汽机构自动的逐渐将 高压汽切断。汽轮机排汽由后汽缸的下缸排汽口通过排汽管 道引入主机凝汽器。
本汽轮机采用提板式配汽机构,通过同一个油动机控制 高(中),低压调速汽门。油动机由调节系统控制其运动量 ,油动机向下运动时,通过配汽机构杠杆先打开低压调节阀 ,低压调节阀开到一定程度再打开中压调节阀,四个低压调 节阀分别对应四个低压喷嘴组,按照主机符合的需要,通过 控制油动机的运动量,从而控制个调节阀的开度,控制汽轮 机的进汽量。
DG(Deadband PI Gain,>0:2000,1/10)=3 DR(Deadband PI Reset,>0:5000,sec)=100 PED(Position Error DeadBand,0:100,1/1000)=50 CET(Contingency Error Threshold,0:1000,1/1000)=1000 CD(Contingency Delay,0:60,sec)=60 ADZ1=0 ADF1=4095 ADZ2=0 ADF2=4095

在提示符#下按?显示如下(参数不同,显示不同): S(save to eeprom) L(load from eeprom) P(load preset value) N(run new parameter) C(pid clear 0) D(data sample) V(vc output,0:4095)=0 B(output bias[-100%:100%],-2047:+2047)=0 HI(pid out high limit [-100%:100%],-2047:+2047)=2047 LO(pid output low limit[-100%:100%],-2047:+2047)=0 VH(vc out high limit[100%:99%],0:33)=33 VL(vc out low limit[0%:1%],0:33)=33 VHO(vc high output,[0:5],V/mA,0:1024)=205 VLO(vc high output,[0:-5],V/mA,0:1024)=205 G(PI Gain,>0:2000,1/10)=5 R(PI Reset,>0:5000,sec)=10
相关文档
最新文档