七年级(下)第八章幂的运算专题复习
专题复习提升训练卷(幂的运算)-苏科版七年级数学下册【含答案】

—1—专题复习提升训练卷(幂的运算)-苏科版七年级数学下册一、选择题1、1纳米等于1米的10亿分之一,人的头发的直径约为6万纳米,用科学记数法表示一根头发的直径是 米.()A .B .C .D .7610-⨯6610-⨯5610-⨯4610-⨯2、下列运算正确的是 ()A .B .C .D . 632a a a ÷=224m m m +=325()a a a -= 3(2a 327)8a =3、下列计算正确的是( )A .(3×103)2=6×105B .36×32=384、在等式中,括号内的代数式应是( )()()512a a a ⋅-=A .B .C . D .6a ()6a - 6a -7()a -5、若,则m -n 等于( ).3122m m n n x y x y -++⋅99x y =A .0B .2C .4D .无法确定6、计算()2019×()2020的结果是( )125-522A .B .C .D .﹣2020125-512-1257、若m=,n=,则m 、n 的大小关系正确的是( )722483A .m >n B .m <n C .m=n D .大小关系无法确定8、如果,,,那么、、三数的大小为 0(2019)a =-1(0.1)b -=-25(3c -=-a b c ()A .B .C .D .a b c >>c a b >>a c b >>c b a>>9、若有意义,则取值范围是 01(3)2(24)x x ----x ()A .B .C .或D .且3x ≠2x ≠3x ≠2x ≠3x ≠2x ≠10、如果,那么用含m 的代数式表示n 为()31,29a a m n =+=+A .B .C .D .23n m=+2n m =2(1)2n m =-+22n m =+二、填空题—2—11、计算:_____()()4223-⋅=a a 12、当a ______时,(a -2)0=1.13、下列计算中,不正确的有( )①(ab 2)3=ab 6;②(3xy 2)3=9x 3y 6;③(﹣2x 3)2=﹣4x 6;④(﹣a 2m )3=a 6m .A .1个B .2个C .3个D .4个14、已知3m =15,3n =29,3m+n 的值为_____.15、若9×32m ×33m =322,则m 的值为_____.16、已知2x﹣6y+6=0,则2x ÷8y =_____.17、若,,则_____________.45m =23n=432m n -=18、计算:()2019×()﹣2020=_____.878719、用科学记数法表示-0.0000058,结果是_____________.20、若,则x 的值为 ()3211x x +-=三、解答题21、计算:(1) (2)()()524232)(a a a -÷⋅()()()34843222b a b a ⋅-+-(3) (4) ()123041323--⎪⎭⎫ ⎝⎛--+-()a b -()3a b -()5b a - (5). (6)211122(3)2()m m m m a a a a a +-+--+÷ 424422()()y y y y +÷--22、计算:—3—(1) ( ) ·() (2) ( -)÷(-)·(-)3a -42a -5p q 4p q 3p q 2(3)()÷()·()(≠0) (4) (-2)-(-)·(-2)2a bc 42ab c 3abc 2abc x 5x 3x 2(5)(-1)+2-()+(π-3.14) (6) (-0.125) ×(-1)×(-8) ×(-)20151-322-0122371335823、(1)已知4 × 16×64=4,求(-m )÷(m ·m )的值m m 212332(2)已知=4,=8,求代数式的值.m a n a 202023)33(--m n a(3)已知,求的值.3142x x -=x (4)已知,,求的值.23n a =35m a =69n m a -24、(1)若=2,=3,=4,试比较、、的大小a 55b 44c 33a b c (2)若.猜想与的大小关系;证明你的猜想.2510a b ==a b +ab 25、用简便方法计算:—4—(1) (2)333)31()32()9(⨯-⨯-3014225.0⨯-(3). (4).201520164(( 1.25)5⨯-1211318(3()(2)825⨯⨯-26、如果x n =y ,那么我们规定(x ,y )=n .例如:因为32=9,所以(3,9)=2.(1)[理解]根据上述规定,填空:(2,8)= ,(2,)= ;41(2)[说理]记(4,12)=a ,(4,5)=b ,(4,60)=c .试说明:a +b =c ;(3)[应用]若(m ,16)+(m ,5)=(m ,t ),求t 的值.27、材料:一般地,若且,那么叫做以为底的对数,记作,比如指数(0x a N a =>1)a ≠x a N log a x N =式可以转化为对数式,对数式可以转化为指数式.328=23log 8=62log 36=2636=根据以上材料,解决下列问题:(1)计算: , , ;2log 4=2log 16=2log 64=(2)观察(1)中的三个数,猜测: 且,,,并加以证log log a a M N +=(0a >1a ≠0M >0)N >明这个结论;(3)已知:,求和的值且.log 35a =log 9a log 27a (0a >1)a ≠—5—专题复习提升训练卷(幂的运算)-苏科版七年级数学下册一、选择题1、1纳米等于1米的10亿分之一,人的头发的直径约为6万纳米,用科学记数法表示一根头发的直径是 米.()A .B .C .D .7610-⨯6610-⨯5610-⨯4610-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法10n a -⨯不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【答案】解:由题意可得:6万,95160000106101000000000--⨯=⨯=⨯故选:.C 2、下列运算正确的是 ()A .B .C .D . 632a a a ÷=224m m m +=325()a a a -= 3(2a 327)8a =【分析】分别根据同底数幂的除法法则,合并同类项的法则,同底数幂的乘法法则以及积的乘方运算法则逐一判断即可.【答案】解:,故选项不合题意;633a a a ÷=A ,故选项不合题意;2222m m m +=B ,正确,故选项符合题意;325()a a a -= C ,故选项不合题意.3(2a 39)8a =D 故选:.C 3、下列计算正确的是( )A .(3×103)2=6×105B .36×32=38C .()4×34=﹣1D .36÷32=3331-【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.—6—【解答】解:A 、(3×103)2=9×106,故此选项错误;B 、36×32=38,正确;C 、()4×34=1,故此选项错误;31-D 、36÷32=34,故此选项错误;故选:B .4、在等式中,括号内的代数式应是( )()()512a a a ⋅-=A .B .C . D .6a ()6a - 6a -7()a -【答案】C【分析】先计算:再计算从而可得答案.()56,a a a -=- ()126,a a ÷-【详解】解:由 所以:括号内填的是: ()56,a a a -=- ()1266,a a a ∴÷-=-6.a -故选:.C 5、若,则m -n 等于( ).3122m m n n x y x y -++⋅99x y =A .0B .2C .4D .无法确定【答案】B 【分析】根据同底数幂的乘法法则运算,再结合等式性质,即可列出m 和n 的二元一次方程组,求解方程组即可得到答案.【解析】∵∴312299m m n n x y x y x y -++= +32199m n n m x y x y +++=∴ ∴ ,∴39219m n n m ++=⎧⎨++=⎩24n m =⎧⎨=⎩2m n -= 故选:B .6、计算()2019×()2020的结果是( )125-522A .B .C .D .﹣2020125-512-125—7—【分析】先根据积的乘方进行变形,再求出即可.【解答】解:原式=﹣()2019×()2020125512=﹣(×)2019×125512512=﹣1×=-,512512故选:B .7、若m=,n=,则m 、n 的大小关系正确的是( )722483A .m >nB .m <nC .m=nD .大小关系无法确定【答案】B【分析】把m=272化成=824,n=348化成924,根据8<9即可得出答案.【解析】解:∵m=,n=,∵8<9∴∴m<n ,2723244(2)28==2482244(3)39==242489<故选:B .8、如果,,,那么、、三数的大小为 0(2019)a =-1(0.1)b -=-25(3c -=-a b c ()A .B .C .D .a b c >>c a b >>a c b >>c b a>>【答案】解:,,, ,1a =11(1010b -=-=-239()525c =-=a c b ∴>>故选:.C 9、若有意义,则取值范围是 01(3)2(24)x x ----x ()B .B .C .或D .且3x ≠2x ≠3x ≠2x ≠3x ≠2x ≠【答案】解:若有意义,01(3)2(24)x x ----则且,解得:且.故选:.30x -≠240x -≠3x ≠2x ≠D—8—10、如果,那么用含m 的代数式表示n 为( )31,29a a m n =+=+A .B .C .D .23n m=+2n m =2(1)2n m =-+22n m =+【答案】C 【分析】由题意可知,,再将代入中,即可得出答案.31a m =-2(3)2a n =+31a m =-2(3)2a n =+【详解】∵,∴.∵,∴.31a m =+31a m =-92a n =+2(3)2a n =+将代入中,得:.31a m =-2(3)2a n =+2(1)2n m =-+故选:C .二、填空题11、计算:_____()()4223-⋅=a a 【答案】2a 【分析】根据幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加进行计算即可.【解析】解:原式,故答案为:.862a a a -=⋅=2a 12、当a ______时,(a -2)0=1.【答案】a ≠2【分析】根据零指数幂的定义进行求解即可.【详解】根据零指数幂的定义:任何非零数的零指数幂为1,得到,解得故答案为.20a -≠2a ≠2a ≠13、下列计算中,不正确的有( )①(ab 2)3=ab 6;②(3xy 2)3=9x 3y 6;③(﹣2x 3)2=﹣4x 6;④(﹣a 2m )3=a 6m .A .1个B .2个C .3个D .4个【答案】D 【分析】根据整数指数幂的运算法则进行计算并做出判断即可.【解析】解:①(ab 2)3=a 2b 6,故①错误;②(3xy 2)3=27x 3y 6,故②错误;—9—③(-2x 3)2=4x 6,故③错误;④(-a 2m )3=-a 6m ,故④错误.所以不正确的有4个.故选D.14、已知3m =15,3n =29,3m+n 的值为_____.【答案】435【分析】根据同底数幂乘法的逆运算进行求解即可.【详解】解:∵3m =15,3n =29,∴3m+n =3m ·3n =15×29=435,故答案为:435.15、若9×32m ×33m =322,则m 的值为_____.【答案】4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【解析】∵9×32m ×33m =32×32m ×33m =32+2m+3m =322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.16、已知2x﹣6y+6=0,则2x ÷8y =_____.【答案】18【分析】根据已知条件,先求出x﹣3y =﹣3,然后根据幂的乘方的逆运算和同底数幂的除法即可求出结论.【详解】解:2x﹣6y+6=0,2(x﹣3y )=﹣6,x﹣3y =﹣3,∴2x ÷8y =2x ÷23y =2x﹣3y =2﹣3=.故答案为:.181817、若,,则_____________.45m =23n=432m n -=【答案】2527【分析】根据同底数幂的除法运算法则以及幂的乘方运算法则.4343222m n m n -=÷22323(2)(2)4(2)m n m n =÷=÷23(4)(2)m n =÷23255327=÷=—10—【解答】解:故答案为:.4343222m n m n -=÷223(2)(2)m n =÷234(2)m n =÷23255327=÷=252718、计算:()2019×()﹣2020=_____.8787【答案】78【分析】根据负整数指数幂的定义以及同底数幂的乘法法则计算即可.【解析】解:()2019×()﹣2020=.8787201920201887778--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故答案为:.7819、用科学记数法表示-0.0000058,结果是_____________.【答案】65.810--⨯【分析】绝对值小于1的数用科学记数法表示为a ×10n ,与较大数的科学记数法不同的是n 是负整数,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】用科学记数法表示﹣0.0000058,a 为-5.8,数字5前面共有6个0,所以用科学记数法表示为:﹣5.8×10﹣6.故答案为:﹣5.8×10﹣6.20、若,则x 的值为()3211x x +-=【答案】-2; 1【详解】情况1: 解得:x =-2; 21030x x -≠⎧⎨+=⎩情况2:,解得:x =1;211x -=情况3:,解得:x =0;x +3=3(奇数),故不符合条件211x -=-故答案为:-2; 1三、解答题—11—21、计算:(1) (2)()()524232)(a a a -÷⋅()()()34843222b a b a ⋅-+-(3) (4) ()123041323--⎪⎭⎫ ⎝⎛--+-()a b -()3a b -()5b a - (5). (6)211122(3)2()m m m m a a a a a +-+--+÷ 424422()()y y y y +÷--解:(1)原式;)(1086a a a -÷⋅=)(1014a a-÷=4a -=(2)原式;128128816b a ba ⋅+=12824b a =(3)原式;49811-+-=875=(4)原式 .()a b -=()3a b -()5b a -()9b a -=(5)原式2222292m m m a a a a +=-+÷22292m m m a a a =-+210ma = (6).42442248444444()()y y y y y y y y y y y y +÷--=+÷-=+-=22、计算:(1) ( ) ·() (2) ( -)÷(-)·(-)3a -42a -5p q 4p q 3p q 2(3)()÷()·()(≠0) (4) (-2)-(-)·(-2)2a bc 42ab c 3abc 2abc x 5x 3x 2(5)(-1)+2-()+(π-3.14) (6) (-0.125) ×(-1)×(-8) ×(-)20151-322-01223713358解:(1)原式= ·(-)=-12a 10a 22a - (2)原式=3()q ρ- (3)原式=÷·==448cb a 363c b a 222c b a 234264238+-+-+-c b a73a c (4)原式==-28235432x x x ∙+-5x(5)原式=-1+-+1=2194181—12—(6)原式=()×[-()]×[-8]×()811235713538 =(×8)×8×(×)×=8112355375324523、(1)已知4 × 16×64=4,求(-m )÷(m ·m )的值m m 212332(2)已知=4,=8,求代数式的值.m a n a 202023)33(--m n a (3)已知,求的值.3142x x -=x (4)已知,,求的值.23n a =35m a =69n m a -解:(1)∵4 × 16×64=4,m m 21∴==,2+10m=42,∴m=4,22∙m 42m 62∙m m 6422++422∴∴原式=-÷=-m=一46m 5m (2)原式=(-33)m na a 23÷2020=[()÷()-33]n a 3m a 22020=()=(-1)=1334823-÷20202020(3),3142x x -= ,23122x x -∴=则,231x x =-解得:;1x =(4),,23n a = 35m a =.6969n m n m a a a -∴=÷2333()()n m a a =÷3335=÷27125=24、(1)若=2,=3,=4,试比较、、的大小a 55b 44c 33a b c (2)若.猜想与的大小关系;证明你的猜想.2510a b==a b +ab 解:(1)∵,b=3==,44114)3(1181 又∵<<,∴<C<.113211641181a b (2);a b ab +=—13—,210a = ①,210ab b ∴=又,510b = ②,510ab a ∴=①②得到,⨯251010ab ab a b⨯=⨯即,(25)10ab a b +⨯=故.a b ab +=25、用简便方法计算:(1)(2)333)31()32()9(⨯-⨯-3014225.0⨯-(3). (4).201520164(( 1.25)5⨯-1211318(3()(2)825⨯⨯-解:(1)原式;823132()9[(33==⨯-⨯-=(2)原式.3014225.0⨯-=44)41(1514-=⨯-=(3)201520164(( 1.25)5⨯-20152015455()(()544=⨯-⨯-2015455[((544=⨯-⨯-;51()4=-⨯-54=(4)原式111125258()()(8)8825=⨯⨯⨯-1125825(825=-⨯⨯.25=-26、如果x n =y ,那么我们规定(x ,y )=n .例如:因为32=9,所以(3,9)=2.(1)[理解]根据上述规定,填空:(2,8)= ,(2,)= ;41—14—(2)[说理]记(4,12)=a ,(4,5)=b ,(4,60)=c .试说明:a +b =c ;(3)[应用]若(m ,16)+(m ,5)=(m ,t ),求t 的值.【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算;(3)根据定义解答即可.【解答】解:(1)23=8,(2,8)=3,=,(2,)=﹣2,22-4141故答案为:3;﹣2;(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;(3)设(m ,16)=p ,(m ,5)=q ,(m ,t )=r ,∴m p =16,m q =5,m r =t ,∵(m ,16)+(m ,5)=(m ,t ),∴p +q =r ,∴m p +q =m r ,∴m p •m r =m t ,即16×5=t ,∴t =80.27、材料:一般地,若且,那么叫做以为底的对数,记作,比如指数(0x a N a =>1)a ≠x a N log a x N =式可以转化为对数式,对数式可以转化为指数式.328=23log 8=62log 36=2636=根据以上材料,解决下列问题:(1)计算: , , ;2log 4=2log 16=2log 64=(2)观察(1)中的三个数,猜测: 且,,,并加以证log log a a M N +=(0a >1a ≠0M >0)N >明这个结论;—15—(3)已知:,求和的值且.log 35a =log 9a log 27a (0a >1)a ≠【分析】(1)根据,,写成对数式;224=4216=6232=(2)设,,根据对数的定义可表示为指数式为:,,据此计算即log a M x =log a N y =x a M =y a N =可;(3)由,得,再根据同底数幂的乘法法则计算即可.log 35a =53a =【答案】解:(1),,,224= 4216=6232=;;2log 42∴=2log 164=2log 646=故答案为:2;4;6;(2)设,,log a M x =log a N y =则,, ,x a M =y a N =x y x y M N a a a +∴== 根据对数的定义,,log a x y MN +=即; 故答案为:.log log log a a a M N MN +=log a MN (3)由,得,log 35a =53a =,5510933a a a =⨯== 5551527333a a a a =⨯⨯== 根据对数的定义,,.∴log 910a =log 2715a =。
苏科版七年级数学下册第8章《幂的运算》高频易错题型优生辅导训练【含答案】

苏科版七年级数学下册第8章《幂的运算》高频易错题型优生辅导训练1.若一个整数72700…0用科学记数法表示为7.27×1010,则原数中“0”的个数为( )A.5B.8C.9D.102.下列运算一定正确的是( )A.(a2)3=a5B.a﹣2=C.a6÷a2=a3D.(ab2)2=ab4 3.下列计算:①﹣a3[(﹣a)2]3;②a9•(﹣a)3;③(﹣a2)3•(a3)2;④﹣[﹣a4] 3.其中,计算结果为﹣a12的有( ).A.①和③B.①和②C.②和③D.③和④4.﹣(﹣2)4+(﹣2)﹣3+(﹣)﹣3﹣(﹣)3的值( )A.7B.8C.﹣24D.﹣85.计算[﹣2(﹣x n﹣1)]3的结果是( )A.﹣2x3n﹣3B.﹣6n﹣1C.8x3n﹣3D.﹣8x3n﹣36.已知a=75,b=57,则下列式子中正确的是( )A.ab=1212B.ab=3535C.a7b5=1212D.a7b5=35357.若a=﹣0.22,b=0.2﹣2,c=,d=,则a、b、c、d的大小关系是( )A.a<b<c<d B.b<a<d<c C.a<d<c<b D.d<a<b<c 8.(﹣2)100+(﹣2)99等于( )A.299B.﹣299C.﹣2D.29.若x,y均为正整数,且2x+1•4y=128,则x+y的值为( )A.3B.5C.4或5D.3或4或510.计算(﹣a)2•(a2)3=( )A.a8B.﹣a8C.a7D.﹣a711.若a m=8,a n=2,则a m﹣2n的值是 .12.已知:(x+2)x+5=1,则x= .13.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是 .14.已知5x=30,6y=30,则等于 .15.计算(﹣9)3×(﹣)6×(1+)3= .16.2020年1月24日,中国疾控中心成功分离我国首株新型冠状病毒毒种,该毒种直径大约为90纳米(1纳米=0.000001毫米),数据“90纳米”用科学记数法表示为 毫米.17.计算:(﹣1)2020﹣(π﹣3.14)0的结果为 .18.计算(x﹣y)2(y﹣x)3(x﹣y)= (写成幂的形式).19.计算:42019×(﹣0.25)2020= .20.若3x+2=36,则= .21.对于正整数n,2n+4﹣2n,除以30的商等于 .22.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.23.“若a m=a n(a>0且a≠1,m、n是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果27x=39,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)如果3x+2•5x+2=153x﹣8,求x的值.24.我们约定:a★b=10a×10b,例如3★4=103×104=107.(1)试求2★5和3★17的值;(2)猜想:a★b与b★a的运算结果是否相等?说明理由.25.(1)若3m=6,9n=2,求32m﹣4n+1的值;(2)若10m=20,10n=,求9m÷32n的值.26.(x4)2+(x2)4﹣x(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)27.小松学习了“同底数幂的除法”后做这样一道题:若(2x﹣1)2x+1=1,求x的值.小松解答过程如下:解:∵1的任何次幂为1,∴2x﹣1=1,即x=1,故(2x﹣1)2x+1=13=1,∴x=1.老师说小松考虑问题不全面,聪明的你能帮助小松解决这个问题吗?请把他的解答补充完整.28.已知10x=a,5x=b,求:(1)50x的值;(2)2x的值;(3)20x的值.(结果用含a、b的代数式表示)29.化简:(﹣a2)n﹣2•(﹣a n+1)3•a+a3n•[(﹣a2)n+(﹣a n)2](n为大于2的正整数)参考答案1.解:用科学记数法表示为7.27×1010的原数为72700000000,所以原数中“0”的个数为8,故选:B.2.解:A.(a2)3=a6,原计算错误,故本选项不合题意;B.a﹣2=,原计算正确,故本选项合题意;C.a6÷a2=a4,原计算错误,故本选项符合题意;D.(ab2)2=a2b4,原计算错误,故本选项不合题意.故选:B.3.解:①﹣a3[(﹣a)2]3=﹣a3•(﹣a6)=a9;②a9•(﹣a)3=a9•(﹣a3)=﹣a12③(﹣a2)3•(a3)2=(﹣a6)•a6=﹣a12;④﹣[﹣a4]3=﹣(﹣a12)=a12,∴结果为﹣a12的有②和③.故选:C.4.解:﹣(﹣2)4+(﹣2)﹣3+(﹣)﹣3﹣(﹣)3=﹣16++﹣(﹣)=﹣16﹣﹣8+=﹣24故选:C.5.解:原式=(﹣2)3(﹣x n﹣1)3=﹣8•(﹣x3n﹣3)=8x3n﹣3,故选:C.6.解:∵a=75,b=57,∴ab=75×57≠1212,ab≠3535,a7b5=(75)7×(57)5=735×535=(7×5)35=3535,而a7b5≠1212,∴选项A、B、C都不正确;只有选项D正确;故选:D.7.解:∵a=﹣0.22=﹣0.04,b=0.2﹣2=25,c==4,d==1,∵﹣0.04<1<4<25,∴a<d<c<b.故选:C.8.解:原式=(﹣2)×(﹣2)99+(﹣2)99=(﹣2)99×(﹣2+1)=299.故选:A.9.解:∵2x+1•4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6∵x,y均为正整数,∴或∴x+y=5或4,故选:C.10.解:(﹣a)2•(a2)3=a2•a6=a8,故选:A.11.解:∵a m=8,a n=2,∴a m﹣2n=a m÷a2n=a m÷(a n)2=8÷22=2,故答案为:2.12.解:根据0指数的意义,得当x+2≠0时,x+5=0,解得x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故填:﹣5或﹣1或﹣3.13.解:∵25a•52b=56,4b÷4c=4,∴52a+2b=56,4b﹣c=4,∴a+b=3,b﹣c=1,两式相减,可得a+c=2,∴a2+ab+3c=a(a+b)+3c=3a+3c=3×2=6,故答案为:6.14.解:∵5x=30,6y=30,∴5xy=(5x)y=30y=(5×6)y=5y×6y,∴=5xy﹣y=6y=30=5x,∴5xy﹣y﹣x=1=50∴xy﹣y﹣x=0,∴xy=x+y,∴=1.故答案为:1.15.解:(﹣9)3×(﹣)6×(1+)3,=(﹣9)3×[(﹣)2]3×()3,=[(﹣9)××]3,=(﹣6)3,=﹣216.16.解:因为1纳米=0.000001毫米,所以90纳米=90×10﹣6毫米=9×10﹣5毫米,故答案为:9×10﹣5.17.解:(﹣1)2020﹣(π﹣3.14)0=1﹣1=0.故答案为:0.18.解:(x﹣y)2(y﹣x)3(x﹣y)=﹣(x﹣y)2(x﹣y)3(x﹣y)=﹣(x﹣y)6.故答案为:﹣(x﹣y)6.19.解:(﹣0.25)2020×42019=(﹣0.25)2019×42019×(﹣0.25)=(﹣0.25×4)2019×(﹣0.25)=﹣1×(﹣0.25)=0.25.故答案为:0.25.20.解:原等式可转化为:3x×32=36,解得3x=4,把3x=4代入得,原式=2.故答案为:2.21.解:(2n+4﹣2n)÷30=(2n×24﹣2n)÷30=(2n×16﹣2n)÷30=2n×(16﹣1)÷30=2n×15÷30=2n÷2=2n﹣1.故答案为:2n﹣1.22.解:(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.23.解:(1)27x=(33)x=33x=39,∴3x=9,解得:x=3.(2)2÷8x•16x=2÷(23)x•(24)x=2÷23x•24x=21﹣3x+4x=25,∴1﹣3x+4x=5,解得:x=4.(3)3x+2•5x+2=(3×5)x+2=15x+2=153x﹣8,∴x+2=3x﹣8,解得:x=5.24.解:(1)2★5=102×105=107,3★17=103×1017=1020;(2)a★b与b★a的运算结果相等,a★b=10a×10b=10a+bb★a=10b×10a=10b+a,∴a★b=b★a.25.解:(1)∵3m=6,9n=2,∴32m﹣4n+1=32m÷34n×3=32m÷(32)2n×3=32m÷92n×3=(3m)2÷(9n)2×3=36÷4×3=27;(2)∵10m=20,10n=,∴10m÷10n=20÷=100,即10m﹣n=100,∴m﹣n=2,∴9m÷32n=9m÷9n=9m﹣n=81.26.解:(x4)2+(x2)4﹣x(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x9﹣x8﹣x8=﹣x927.解:(2x﹣1)2x+1=1,分三种情况:①当2x﹣1=1时,x=1,此时(2x﹣1)2x+1=13=1,符合题意;②当2x+1=0,x=,此时(2x﹣1)2x+1=(﹣2)0=1,符合题意;③当x=0时,原式=(﹣1)1=﹣1,不合题意.综上所述:x=1或x=.28.解:(1)50x=10x×5x=ab;(2)2x===;(3)20x===.29.解:当n为大于2的奇数时,原式=﹣a2(n﹣2)•(﹣a3n+3)•a+a3n•[﹣a2n+a2n],=a2n﹣4+3n+3+1,=a5n;当n为大于2的偶数时,原式=a2(n﹣2)•(﹣a3n+3)•a+a3n•[a2n+a2n],=﹣a2n﹣4+3n+3+1+2a5n,=﹣a5n+2a5n,=a5n;综上所述,原式=a5n.。
苏科版数学七年级下册第八章《幂的运算》复习教案

第八章 幂的运算教学目标:1、能理解并正确运用幂的有关运算性质进行计算.2、通过具体的例子培养学生渗透转化、化归等思想,发展学生推理能力. 教学重点与难点:正确运用幂的运算性质进行计算.教学过程:一、知识点1、m n m n m n a a a a a +∙==∙2、()n n n ab a b =∙3、()n m mn a a = 4、m n m n a a a -=÷ (a≠0)5、01a = (a≠0)6、1n a n a-= (a≠0) 7、科学记数法:写成10n a ⨯ (1≤a <10,n 为整数)二、例题讲解例1、计算:()()52p q q p -∙-方法一:解:原式=()()25p q p q -∙--⎡⎤⎣⎦=()()52p q p q -∙-=()7p q - 方法二:解:原式= ()()52q p q p --∙-⎡⎤⎣⎦= ()()52q p q p --∙-= ()7q p --例2、计算:()1001010.254⨯解:原式= ()10010010.254+⨯= ()()1001000.2544⨯⨯= ()1001000.2544⨯⨯= ()1000.2544⨯⨯= 10014⨯= 14⨯= 4 例3、已知2,3m n a a ==,求32m n a +的值解:∵()()323232m n m n m n a a a a a +=∙=∙,而 2,3m n a a == ∴3232238972m n a +=∙==⨯例4、将一根1m 长的细铁丝,用高强度、超薄的刀进行分割,第1次切去一半,第2次又切去剩下的一半,第3次也是切去剩下的一半,按此规律切下去,第10次后,剩下的铁丝长度为多少?如果有可能的话,请你计算一下,第20次后剩下的铁丝长度是多少纳米?解:切了第10次后,剩下的铁丝长度为1102m ,既11024m ,约为0.0009766 m , 切了20次后,剩下的铁丝长度为1202m ,既11048576m ,约为0.000000954m , 记作79.5410-⨯m ,因为 1 nm=910-m ,故剩下的铁丝长度为799.541010954--=⨯÷m三、练一练1、计算下列各题()()()3252312a a a a -∙---()()()5223222n n n n ⎡⎤⎡⎤--∙∙⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦÷()()212310328172-⎛⎫---⎡⎤---- ⎪⎢⎥⎣⎦⎝⎭⨯⨯⨯()()()322220433332005---⨯--÷⨯。
第八章:幂的运算全章复习教案 2020—2021学年苏科版数学七年级下册

一对一辅导教案
学生姓名 性别 年级 学科 授课教师
上课时间 年 月 日
第( )次课 共( )次课
课时: 课时
教学课题
幂的运算复习
教学目标 1. 幂的运算性质的正确应用
2. 逆用法则进行计算 3. 混合运算
教学重点与难点
重点:
教学过程: 【知识梳理】
1、同底数幂的乘法法则 n m n m a a a +=⨯(m 、n 是正整数)
2、幂的乘方法则
()m n
n
m a a =(m 、n 是正整数)
3、积的乘方法则
()n n n
b a ab =(n 是正整数)
4、同底数幂的除法法则 n
m n m a a a -= (m 、n 是正整数,m >n )
5、推广
()np mp p
n m
b a b a
= (m 、n 、p 是正整数)
6、零指数和负指数法则=0a 1
()0≠a
=
-n a n
a 1
(0≠a ,n 是正整数)
7、科学记数法 n
a N 10⨯=(1≤a <10,n 为整数) 数零法
3
5
a a = C. 的是( )3
a C. (-()
2
x -,结果正确的是( B. 6
x C. 、下列各式中,正确的个数有:(8x ②x 12
a
()4
42a a +()2
2a - ()()
3
2
2a a a --
1001
1000
35⎛⎫⨯- ⎪⎝⎭
70
110
127⎛⎫⨯ ⎪⎝⎭
9y
的值; 8y
的值。
苏科版数学七年级下册 第八章 幂的运算 复习 讲义设计(无答案)

整章复习知识点1、m n m n m n a a a a a +•==• 2、()n n n ab a b =• 3、()n m mn a a = 4、mn m n a a a -=÷ (a ≠0)5、01a = (a ≠0) 6、1n a n a -= (a ≠0) 7、科学记数法:写成10n a ⨯ (1≤a <10,n 为整数)一、选择题。
1.下列各式中错误的是( )A ()[]()623y x y x -=- B.84216)2(a a =- C.363227131n m n m -=⎪⎭⎫ ⎝⎛- D.6333)(b a ab -=- 2.若2=m a ,3=n a ,则n m a +等于 ( ) A.5 B.6 C.8 D.93.在等式⋅⋅23a a ( )11a =中,括号里填入的代数式应当是 ( )A.7aB.8aC.6aD.3a4.计算m m 525÷的结果为 ( )A.5 B.20 C.m 5 D.m205. 下列4个算式中,计算错误的有 ( )(1)()()-=-÷-24c c 2c (2)336)()(y y y -=-÷-(3)303z z z =÷(4)44a a a m m =÷ A.4个 B.3个 C.2个 D.1个6.如果(),990-=a ()11.0--=b ,235-⎪⎭⎫ ⎝⎛-=c ,那么c b a ,,三数的大小为( ) A.c b a >> B.b a c >> C.b c a >> D.a b c >>7.计算3112)(n n x x x +-⋅⋅的结果为( )A.33+n x B.36+n x C.n x 12 D.66+n x8.已知 n 是大于1的自然数,则 ()()11+--⋅-n n c c 等于 ( ) A.()12--n c B.nc 2- C.n c2- D.n c 2 9. 下列命题( )是假命题. A. (a -1)0 = 1 a ≠1 B. (-a )n = - an n 是奇数 C. n 是偶数 , (- a n ) 3 = a 3n D. 若a ≠0 ,p 为正整数, 则a p =1/a –p10、 [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( )A. x -10B. - x-10 C. x -12 D. - x -12 二、填空:(1)=+02)01.0(x (2)=-0)(y x (3)=+-2)(b a(4)=--122)(y x (5)36)]2([)2(x x -÷-=三、计算。
苏教版七年级数学下册 复习《幂的运算》

下学期七年级数学复习《幂的运算》一.选择题(共10小题)1.下列运算正确的是()A.x3+x3=2x6B.(﹣x5)4=x20C.x m•x n=x mn D.x8÷x2=x42.计算3n•(﹣9)•3n+2的结果是()A.﹣32n﹣2B.﹣3n+4C.﹣32n+4D.﹣3n+63.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;124.计算(a3)2•a2的结果是()A.a7B.a8C.a10 D.a115.下列运算中,正确的是()A.x2+x4=x6B.(﹣x3)2=x6 C.2a+3b=5ab D.x6÷x3=x2(x≠0)6.若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或57.若10y=5,则102﹣2y等于()A.75 B.4 C.﹣5或5 D.8.计算(﹣a x﹣1)4结果是()A.a4x﹣1B.﹣a4x﹣4C.a4x﹣4D.﹣a4x﹣19.已知:2m=1,2n=3,则2m+2n=()A.9 B.8 C.7 D.610.我们知道:1纳米=米.一个纳米粒子的直径是35纳米,它等于()米(请用科学记数法表示).A.3.5×10﹣9B.3.5×10﹣10C.35×10﹣9D.3.5×10﹣8二.填空题(共8小题)11.若(m﹣3)m=1成立,则m的值为.12.已知x a=3,x b=5,则x2a﹣b=.13.若a2n=5,b2n=16,则(ab)n=.14.计算:(2ab2)3=.15.若0.000204用科学记数法可以记为2.04×10n,则n=.16.当3m+2n=4时,则8m•4n=.17.已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3•(a﹣b)3的值是.18.一批志愿者组成了一个“爱心团队”,专门到全国各地巡回演出,以募集爱心基金.第一个月他们就募集到资金1万元.随着影响的扩大,第n(n≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次完成突破10万元时,相应的n的值为.(参考数据:1.25≈2.5,1.26≈3.0,1.27≈3.6)三.解答题(共8小题)19.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.20.阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.21.若m、n满足|m﹣3|+(n+2016)2=0,求m﹣1+n0的值.22.已知:2x+3y﹣4=0,求4x•8y的值.23.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.24.已知a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n﹣k的值;(2)求k﹣3m﹣n的值.25.为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.26.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.参考答案与试题解析一.选择题(共10小题)1.下列运算正确的是()A.x3+x3=2x6B.(﹣x5)4=x20C.x m•x n=x mn D.x8÷x2=x4【分析】根据合并同类项,积的乘方,同底数幂的乘法、除法,即可解答.【解答】解:A.x3+x3=2x3,故错误;B.正确;C.x m•x n=x m+n,故错误;D.x8÷x2=x6,故错误;故选:B.【点评】本题考查了合并同类项,积的乘方,同底数幂的乘法、除法,解决本题的关键是熟记合并同类项,积的乘方,同底数幂的乘法、除法的法则.2.计算3n•(﹣9)•3n+2的结果是()A.﹣32n﹣2B.﹣3n+4C.﹣32n+4D.﹣3n+6【分析】根据同底数幂的乘法法则,可得答案.【解答】解:原式=﹣3n•32•3n+2=﹣32n+4,故选:C.【点评】本题考查了同底数幂的乘法,注意运算符号,再化成同底数幂的乘法,同底数幂的乘法底数不变指数相加.3.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n即可.【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.【点评】本题考查了积的乘方的运用,关键是检查学生能否正确运用法则进行计算,题目比较好,但是一道比较容易出错的题目.4.计算(a3)2•a2的结果是()A.a7B.a8C.a10D.a11【分析】根据同底数幂的乘法的性质,幂的乘方的性质,即可解答.【解答】解:(a3)2•a2=a6•a2=a8,故选:B.【点评】本题考查同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.5.下列运算中,正确的是()A.x2+x4=x6B.(﹣x3)2=x6 C.2a+3b=5ab D.x6÷x3=x2(x≠0)【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为x2•x4=x6,故错误;B、(﹣x3)2=x6,正确;C、2a与3b不是同类项,不能合并,故错误;D、x6÷x3=x3,故错误.故选:B.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6.若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5【分析】先把2x+1•4y化为2x+1+2y,128化为27,得出x+1+2y=7,即x+2y=6因为x,y均为正整数,求出x,y,再求了出x+y.,【解答】解:∵2x+1•4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6∵x,y均为正整数,∴或∴x+y=5或4,故选:C.【点评】本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是化为相同底数的幂求解.7.若10y=5,则102﹣2y等于()A.75 B.4 C.﹣5或5 D.【分析】根据同底数幂的除法,幂的乘方,即可解答.【解答】解:102﹣2y=102÷102y=102÷(10y)2=100÷52=4,故选:B.【点评】本题考查了同底数幂的除法,幂的乘方,解决本题的关键是同底数幂的除法,幂的乘方的公式的逆运用.8.计算(﹣a x﹣1)4结果是()A.a4x﹣1B.﹣a4x﹣4C.a4x﹣4D.﹣a4x﹣1【分析】根据幂的乘方,底数不变,指数相乘,即可解答.【解答】解:(﹣a x﹣1)4=a(x﹣1)×4=a4x﹣4,故选:C.【点评】本题考查了幂的乘方,解决本题的关键是熟记法则.9.已知:2m=1,2n=3,则2m+2n=()A.9 B.8 C.7 D.6【分析】根据同底数幂的乘法、积的乘方,即可解答.【解答】解:2m+2n=2m•22n=2m•(2n)2=1×32=9.故选:A.【点评】此题主要考查了同底幂的乘法,以及幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.10.我们知道:1纳米=米.一个纳米粒子的直径是35纳米,它等于()米(请用科学记数法表示).A.3.5×10﹣9B.3.5×10﹣10C.35×10﹣9D.3.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1纳米=米.∴35纳米=35×米=3.5×10﹣8米.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二.填空题(共8小题)11.若(m﹣3)m=1成立,则m的值为2,4,0.【分析】根据乘方的意义,可得答案.【解答】解:当m=2时,(m﹣3)m=(﹣1)2=1;当m=4时,(m﹣3)m=13=1;当m=0时,(m﹣3)m=(﹣3)0=1,故答案为:2,4,0.【点评】本题考查了零指数幂,利用了零指数幂,负数的偶数次幂,1的任何次幂.12.已知x a=3,x b=5,则x2a﹣b=.【分析】根据同底数幂的除法,即可解答.【解答】解:x2a﹣b=.故答案为:.【点评】本题考查了同底数幂的除法,解决本题的关键是熟记同底数幂的除法公式.13.若a2n=5,b2n=16,则(ab)n=.【分析】根据幂的乘方与积的乘方,即可解答.【解答】解:∵a2n=5,b2n=16,∴(a n)2=5,(b n)2=16,∴,∴,故答案为:.【点评】本题考查了幂的乘方与积的乘方,解决本题的关键是注意公式的逆运用.14.计算:(2ab2)3=8a3b6.【分析】根据积的乘方,即可解答.【解答】解:(2ab2)3=8a3b6,故答案为:8a3b6.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方公式.15.若0.000204用科学记数法可以记为2.04×10n,则n=﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000204=2.04×10﹣4=2.04×10n,∴n=﹣4,故答案为:﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.当3m+2n=4时,则8m•4n=16.【分析】根据幂的乘方与积的乘方,即可解答.【解答】解:8m•4n=(23)m•(22)n=23m•22n=23m+2n∵3m+2n=4,∴原式=24=16.故答案为:16.【点评】本题考查了幂的乘方与积的乘方,解决本题的关键是熟记公式.17.已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3•(a﹣b)3的值是1000.【分析】所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.18.一批志愿者组成了一个“爱心团队”,专门到全国各地巡回演出,以募集爱心基金.第一个月他们就募集到资金1万元.随着影响的扩大,第n(n≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次完成突破10万元时,相应的n的值为14.(参考数据:1.25≈2.5,1.26≈3.0,1.27≈3.6)【分析】由题意得第一个月募集到资金1万元,则第二个月募集到资金1(1+20%)万元,第三个月募集到资金1(1+20%)2万元,…,第n个月募集到资金1(1+20%)n﹣1万元,根据1.26×1.27=10.8>10,可得n﹣1=6+7,解得n=14.【解答】解:第一个月募集到资金1万元,则第二个月募集到资金1(1+20%)万元,第三个月募集到资金1(1+20%)2万元,…,第n个月募集到资金1(1+20%)n﹣1万元,由题意得:1(1+20%)n﹣1>10,1.2 n﹣1>10,∵1.26×1.27=10.8>10,∴n﹣1=6+7=13,n=14,故答案为:14.【点评】此题主要考查了增长率问题,以及同底数幂的乘法,关键是根据题意列出第n个月募集到资金,再根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加计算即可.三.解答题(共8小题)19.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.【分析】(1)先根据同底数幂乘法运算的逆运算得出a x+y=a x•a y=25,根据a x=5可得a y=5,代入即可求解;(2)将原式利用同底数幂乘法运算的逆运算进行变形为(10α)2•(10β)2,即可求解.【解答】解:(1)∵a x+y=a x•a y=25,a x=5,∴a y=5,∴a x+a y=5+5=10;(2)102α+2β=(10α)2•(10β)2=52×62=900.【点评】本题主要考查的是正数指数幂的你运算,掌握整数指数幂的运算公式是解题的关键.20.阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.【分析】分为2x+3=1,2x+3=﹣1,x+2016=0三种情况求解即可.【解答】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x=﹣1.②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x=﹣2.③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x=﹣2016.综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.【点评】本题主要考查的是零指数幂的性质、有理数的乘方,分类讨论是解题的关键.21.若m、n满足|m﹣3|+(n+2016)2=0,求m﹣1+n0的值.【分析】首先根据|m﹣3|+(n+2016)2=0,可得|m﹣3|=0,n+2016=0,据此分别求出m、n的值各是多少;然后把求出的m、n的值代入m﹣1+n0,求出算式的值是多少即可.【解答】解:∵|m﹣3|+(n+2016)2=0,∴|m﹣3|=0,n+2016=0,解得m=3,n=﹣2016,∴m﹣1+n0=3﹣1+(﹣2016)0=+1=1答:m﹣1+n0的值是1.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了偶次方的非负性质的应用,要熟练掌握.22.已知:2x+3y﹣4=0,求4x•8y的值.【分析】首先根据2x+3y﹣4=0,求出2x+3y的值是多少;然后根据4x•8y=22x•23y=22x+3y,求出4x•8y的值是多少即可.【解答】解:∵2x+3y﹣4=0,∴2x+3y=4,∴4x•8y=22x•23y=22x+3y=24=16,∴4x•8y的值是16.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.23.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.【分析】(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.【解答】解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.【点评】本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.24.已知a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n﹣k的值;(2)求k﹣3m﹣n的值.【分析】(1)首先求出a3m=23,a2n=42=24,a k=32=25,然后根据同底数幂的乘法、除法法则计算即可;(2)首先求出a k﹣3m﹣n的值是1;然后根据a0=1,求出k﹣3m﹣n的值是多少即可.【解答】解:(1)∵a3m=23,a2n=42=24,a k=32=25,∴a3m+2n﹣k=a3m•a2n÷a k=23•24÷25=23+4﹣5=22=4;(2)∵a k﹣3m﹣n=25÷23÷22=20=1=a0,∴k﹣3m﹣n=0,即k﹣3m﹣n的值是0.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握.(2)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).25.为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.【分析】仔细阅读题目中示例,找出其中规律,求解本题.【解答】解:根据题中的规律,设S=1+5+52+53+ (52013)则5S=5+52+53+…+52013+52014,所以5S﹣S=4S=52014﹣1,所以S=.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.26.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.【分析】(1)根据已知条件可得a3=2,代入可求p﹣q的值;(2)根据作差法得到p﹣(a3+)=2﹣n﹣,分三种情况:当n=1时;当n=2时;当n≥3时进行讨论即可求解.【解答】解:(1)∵a3+a﹣3=p①,a3﹣a﹣3=q②,∴①+②得,2a3=p+q=4,∴a3=2;①﹣②得,p﹣q=2a﹣3==1.(2)∵q2=22n+﹣2(n≥1,且n是整数),∴q2=(2n﹣2﹣n)2,∴q=2n﹣2﹣n,又由(1)中①+②得2a3=p+q,a3=(p+q),①﹣②得2a﹣3=p﹣q,a﹣3=(p﹣q),∴p2﹣q2=4,p2=q2+4=(2n+2﹣n)2,∴p=2n+2﹣n,∴a3+a﹣3=2n+2﹣n③,a3﹣a﹣3=2n﹣2﹣n④,∴③+④得2a3=2×2n,∴a3=2n,∴p﹣(a3+)=2n+2﹣n﹣2n﹣=2﹣n﹣,当n=1时,p>a3+;当n=2时,p=a3+;当n≥3时,p<a3+.【点评】考查了负整数指数幂:a﹣p=(a≠0,p为正整数),关键是加减消元法和作差法的熟练掌握.。
苏科版七年级数学下册第8章 幂的运算 复习课(1) (共18张PPT)
认识 幂 an 指数
底数
……
同底
有 理 数 的
乘方 结果 幂
运算
乘
不同底 同底
除
不同底
转化 转化
运 算
乘方 积的乘方
……
幂的乘方
应用 科学记数法 (简明)
a×10n (1≤a<10,n是整数)
……
……
乘
运算性质:am·an=am+n 逆用: am+n= am·an
有
理 数
乘方 结果 幂
的
运
算
……
乘方
幂的 运算性质: (am )n = amn 乘方 逆用: amn =(am )n = (an) m
应用 科学记数法 a×10n (1≤a<10,n是整数)
转化
指数不同的幂
指数相同的幂
转化
一般底数的幂
特殊底数的幂
……
懂得如何避开问题的人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在家里看到的 永远是家,走出去看到的才是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观念是上策。 财富买不来好观念,好观念能换来亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵支配心灵。 人与人之间的差别,主要差在两耳之间的那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路,人失意的 时候要找一条出路!孩子贫穷是与父母的有一定的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选择什么态度; 有什么态度,就会有什么行为;有什么行为,就产生什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下 一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑制,会变成生活的必需品,不良的习惯 随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的时侯,一 定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就 永远不会失去自己!这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的 是智慧!世上本无移山之术,惟一能移山的方法就是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!学一分退让,讨一分便 宜;增一分享受,减一分福泽。念头端正,福星临,念头不正,善人行善,从乐入乐,从明入明;行恶,从苦入苦,骨宜刚,气宜柔,志宜大,胆宜小,心宜虚,言宜实, 慧宜增,福宜惜,虑不远,忧亦近。人之所以痛苦,在于追求错误的东西。你目前拥有的,都将随着你的而成为他人的。那为何不现在就给真正需要的人呢?如得意不宜重 往,凡做事应有余步。我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬得起来。见己不是,万善之门。见人不是,诸恶之根。为了向别人、向世界证明自己而 努力拼搏,而一旦你真的取得了成绩,才会明白:人无须向别人证明什么,只要你能超越自己。没有哪种教育能及得上逆境。如果你想成功,那么请记住:遗产为零、诚实 第一、学习第二、礼貌第三、刻苦第四、精明第五。任何的限制,都是从自己的内心开始的。失败只是暂时停止成功,假如我不能,我就一定要;假如我要,我就一定能! 无论你如何为他人着想,烦你的人眼里,你就是居心叵测;不管你怎样据理力争,不懂你的人心里,你就是胡搅蛮缠。最后你会发现,有些事不是你做错了,而是你遇错了 人;有些人不是不理解你,而是根本不想懂你。不管怎样,生活还是要继续向前走去。有的时候伤害和失败不见得是一件坏事,它会让你变得更好,孤单和失落亦是如此。 每件事到最后一定会变成一件好事,只要你能够走到最后。工资是发给日常工作的人,高薪是发给承担责任的人,奖金是发给做出成绩的人,股权是分给能干忠诚的人,荣 誉是颁给有理想抱负的人,辞退信将送给没结果还耍个性的人,这里一定有个你。内心想成为什么样的人,就会努力成为这样的人,做你想做的那种人。与其指望遇到一个 谁,不如指望自己能够吸引那样的人;与其指望每次失落的时候会有正能量出现温暖自己,不如指望自己变成一个正能量满满的人;与其担心未来,不如现在好好努力。彩 虹绚烂多姿,是在与狂风暴雨争斗之后;枫叶似火燃烧,是在与秋叶的寒霜争斗之后;雄鹰的展翅高飞,是在与坠崖的危险争斗之后。他们保持着奋斗的姿态,才铸就了他 们的成功。有能力的人影响别人,没能力的人受人影响;不是某人使自己烦恼不安,而是自己拿某人的言行来烦恼自己;树一个目标,一步步前行,做好自己就好。雄鹰, 不需鼓掌,也在飞翔;小草,没人心疼,也在成长;野花,没人欣赏,也在芬芳;做事不需人人都理解,只需尽心尽力;做人不需人人都喜欢,只需坦坦荡荡。努力到无能 为力,拼搏到感动自己;吃过的苦,受过的累,会照亮未来的路;没有年少轻狂,只有胜者为王。真正成功的人生,不在于成就的大小,而在于你是否努力地去实现自我, 喊出自己的声音,走出属于自己的道路。选一个方向,定一个时间;剩下的只管努力与坚持,时间会给我们最后的答案。许多人企求着生活的完美结局,殊不知美根本不在 结局,而在于追求的过程。慢慢的才知道:坚持未必就是胜利,放弃未必就是认输,。给自己一个迂回的空间,学会思索,学会等待,学会调整。人生没有假设,当下即是 全部。背不动的,放下了;伤不起的,看淡了;想不通的,不想了;恨不过的,抚平了。在比夜更深的地方,一定有比夜更黑的眼睛。一切伟大的行动和思想,都有一个微 不足道的开始。从来不跌倒不算光彩,每次跌倒后能再站起来,才是最大的荣耀。这个世界到处充满着不公平,我们能做的不仅仅是接受,还要试着做一些反抗。一个最困 苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。有些人,因为陪你走的时间长了,你便淡然了,其实是他们给你撑起了生命的天空;有些人,分开了, 就忘了吧,残缺是一种大美。照自己的意思去理解自己,不要小看自己,被别人的意见引入歧途。没人能让我输,除非我不想赢!花开不是为了花落,而是为了开的更加灿 烂。随随便便浪费的时间,再也不能赢回来。不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。当你决定坚持一件事 情,全世界都会为你让路。只有在开水里,茶叶才能展开生命浓郁的香气。别想一下造出大海,必须先由小河川开始。不要让未来的你,讨厌现在的自己,困惑谁都有,但 成功只配得上勇敢的行动派。人生最大的喜悦是每个人都说你做不到,你却完成它了!如果你真的愿意为自己的梦想去努力,最差的结果,不过是大器晚成。不忘初��
苏教版七年级下幂的运算复习
幂的运算复习【知识整理】:一、同底数幂的乘法(重点)1.运算法则: 同底数幂相乘,底数不变, 指数相加。
用式子表示为: (m 、n 是正整数)2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘, 即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意: (1) 同底数幂的乘法中, 首先要找出相同的底数, 运算时, 底数不变, 直接把指数相加, 所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时, 如果底数不同, 先设法将其转化为相同的底数, 再按法则进行计算.二、同底数幂的除法(重点)1.同底数幂的除法同底数幂相除, 底数不变, 指数相减. 公式表示为: . 2.零指数幂的意义任何不等于0的数的0次幂都等于1.用公式表示为: . 3.负整数指数幂的意义任何不等于0的数的-n(n 是正整数)次幂, 等于这个数的n 次幂的倒数, 用公式表示为 4.绝对值小于1的数的科学计数法对于一个小于1且大于0的正数, 也可以表示成 的形式, 其中 . 注意点:(1) 底数 不能为0, 若 为0, 则除数为0, 除法就没有意义了; (2) 是法则的一部分, 不要漏掉. (3) 只要底数不为0, 则任何数的零次方都等于1. 三、幂的乘方(重点)幂的乘方, 底数不变, 指数相乘. 公式表示为: . 注意点:(1) 幂的乘方的底数是指幂的底数, 而不是指乘方的底数.(2) 指数相乘是指幂的指数与乘方的指数相乘, 一定要注意与同底数幂相乘中“指数相加”区分开. 四、积的乘方运算法则: 两底数积的乘方等于各自的乘方之积。
用式子表示为: (n 是正整数)扩展p n m p n m a a a a -+=÷⋅()np mp pn mb a b a= (m 、n 、p 是正整数)注意点:(1) 运用积的乘方法则时, 数字系数的乘方, 应根据乘方的意义计算出结果;(2) 运用积的乘方法则时, 应把每一个因式都分别乘方, 不要遗漏其中任何一个因式.【例题讲解】: 例1:计算:(1)()______44=÷ab ab ;(2)22x x n ÷+=_______;(3)______8==••a a a a m ;(4)()()______10210457=⨯÷⨯;(5)()________1111699711111=-⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛;(6)()()________15.132201220122013=-⨯⨯⎪⎭⎫ ⎝⎛; (7)(n -m)3·(m -n)2 -(m -n)5=___________;(8)334111()()()222-÷-⨯-=_______________;例2 :计算:(1) 52×5-1-90 (2)5-16×(-2)-3 (3) (52×5-2+50)×5-3(4)5413012()22222----++⨯⨯+ (5)201111()()()100100100--++ (7)5423120.53()3----⨯+⨯(7)0.125 2004×(-8)2005 (8)1019921132⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛-例3: 1.当a<0, n 为正整数时, (-a )5·(-a )2n 的值为( )A. 正数B. 负数C. 非正数D. 非负数2、若 无意义, 则 应满足_____________.3.在 中, 由小到大的排列顺序是__________.例4: 用科学记数法表示:(1)0.00034= (2)0.00048=(3)-0.00000730=(4)-0.00001023=例5: 已知am=3.an=2.求①am+.. ②am-. ③a3. ④a2m-3n 的值.例6: (1)若 , 则x= ;(2)若x2n=2, 则(2x3n)2-(3xn)2= ;(3) 若256x=32·211,则x= ;(4)已知3x+1·5x+1=152x-3, 则x= ; (5)已知22x+3-22x+1=192,则x.... .例7:已知()⎪⎭⎫⎝⎛+•+-==b a b b a a b 2122228293,求的值。
苏科版七年级下册《第八章 幂的运算》章节知识巩固-填空题专项训练(末尾含答案解析)
50.数0.0000108用科学记数法表示为____________.
51.已知 ,则x=__________.
52.截止3月29日,中国新冠疫苗已在50个国家和地区使用,国内疫苗接种已超1亿剂次,疫苗安全有效,接下来将加快国民全人群免费接种,这将是史上最大规模的疫苗接种某研究人员观测到新冠疫苗灭活病毒的直径在110纳米左右,请用科学计数法表示110纳米为__________米(1米 纳米).
45.单项式 的系数是________,次数是________.
46.已知 , ,则 的值等于_____.
47.若等式 成立,则 的取值范围是______.
48.“新型冠状病毒”发生以来,各相关部门和地方按照党中央、国务院的部署,对人民高度负责,全力以赴科学有效抓好疫情防控,同时提醒市民要勤洗手,戴口罩,多通风,不扎堆.经科学研究发现,该病毒的直径大小约为100纳米(1纳米=0.0000001米),则100纳米用科学计数法表示为__________米.
81.在国家疾病预防控制中心的数据库中,记录有一种病毒的直径仅为0.000000083毫米,这个数据用科学记数法表示为__________毫米.
82.当x_____时,(x﹣4)0等于1.
83.已知 , ,则 ______.
84. __________.
85.若 ,则 __________.
68.若 ,m、n为正整数,则 __________.(用含a、b的代数式表示)
69.已知 , ,则 ______.
70.已知xa=3,xb=5,则x2a-b=_____.
71.若 , ,则 __________.
七年级数学下册《第八章幂的运算复习》教案 苏科版
江苏省丹阳市华南实验学校七年级数学下册《第八章幂的运算复习》教案 苏科版教学目标:1、 能理解并正确运用幂的有关运算性质进行计算.2、 通过具体的例子培养学生渗透转化、化归等思想,发展学生推理能力.教学重点与难点:正确运用幂的运算性质进行计算.教学过程:一、知识梳理:1.同底数幂的乘法法则 ,公式 .2.幂的乘方法则 ,公式 .3.积的乘方法则 ,公式 .4. 同底数幂的除法法则 ,公式 .5.任何不等于0的数的0次幂等于 .即a 0= .a n-= (a ≠0,n 是正整数)一、基础练习:1.你知道下列各式错在哪里吗?在横线填上正确的答案:2.填空510)()(x y y x -÷-= =+02)01.0(x =-0)(y x =+-2)(b a =-12)(x二、典型例题:例1例2.计算(3)2019184322222222+------()52a a a =⋅()()()25a a a =-÷-()()93a a =()843x x x =⋅⋅()()()945=-⋅-x y y x ()22120092008-=⨯⎪⎭⎫ ⎝⎛-()______232=-y x ()______42=-x ()()______332=-÷a a ()()()()32323333522221x x x x x -⋅+-+-()()()()x x x -÷÷-32432()()()()()222234x x x x x x --+⋅-÷()01322)14.3(3)21()52(25-+--++-----π()234)()()(3b a b a a b -⨯-÷-20092010)4()25.0()2(-⨯-20092010)2()2)(1(-+-例3.(1)已知210=a 2=4b (其中a,b 为正整数),求a b 的值(3).若x =m 2+1,y =3+ m 4,则用x 的代数式表示y 为______ 过程如下:例4 已知909999911,999==N M ,那么M 、N 的大小关系怎样?课后练习: 班级 姓名 学号 得分1. -()32a =_________ ()23)(x x -⋅-=_________2. ()2322a a ⋅=_________ 10-2×105÷102-=_________3. ()32_______x x =⋅- x x x ÷÷35=_________4. 用科学记数法表示:1800000=_________ -0.0000018=_________5. 0.252005×2006)4(-=_________;当_________ 时,式子2)9(--x 有意义.6. 若3=m x ,2=n x ,则n m x +=_________,n m x -2=_________ .(二)选择题7. 下列计算正确的是( )A.30=0B.31-=-3C. -32=-9D. 33=98. 下列计算正确的是( )A. 933a a a =⋅B. ()624a a =C. ()62342x x =-D. ()()76108.1103106⨯=⨯⨯⨯9. 下列运算过程正确的是( )A. 3333+=+x x xB. ()3333+=x xC. 853x x x x =⋅⋅D. ()532x x x -=-⋅10. 已知1纳米=109-米,则35000纳米用科学记数表示应为( )A. 3.5×104米B. 3.5×104-米C. 3.5×105-米D. 3.5×109-米11. 在①25)(x x -⋅-②36)()(x x x -⋅-⋅③2332)()(x x ⋅-④[]52)(x --中,结果为10x -有()A. ①②B. ①④C. ②④D. ③④12. 已知b a 、互为倒数,则254)(b a -等于( )A. 2aB. 3bC. 2bD. 3a13.若55a = 2,44b = 3,33c = 4,则a 、b 、c 的大小关系为( )A .b >c >a B. a >b >c C. c >a >b D. a <b <c .14.已知m x = a ,n x = b ,则3m 2n x -的值为( )A.3a 2b -B.32a b -C. 32a bD.32a b .(三)计算题15. 23422225)()()()(2a a a a ⋅-⋅ 16. 345)()()(b a a b b a -⋅-÷-()()()的值求为正整数,且已知n n n x x x n 2223293,52-=17.27335)104()105.2()105(⨯-⨯⨯÷⨯ 18.24230)51()5(2)2()3(---÷-+⨯-+-19.1111111113(2)(0.125)()(8)37-⨯⨯⨯-20.已知2928162m m ⨯⨯=,求关于x 的方程5194m x -=的解.(四)解答题21. 已知:a 5=4,b 5=6,c 5=9. (1)b a +25的值;(2)c b 25-的值; (3)求证:c a b +=2.22. 已知a 2=3,b 4=5,c 8=7,求c b a -+28的值. ★ 24. 若1)2(2=--x x ,求x 的值23. 若02)1()12(-=-+m m m ,求m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
七年级数学第八章期末复习(3)
一、知识点:
1、 同底数幂的乘法法则nmnmaaa(m、n是正整数)
2、 幂的乘方法则mnnmaa(m、n是正整数)
3、 积的乘方法则nnnbaba(n是正整数)
4、 同底数幂的除法法则nmnmaaa(m、n是正整数,m >n)
5、 扩展
pnmpnmaaaa
npmppnm
baba
(m、n、p是正整数)
6、 零指数和负指数法则
10a
0a nnnaaa11(0a,n是正整数)
7、 科学记数法naN10(1≤a <10,a为整数)
二、举例:
例1:计算:
(1)3x3·x9+x2·x10-2x·x3·x8 (2)32×3×27-3×81×3
(3)b·(-b)2+(-b)·(-b)2 (4) bn+2·b·b2-bn·b2·b
3
(5)2x5·x5+(-x)2·x·(-x)7 (6)1000×10m×10
m-3
(7)3n·(-9)÷3n+2 (8) (n-m)3·(m-n)2 -(m-n)5
2
(9)334111()()()222 (10)(x+y-z)3n·(z-x-y)2n·(x-z+y)
5n
例2:计算:
(1) 52×5-1-90 (2) 5-16×(-2)-3
(3) (52×5-2+50)×5-3 (4)5413012()22222
(5)201111()()()100100100 (7)5423120.53()3
(7)0.125 2004×(-8)2005 (8)1019921132
例3:用科学记数法表示:
(1)0.00034= (2)0.00048=
(3)-0.00000730= (4)-0.00001023=
例4:已知am=3, an=2, 求①am+n ②am-n ③a3m ④a2m-3n的值.
例5:(1)若32222xx,则x= ;(2)若x2n=2,则(2x3n)2-(3xn)2= ;
(3) 若256x=32·211,则x= ; (4)已知3x+1·5x+1=152x-3,则x= ;
(5)已知22x+3-22x+1=192,则x= .
例6:已知32m,52n,求nm24的值
比较332、223和114的大小