幂的运算复习课件
合集下载
幂的运算ppt课件

7个a
=a ·a ·a ·a ·a ·a ·a
=a7 =3+4
可得
m个a
n个a
am·an=(a ·a ·a·… ·a)(a ·a ·a·… ·a)
(m+n)个a
=a ·a ·a·… ·a
=am+n
am·an=am+n(m、n为正整数) 同底数幂相乘,底数不变,指数相加.
例1 计算: (1)103×104;
bn
a
am
an
m
n
情境导入
“盘古开天辟地”的故事:公元前一 百万年,没有天没有地,整个宇宙是混浊 的一团,突然间窜出来一个巨人,他的名 字叫盘古,他手握一把巨斧,用力一劈, 把混沌的宇宙劈成两半,上面是天,下面 是地,从此宇宙有了天地之分,盘古完成 了这样一个壮举,累死了,他的左眼变成 了太阳,右眼变成了月亮,毛发变成了森 林和草原,骨头变成了高山和高原,肌肉 变成了平原与谷地,血液变成了河流.
(1.1×1012)÷(2.2×1010)
怎样计算呢?
探究新知
用你熟悉的方法计算: (1)25÷22=(__2_·_2_·2_·_2_·_2_)__÷__(__2_·2_)_;
=2·2·2 =23 =5-2 (2)107÷103=(__1_0_·_1_0_·_1_0_·1_0_·_1_0_·_1_0_·1_0_)__÷__(__1_0_·_1_0_·_1_0_)__;
(1)[(-x2y)3·(-x2y)2]3; (2)a3·a4·a+(a2)4+(-2a4)2.
=[(-x6y 3)·(x4y2)]3 =(-x10y 5)3
=a8+a8+4a8 =6a8
=-x30y15
=a ·a ·a ·a ·a ·a ·a
=a7 =3+4
可得
m个a
n个a
am·an=(a ·a ·a·… ·a)(a ·a ·a·… ·a)
(m+n)个a
=a ·a ·a·… ·a
=am+n
am·an=am+n(m、n为正整数) 同底数幂相乘,底数不变,指数相加.
例1 计算: (1)103×104;
bn
a
am
an
m
n
情境导入
“盘古开天辟地”的故事:公元前一 百万年,没有天没有地,整个宇宙是混浊 的一团,突然间窜出来一个巨人,他的名 字叫盘古,他手握一把巨斧,用力一劈, 把混沌的宇宙劈成两半,上面是天,下面 是地,从此宇宙有了天地之分,盘古完成 了这样一个壮举,累死了,他的左眼变成 了太阳,右眼变成了月亮,毛发变成了森 林和草原,骨头变成了高山和高原,肌肉 变成了平原与谷地,血液变成了河流.
(1.1×1012)÷(2.2×1010)
怎样计算呢?
探究新知
用你熟悉的方法计算: (1)25÷22=(__2_·_2_·2_·_2_·_2_)__÷__(__2_·2_)_;
=2·2·2 =23 =5-2 (2)107÷103=(__1_0_·_1_0_·_1_0_·1_0_·_1_0_·_1_0_·1_0_)__÷__(__1_0_·_1_0_·_1_0_)__;
(1)[(-x2y)3·(-x2y)2]3; (2)a3·a4·a+(a2)4+(-2a4)2.
=[(-x6y 3)·(x4y2)]3 =(-x10y 5)3
=a8+a8+4a8 =6a8
=-x30y15
《幂的运算复习》课件

基础练习题
1. 计算
2^3 + 3^2
3. 计算
a^m × a^n
总结词
考察幂的运算基本概念和简单 计算
2. 计算
(a^2)^3 × a^4
4. 计算
(x^2)^3
进阶练习题
1. 计算
(a + b)^2
3. 计算
(a × b)^n
总结词
考察幂的运算规则 和复杂计算
2. 计算
(a - b)^3
4. 计算
总结词 理解幂的乘方运算在解决实际问 题中的应用。
开方运算
总结词
详细描述
总结词
详细描述
掌握幂的开方运算规则,理解 开方的意义和性质。
幂的开方运算规则是"底数开方 ,指数减半"。即,√a^m = a^(m/2)。例如,√2^3 = 2^(3/2)。
理解幂的开方运算在解决实际 问题中的应用。
在解决实际问题时,有时需要 求一个数的平方根,这时就可 以使用幂的开方运算。此外, 在计算一些几何量时,也可以 使用幂的开方运算来简化计算 过程。
忽略幂的运算优先级
总结词
在进行幂的运算时,学生容易忽略运 算的优先级,导致计算结果错误。
详细描述
在数学运算中,幂运算具有优先级, 应该先进行幂运算,然后再进行加减 乘除等其他运算。学生常常忽略这一 点,例如将"a+b*c^2"误写为 "a+(b*c)^2",导致计算结果错误。
错误应用幂的性质
总结词
在金融领域,幂的运算用 于构建各种金融模型,如 股票价格模型、利率模型 等。
人口统计
在人口统计学中,幂的运 算用于预测人口增长和分 布。
8.幂的运算-----幂的乘方与积的乘方课件数学沪科版七年级下册(1)

=105×3
=(x4)·(x4) =x4+4 =x4×2 =x8
=1015
(3)(-a2)3.
=(-a²)·(-a²)·(-a²) =-a2+2+2 =-a2×3 =-a6
例1 计算:(1)(102)3 ; (4)-(x2)m ;
(2)(b5)5; (5)(y2)3·y;
(3)(an)3; (6)2(a2)6-(a3)4.
①同底数幂的乘法法则的逆用:am+n=am·an. ②幂的乘方法则的逆用:amn=(am)n=(an)m.
= am+m+…+m (根据_同__底__数__幂__的__乘__法__法__则___) = amn
幂的运算性质2:(am)n=amn(m,n都是正整数)
幂的乘方,底数不变,指数相乘.
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
正方体的体积比=棱长比的立方
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
太阳
地球
木星
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
木星的半径是地球的10倍,它的体积是地球的10³倍! 太阳的半径是地球的10²倍,它的体积是地球的(10²)³倍! 那么,你知道(10²)³等于多少吗?
例2 已知5x=m,5y=n,则52x+3y等于( D )
A.2m+3n
B.m2+n3
C.6mn
D.m2n3
解析:因为5x=m,5y=n,
=(x4)·(x4) =x4+4 =x4×2 =x8
=1015
(3)(-a2)3.
=(-a²)·(-a²)·(-a²) =-a2+2+2 =-a2×3 =-a6
例1 计算:(1)(102)3 ; (4)-(x2)m ;
(2)(b5)5; (5)(y2)3·y;
(3)(an)3; (6)2(a2)6-(a3)4.
①同底数幂的乘法法则的逆用:am+n=am·an. ②幂的乘方法则的逆用:amn=(am)n=(an)m.
= am+m+…+m (根据_同__底__数__幂__的__乘__法__法__则___) = amn
幂的运算性质2:(am)n=amn(m,n都是正整数)
幂的乘方,底数不变,指数相乘.
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
正方体的体积比=棱长比的立方
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
太阳
地球
木星
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
木星的半径是地球的10倍,它的体积是地球的10³倍! 太阳的半径是地球的10²倍,它的体积是地球的(10²)³倍! 那么,你知道(10²)³等于多少吗?
例2 已知5x=m,5y=n,则52x+3y等于( D )
A.2m+3n
B.m2+n3
C.6mn
D.m2n3
解析:因为5x=m,5y=n,
幂的运算ppt课件

想一想
am·an·ap等于什么?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
判断下列计算是否正确,并说明理由:
(1)aa2a3; (2)aa2 a3 .
(3)a3a3a9; (4)a3a3a6.
n个
n个
= anbn ∴(ab)n = a nbn (n为正整数)
积的乘方,等于各因数乘方的积.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
例计算:
解(1)(2b)3
=23b3 =8b3
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
智力冲浪
已知:2m =3,2n =4, 求2mn的值.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)(ab)4=______(a_b_)__• _(a_b_)__• _(a_b_)__• _(a_b_)___ =______(_a_a_a_a_)_•_(_b_b_b_b_)________ = a (4)b( 4)
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
上图是洋葱的根尖细胞,细胞每分裂一次,1个细 胞变成2个细胞.洋葱根尖细胞分裂的一个周期大 约是12时,210个洋葱根类细胞经过分裂后,变成 220个细胞大约需要多少时间? 所需时间为:(220÷210) ×12
am·an·ap等于什么?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
判断下列计算是否正确,并说明理由:
(1)aa2a3; (2)aa2 a3 .
(3)a3a3a9; (4)a3a3a6.
n个
n个
= anbn ∴(ab)n = a nbn (n为正整数)
积的乘方,等于各因数乘方的积.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
例计算:
解(1)(2b)3
=23b3 =8b3
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
智力冲浪
已知:2m =3,2n =4, 求2mn的值.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)(ab)4=______(a_b_)__• _(a_b_)__• _(a_b_)__• _(a_b_)___ =______(_a_a_a_a_)_•_(_b_b_b_b_)________ = a (4)b( 4)
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
上图是洋葱的根尖细胞,细胞每分裂一次,1个细 胞变成2个细胞.洋葱根尖细胞分裂的一个周期大 约是12时,210个洋葱根类细胞经过分裂后,变成 220个细胞大约需要多少时间? 所需时间为:(220÷210) ×12
华师版数学八年级上册1幂的运算第1课时同底数幂的乘法课件

12个
3个
=10×10×···×10
15个
=1015
新课探究
测测你的视察力:
(1)23×24 =(2×2×2) × (2×2×2×2 ) = 2( 7 ) ; (2)53×54 = (5×5×5)×(5×5×5×5) = 5( 7 ); (3)a3 ·a4 = (a×a×a)×(a×a×a×a) = a(7 ); (4)a5 ·a4 = (a×a×a×a×a) × (a×a×a×a) = a(9) (5)am ·an = (a×… ×a )×(a×a×… ×a ) =a( m+n )
(1)b5·b5=2b5(
)
(2)b5+b5=b10 ( )
(3)x5·x5=x25 (
)
(4)y5·y5=2y10 (
)
(5)c·c3=c3 (
) (6)m+m3=m4 ( )
思考 根据同底数幂的乘法法则,填空: பைடு நூலகம்1) am+n=am·__a_n_ (m,n都是正整数), (2) am+n+p=am·an ·__a_p_ (m,n,p都是正整数). 这说明同底数幂的乘法法则可以__逆__用___.
2.已知am=5,an=3,则am+n等于( A )
A.15
B.8
C.0.6
D.125
分析:因为同底数幂的乘法可以逆用, 即am+n=am·an , 又因为am=5,an=3, 所以am+n=am·an =5×3=15.故选A.
3.已知am=3,an=2,那么am+n+2的值为( C )
A.8
B.7
成立
am ·an ·ap =am+n+p(m,n,p都是正整数)
第八章复习(幂的运算教学课件)

幂的运算复习
知识回顾: 1.同底数幂的乘法法则: 同底数幂相乘,底数不变, 文字叙述:_________________________________ 指数相加 ______________
a m a n a mn (m、n是整数) 字母表示:________________________
3 x
2 2n
3x 9x
4n
3
2n 3
9 x
2
2n 2
3 5 9 5 150
2 3 5 思考题: 试比较 555 ,333 ,222 的大小
提示:要比较它们的大小可以从两个方面入手:
第一:底数能否变成一样
第二:指数能否变成一样
2 3 5
555 333 222
2 3
解:原式 8 x 2 x 4 x 10x x
3
6
8 x 8 x 10x x
9 9
6
10x
9
典型例题: 例1:计算:
2 x
3 4
x x
2 3
解原式 x x x
12 6
x
5
典型例题: 例1:计算:a2a 33
a
9
x y y x
5
4
(
x y )9
2
1 2
2008
( 2 )
2009
典型例题: 例1:计算:
1 2 x 2 x 2 x 2 x
3 3 3 3 2
9 3
3
5 x
6
3
3 5
2
知识回顾: 1.同底数幂的乘法法则: 同底数幂相乘,底数不变, 文字叙述:_________________________________ 指数相加 ______________
a m a n a mn (m、n是整数) 字母表示:________________________
3 x
2 2n
3x 9x
4n
3
2n 3
9 x
2
2n 2
3 5 9 5 150
2 3 5 思考题: 试比较 555 ,333 ,222 的大小
提示:要比较它们的大小可以从两个方面入手:
第一:底数能否变成一样
第二:指数能否变成一样
2 3 5
555 333 222
2 3
解:原式 8 x 2 x 4 x 10x x
3
6
8 x 8 x 10x x
9 9
6
10x
9
典型例题: 例1:计算:
2 x
3 4
x x
2 3
解原式 x x x
12 6
x
5
典型例题: 例1:计算:a2a 33
a
9
x y y x
5
4
(
x y )9
2
1 2
2008
( 2 )
2009
典型例题: 例1:计算:
1 2 x 2 x 2 x 2 x
3 3 3 3 2
9 3
3
5 x
6
3
3 5
2
《幂的运算复习》课件

幂的除法运算:a^m/a^n=a^(m-n)
幂的除法运算:a^m/a^n=a^(m-n)
乘方运算
概念:乘方运算是一种特殊的乘法运算,表示一个数自乘若干次
符号:乘方运算的符号为“^”,如2^3表示2的3次方
运算规则:a^m * a^n = a^(m+n),如2^3 * 2^2 = 2^5
幂的运算方法:包括加法、减法、乘法、除法、乘方、开方等
《幂的运算复习》PPT课件
单击添加副标题
Ppt
汇报人:PPT
目录
01
单击添加目录项标题
03
幂的运算方法
05
幂的运算注意事项
02
幂的定义与性质
04
幂的运算应用
06
幂的运算易错点分析
07
幂的运算练习题与答案解析
添加章节标题
01
幂的定义与性质
02
幂的定义
幂是指一个数自乘若干次
幂的表示方法:a^n,其中a是底数,n是指数
幂的运算分配律:a^m*(b+c)=a^mb+a^mc
幂的运算结合律:a^m*a^n=a^(m+n)
幂的运算优先级:乘方>乘除>加减
底数与指数的符号问题
底数与指数的符号对幂的运算结果有重要影响
底数为负数时,幂的运算结果也为负数
指数为负数时,幂的运算结果也为负数
底数为正数时,指数为正数或负数,幂的运算结果都为正数
指数方程的解法:利用指数函数的性质和指数方程的性质进行求解
指数方程的性质:指数函数的单调性、奇偶性、周期性等
指数方程的求解步骤:确定指数方程的类型、利用指数函数的性质进行求解、验证解的正确性
幂函数的性质与图像
苏科版七年级下册数学《幂的运算》课件

你还记得吗?
4.同底数幂的除法法则
文字叙述: 同底数幂相除,底数不变,指数相减
字母表示: am÷an=am-n (a≠0 m,n是正整数 m>n)
扩大:
am÷an÷ap=am-n-p (a≠0 m,n,p是整数)
考考你
a8 ÷a3 =a8-3=a5
(½)5÷(½)3 =(1/2)5-3=(1/2)2=1/4 (-s)7÷(-s)2 =(-s)7-2=(-s)5=-s5
=4b4
(5) a8÷a4=a2 ×
=a4
(6) (-z)6÷(-z)2=-z4 ×
=z4
幂的运算中的方法与技能
类型一:熟练使用公式,正确进行各种计算
(1)m19÷m14·m3÷m2
=m5·m3÷m2 =m8÷m2
或=m19-14+3-2 =m6
=m6
(2)(x-y)8÷(x-y)4÷(y-x)3
am-n=am÷an amn= (an)m anbn= (ab)n
幂的运算中的方法与技能
类型二:逆用公式进行计算
例1.已知am=4,an=2.
求①am+n的值.②am-n的值.③ a3m+2n的值.④ a2m-n的值=am·an=m÷an=a3m·a2n
=a2m÷an
=4×2 =4÷2
=(am)3·(an)2
=(-x2n-2 ) ·(-x5) ÷x2n+1 =x2n+3÷x2n+1 =x2 (4)4-(-1/2)-2-32÷(-3)0 =4-4-9÷1 =4-4-9 =-9
注意:运算时第一确定
所含运算类型,理清运 算顺序,用准运算法则
幂的运算中的方法与技能
类型二:逆用公式进行计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、已知a=8131,b=2741,c=961,则a、b、c的大小 关系是( A )
A、a>b>c C、a<b<c B、a>c>b D、b>c>a
小结:
(1)掌握幂的运算的一些性质及字 母的表示方法。 (2)会运用性质完成有关的计算。 (3)注意幂的四种运算的区别。 (4)体会性质的逆运用。
作业
第八章 幂的运算
复习目标
1、掌握幂的运算性质。 2、会用语言和公式表述幂的运 算的性质。 3、灵活运用幂的运算性质求值。
同底数幂的乘法 幂 的 运 算 幂的乘方
积的乘方
同底数幂的除法
学习指导一
同底数幂的乘法法则: 字母表示: a m· an=am+n 其中m,n都是正整数
同底数幂相乘,底 语言叙述: 数不变,指数相加。
(2y-x)15
练习四、选择
5m+1 1.下列各式中,与x
相等的是( c )
5 m+1 (A)(x ) m+1 5 (B)(x )
(C )
5 m x(x )
(D )
5 m xx x
14 2.x 不可以写成(
)
c 5 3 3 (A) x (x )
(B) (C)
2 3 8 (-x)(-x )(-x )(-x ) 7 7 (x )
9
2、已知:, a = 5, 则a
n
2 m -3n
= _______ 125
1
(-0.5)
2013
= __________ 2 _____
思考:1、已知210=a2=4b(其中
a,b为正整数),求ab的值。 解:∵210=a2 又∵210=4b ∴ab=325 2)5=45=4b 5 2 2 ∴ (2 ∴(2 ) =a 即a=25=32 即b=5
=a 3b
3
4 (3)(ab)
= a b
4
4
练习八、 计算:
(1)(2b)3 =2 3 b 3 =8b3 (2)(2a)3 =22×(a3)2 =4a6
(3)(-a)3 (4)(-3x)4 =(-1)3 •a3 =(-3)4 • x4 = -a 3 = 81 x4
练习九
1.判断下列计算是否正确,并 说明理由: 3 2 6 6 (1)(xy ) =xy x² y 3 3 3 (2)(-2x) =-2x -8x
学习指导二
幂的乘方法则: 字母表示:
(am)n=amn 其中m,n都是正整数 语言叙述:幂的乘方,底 数不变,指数相乘。
想一想:同底数幂的 乘法法则与幂的乘方 法则有什么相同点和 不同点?
同底数幂相乘 m n m+n a · a =a
指数相加 底数不变 指数相乘
其中m,n都是 正整数
m n mn (a ) =a
x+y y m =m m
=
= 8 3 ,则
=(m )³ (m )²
x
y
学习指导三
字母表示:
积的乘方的法则:
m m =a b
m (ab)
其中m是正整数
语言叙述: 积的乘方,等于把积的每一 个因式分别乘方,再把所得的积相乘。
练习七、计算( 口答) 2 2 2 (1) (ab) =a b
3 (2)(ab)
2.计算: (1)(3a)2 (2)(-3a)3
=32a2=9a2 =(-3)3a3=-27a3
=a2(b2)2=a2b4
(3)(ab2)2 (4)(-2×103)3
=(-2)3×(103)3=-8×109
练习十
逆 用 法 则 进 行 计 算
(3)-82000×(-0.125)2001 =
-82000×(-0.125)2000× (-0.125) -82000×0.1252000× (-0.125) -(8×0.125)2000× (-0.125) -1× (-0.125) = 0.125
练习五、 计算:
m m (1).已知:a =7,b =4, 2m 求(ab) 的值。
(2).已知:x+4y-3=0, x y 求2 16 的值。
●
练习六:
1、若 am = 2、若
=6
x m
动脑筋! 8 3m 2,则a =_____.
y 2,m
m
3x+2y
=72 6 3x+2y =______. 72 mx+y =____,m x
1、课本第61页复习巩固 2、认真整理本章错题
练习十一
(1)a ÷a
8 3
(2)(-a)÷(-a)
6 4
10
3
(3)(2a)÷(2a) (4) (-a)÷(-a)
(5)(p )÷p
8 2 3 2 5
(6)a ÷(-a )
3
10
2
3
(7)m ÷m ×m
(8)(a ) ÷a
2
4
3
练习十二
1、下列算式中, ①a3· a3=2a3;②10×109=1019;③(xy2)3=xy6; ④a3n÷an=a3.其中错误的是( D ) A、1个 B、2个 C、3个 D、4个
= 3 2 2 3 (4)(y ) ·(y ) = 12 6 6 y ·y = y
练习三、 计算:
m m - 1 ①10 · 10 · 100=
2m + 1 10
m ②3×27×9×3 =
m + 6 3
4 5 6 ③(m-n) · (m-n) · (n-m) =
(m-n)
15
④ (x-2y)4· (2y-x) 5· (x-2y)6=
(1)24×44×0.1254 = (2×4×0.125)4 = 1
=
=
(2)(-4)2005×(0.25)2005 =
= (-4×0.25)2005 = -1
学习指导四
同底数幂的除法
字母表示
m
a ÷ a =a
n
m-n
m 、n为正整数,m>n且a≠0 语言叙述 同底数幂相除,底数不变, 指数相减。
幂的乘方
练习一、计算( 口答)
(1)
5 6 10 ×10 = 11 10
(2)
(3)
7 a
5 x
3 · a
5 · x
=
=
10 a 10 x
(4)
5 x
· x
3 · x
=
9 x
练习二、计算( 口答) 5 6 (1)(10 ) = 1030
7 3 (2)(a )
= a21
25 x
5 5 (3)(x )
(D )
3 4 5 2 xxxx
2 5 5 2 3.计算(-3 ) -(-3 ) 的结
果是( B )
(A)0 (B)
10 -2×3 7 -2×3
10 (C)2× 3 ( D )
2、在xm-1· ( )=x2m+1中, 括号内应填写的代数式是( ) D 2m 2m+1 A 、x B 、x 2m+2 m+2 C 、x D、x