初三复习-全等三角形+相似三角形
(完整版)初中相似三角形基本知识点和经典例题

初三相似三角形知识点与经典题型知识点 1 相关相似形的看法(1) 形状同样的图形叫相似图形,在相似多边形中,最简单的是相似三角形 .(2) 若是两个边数同样的多边形的对应角相等,对应边成比率,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比( 相似系数 ) .知识点 2 比率线段的相关看法( 1)若是采用同一单位量得两条线段a,b 的长度分别为 m, n ,那么就说这两条线段的比是a mbn ,或写成 a : bm : n .注:在求线段比时,线段单位要一致。
的比,那么这四条线段a,b,c, d 叫做成比率线段,( )在四条线段a, b, c, d 中,若是a 和b 的比等于c 和d 2简称比率线段. 注:①比率线段是有次序的, 若是说 a 是 b, c, d 的第四比率项, 那么应得比率式为:bd .②在比率式ac(a : bcac : d)中,a 、d 叫比率外项, b 、c 叫比率内项 , a 、c 叫比率前项, b 、d 叫比率后b d此时有 b 2项, d 叫第四比率项,若是 b=c ,即a :b b :d 那么 b 叫做 a 、 d 的比率中项, ad 。
( 3)黄金切割:把线段AB 分成两条线段 AC , BC ( AC BC ) ,且使 AC 是 AB 和 BC 的比率中项,即AC 2AB BC ,叫做把线段 AB 黄金切割,点 C 叫做线段 AB 的黄金切割点,其中AC5 1 AB ≈20.618 AB .即ACBC 5 1 简记为:长=短=5 1ABAC 2全 长2注:黄金三角形:顶角是360 的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点 3比率的性质( 注意性质立的条件:分母不能够为0)( 1) 基本性质:① a : b c : d adbc ;② a : b b : c b 2a c . ad bc ,除注:由一个比率式只可化成一个等积式,而一个等积式共可化成八个比率式,如了可化为 a : b c : d ,还可化为 a : c b : d , c : d a : b , b : d a : c , b : ad : c , c : a d : b ,d : c b : a , d : b c : a .a b,交换内项 )cd( 2) 更比性质 ( 交换比率的内项或外项) :ac d()c ,交换外项b db ad b.同时交换内外项)ca( 3)反比性质 ( 把比的前项、后项交换) :ac bd .b dac( 4)合、分比性质:a c ab cd .b d bd注:实质上,比率的合比性质可扩展为:比率式中等号左右两个比的前项,后项之间b ad c发生同样和差变化比率仍建立.如:a cac 等等.b da b c da bc d( 5)等比性质:若是ac e m(bdfn 0) ,那么 acem a .b d fnb d f nb注:①此性质的证明运用了“设 k 法”(即引入新的参数 k )这样能够减少未知数的个数,这种方法是相关比率计算变形中一种常用方法.②应用等比性质时,要考虑到分母可否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也建立.如:a c e a 2c 3e a 2c 3e a;其中 b 2d 3 f 0.b d f b 2d 3 f b 2d 3 fb知识点 4比率线段的相关定理1. 三角形中平行线分线段成比率定理: 平行于三角形一边的直线截其他两边( 或两边的延长线) 所得的对应线段成比率 .A由 DE ∥ BC 可得:ADAE 或 BD EC 或 ADAE DB ECADEAABACDE注:BC①重要结论:平行于三角形的一边, 而且和其他两边订交的直线, 所截的三角形的三边 与原三角形三边 对应成比...... ......例 .②三角形中平行线分线段成比率定理的逆定理: 若是一条直线截三角形的两边( 或两边的延长线 ) 所得的对应线段成比率 . 那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法 , 即:利用比率式证平行线 .③平行线的应用:在证明相关比率线段时,辅助线经常做平行线, 但应依照的原则是不要破坏条件中的两条线段的比及所求的两条线段的比 .2. 平行线分线段成比率定理: 三条平行线截两条直线, 所截得的对应线段成比率 .A D 已知 AD ∥ BE ∥CF,B E可得AB DE AB DE BC EFBC EFAB BCCFBC EF或DF或或AC 或DE 等.AC AB DE DFEF注:平行线分线段成比率定理的推论:平行线均分线段定理: 两条直线被三条平行线所截, 若是在其中一条上截得的线段相等, 那么在另一条上截得的线段也相等。
九年级二轮专题复习材料全等三角形、相似三角形

相似比。 2.相似三角形周长的比等于相似比。 3.相似三角形面积的比等于相似比的平方 相似三角形的判定方法有: 1.平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似。
EF AB=a、BC=b,求 的值. EG
2. (2012•临沂 T18) 在 Rt△ABC 中,∠ACB=90,BC=2cm,CD⊥AB,在 AC 上取一点 E, 使 EC=BC,过点 E 作 EF⊥AC 交 CD 的延长线于点 F,若 EF=5cm,则 AE=
九年级二轮专题复习材料
专题四:全等三角形、相似三角形 【近 3 年临沂市中考试题】 1. (2011•临沂,T25,11 分)如图 1,将三角板放在正方形 ABCD 上,使三角板的直角顶点 E 与正方形 ABCD 的顶点 A 重合,三角扳的一边交 CD 于点 F.另一边交 CB 的延长线于点 G.
【知识点】 全等图形的性质:全等多边形的对应边、对应角分别相等。全等三角形对应边上的高,中线相等,对应角 的平分线相等;全等三角形的周长,面积也都相等。 1. 一般三角形全等的判定 (1)边边 边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”) 。 (2)边角公理:两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。 (3)角边角公理: 两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。 (4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。 2.直角三角形全等的判定 (1)利用一般三角形全等的判定都能证明直角三角形全等. (2)斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”). 相似三角形的性质 1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于
中考专题复习—三角形(相似三角形、特殊三角形、全等三角形)

三角形(相似三角形、特殊三角形、全等三角形)三角形(一)一、知识点回顾二、错题重做如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数y=(k≠0)的图象经过点C.(1)求反比例函数的解析式;(2)若点P是反比例函数图象上的一点,△PAD的面积恰好等于正方形ABCD的面积,求点P的坐标.如图,已知直线m x y 1+=与x 轴、y 轴分别交于点A 、B 与双曲线x k y 2=(x<0)分别交于点C 、D ,且点C 的坐标为(-1,2).(1)分别求出直线AB 及双曲线的解析式;(2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,21y y >.3、(2010广州)已知反比例函数y=(m 为常数)的图象经过点A (﹣1,6). (1)求m 的值;(2)如图,过点A 作直线AC 与函数y=的图象交于点B ,与x 轴交于点C ,且AB=2BC ,求点C 的坐标.三、内容讲解(二)相交线与平行线1、同位角、内错角、同旁内角2、平行线、相交线3、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
4、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
(三)三角形1、三角形的边、角、三边关系|b−c|<a<b+c2、三角形的角平分线、中线、高(可能在外部)3、等腰三角形性质:两腰相等,两底角相等,三线合一等边三角形判定:2个内角是60°、三边相等、1个角是60°的等腰直角三角形的性质:30°所对直角边等于斜边的一半,斜边上的中线等于斜边的一半4、外角、内角和、外角和、多边形内角和和外角和、平面镶嵌(四)全等三角形1、全等形、全等三角形的性质:对应边相等、对应角相等、面积相等、周长相等2、全等三角形的判定:SSS 、SAS 、ASA 、AAS 、HL3、角的平分线的判定和性质4、线段垂直平分线的判定和性质5、作图:角平分线、垂直平分线6、轴对称和轴对称图形(将军饮马)(五)勾股定理1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方:c b a =+222、勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系: 222c b a =+(四)相似1、比、比的前项、比的后项、比例、比例外项、比例内项、比例线段、比例的基本性质2、合比性质:如果d c b a =,那么dd c b b a +=+ 等比性质:如果n m d c b a === ,(0≠+++m d b ),那么b a n d b m c a =++++++ 3、黄金分割:215-倍、黄金分割点。
初中三角形全等、相似提高及动点——超全

三角形专题(一)【等腰三角形】1.等腰三角形的性质(1)定理:等腰三角形有两边相等;(2)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(“三线合一”)(3)等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
3.等边三角形的性质:等边三角形的三个角都相等,并且每个角都等于60o.它是轴对称图形,有三条对称轴。
4.等边三角形的判定:(1)有一个角等于60o的等腰三角形是等边三角形(2)三个角都相等的三角形是等边三角形课堂练习:1.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线2.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cm B.22cm C.17cm或22cm D.18cm3.等腰三角形的一个外角是80°,则其底角是()A.100°B.100°或40°C.40°D.80°4.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°5.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④6.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准备的判断是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状7.已知△ABC中AB=AC,AD⊥BC于D,若△ABC、△ABD的周长分别是20cm和16cm,•求AD的长.8.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,• 求证:△DBE 是等腰三角形.ED CABF9. 已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D 。
全等三角形和相似三角形的判定定理

全等三角形和相似三角形的判定定理示例文章篇一:哎呀呀,亲爱的小伙伴们,你们知道啥是全等三角形和相似三角形不?今天我就来和你们好好唠唠!咱先来说说全等三角形。
全等三角形就像是一对双胞胎,长得那叫一个一模一样!每一条边、每一个角都完全相同。
那怎么才能判断两个三角形是不是全等呢?这可得好好说道说道。
比如说“边边边”定理,就是如果两个三角形的三条边都对应相等,那它们就是全等三角形。
这就好比你有两双一模一样长的筷子,那不就是完全一样嘛!再比如“边角边”定理,要是两个三角形的两条边和它们的夹角对应相等,那这两个三角形也全等。
这就像你有两个形状一样的风筝,骨架长度一样,中间的夹角也相同,那能不一样嘛?还有“角边角”定理,两个三角形的两个角和它们夹的边对应相等,那就是全等三角形啦!这就好像你有两个同样的三角板,角的大小一样,夹着的边也一样长,能不全等嘛!说完全等三角形,咱再聊聊相似三角形。
相似三角形就像是表兄弟,长得有点像,但大小可能不一样。
判断相似三角形也有几个厉害的定理呢!“两角对应相等的两个三角形相似”,这就好比两个小伙伴笑起来的样子很像,那整体感觉不就像了嘛!还有“两边对应成比例且夹角相等的两个三角形相似”,这就好像两根粗细不一样的橡皮筋,长度的比例一样,中间弯曲的角度也相同,能不相似嘛?“三边对应成比例的两个三角形相似”,这就跟三把不同长度的尺子,它们的长度比例都一样,那能不相似嘛?在学习这些定理的时候,我一开始也有点迷糊,但是多做几道题,多和小伙伴们讨论讨论,慢慢地就搞清楚啦!我觉得呀,数学虽然有时候有点难,但只要咱们肯用心,就一定能战胜它!所以说,小伙伴们,只要咱们认真学,这些定理都不在话下,你们说对不对?示例文章篇二:嘿,同学们!今天我来和大家聊聊全等三角形和相似三角形的判定定理,这可有意思啦!你们想啊,三角形就像我们身边各种各样的东西。
全等三角形呢,就好比两个一模一样的玩具人偶,哪儿哪儿都相同。
初三数学提高(内容:全等三角形 相似三角形 三个二次:二次根式 一元二次方程 二次函数)

内容:全等三角形 相似三角形 三个二次:二次根式 一元二次方程 二次函数 考点一、全等三角形 (3~8分) 1、全等三角形的概念能够 的两个图形叫做全等形。
能够 的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
就是三角形中相邻两角的公共边, 就是三角形中有公共端点的两边所成的角。
2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。
如△ABC ≌△DEF ,读作“三角形ABC 全等于三角形DEF ”。
注:记两个全等三角形时,通常把表示 写在对应的位置上。
3、三角形全等的判定(1SAS ”) (2ASA ”) (3”)。
4(1(2(3基础1. ∴AB =DE ( )2.如图, 已知AB=AC, BE ⊥AC 于E, CF ⊥AB 于F, BE 、CF 交于点D. 求证: (1)△ABE ≌△ACF; (2)点D 在∠BAC 的平分线上.3. 已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF求证:AC 与BD 互相平分A BEO F巩固如图∠ABC=900,AB=BC ,AE 是角平分线,CD ⊥AE 于D 。
求证:CD = 21AE 提高1.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边①DFE △③DE A .①②③2.3. (1) (2)FDECB AC4.如图甲,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .如果AB AC =,90BAC =∠,解答下列问题:①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF BD ,之间的位置关系为 ,数量关系为 .②当点D 在线段BC 的延长线时,请画出图形,①中的结论是否仍然成立,为什么?1234512、计算: (1) 25341122÷⨯3.2(-C(三)精讲点拨在二次根式的计算、化简及求值等问题中,常运用以下几个式子:(1)22(0)(0)a a a a =≥=≥与(2)⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2a a (30,0)0,0)a b a b =≥≥≥≥(40,0)0,0)a b a b =≥>=≥>(5)(a 12、已知1(1(2A 4-≥x B 2>x C 24≠-≥x x 且 D 24≠->x x 且(3)下列各运算,正确的是( )A 565352=⋅B 532592519==⎪⎭⎫⎝⎛-⨯- C ()12551255-⨯-=-⨯- D y x y x y x +=+=+2222(40)y >是二次根式,化为最简二次根式是( )0)y >B0)y >0)y > D .以上都不对 (5)化简2723-的结果是()33A B C D --2、计算.(1)453227+-(3)3、已知a 1(1)=a A a,b(2A35(3)把(A B CD-2、计算: (1)5426362+-- (2) (3)22(-3、归纳与猜想:观察下列各式及其验证过程:= = (1)按上述两个等式及其验证过程的基本思路,猜想1544的变化结果并进行验证.(2)针对上述各式反映的规律,写出n(n 为任意自然数,且n ≥2)表示的等式并进行验证.1.通常 数项23 例如:不解方程,判断下列方程根的情况:(1) x(5x+21)=20 (2) x 2+9=6x (3)x 2—3x = —54.设一元二次方程ax 2+bx +c =0 (a ≠0)的两个根分别为x 1,x 2 则x 1 +x 2= ;x 1 ²x 2= ____________ 例如:方程2x 2+3x —2=0的两个根分别为x 1,x 2 则x 1+x 2= ;x 1 ²x 2= _________交流提高请形成本章的知识结构。
(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
数学人教版九年级下册相似三角形与全等三角形的综合

《相似三角形与全等三角形的综合》教学设计
原创:左自金
.定义
________斜边和一条直角边对应成比例,两
图(1)图(2)
为了测量某棵树的高度,小明用长为2 m
15 m,则树的高度为
图(2)
,AC 是⊙O 的直径,
2、问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中的一些物体进行了测量,下面是他们通过测量得到的一些信息:甲组:如图(1),测得一根直立于平地,长为80 cm 的竹竿的影长为60 cm.
乙组:如图(2),测得学校旗杆的影长为900 cm.
丙组:如图(3),测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200 cm,影长为156 cm.
甲、丙两组得到的信息,求景灯灯罩的半径.
可采用等式
如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都ED的延长线交AB于点F.
ACB∽△DCE;(2)EF⊥AB.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一对一辅导教案
学生姓名性别年级初三学科数学
授课教师上课时间第()次课课时:3课时教学课题中考专题全等三角形、三角形相似
教学目标知识目标:理解全等与相似判定与区别
能力目标:提高学生证明的思考能力
情感态度价值观:通过这节课的学习,提高学生的信心
教学重点与难点重点:三角形全等、三角形相似难点:三角形全等、相似的运用
教学过程
全等三角形
全等三角形的概念和性质:
1、的两个三角形叫做全等三角形
2、性质:全等三角形的、分别相等,全等三角形的对应线段(角平分线、中线、高线)周
长、面积分别对应
注意:全等三角形的性质是证明线段、角等之间数量关系的最主要依据。
一、全等三角形的判定:
1、一般三角形的全等判定方法:①边角边,简记为②角边角:简记为③角角边:简记
为④边边边:简记为
2、直角三角形的全等判定除可用一般三角形全等判定的所有方法以外,还可以用来判定
注意:1、判定全等三角形的条件中,必须至少有一组对应相等,用SAS判定全等,切记角为两边的
2、判定全等三角形的有关条件要特别注意对应两个字。
【精选例题】
考点一:三角形内角、外角的应用
例1 如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()
A.360°B.250°C.180°D.140°
.
考点三:三角形全等的判定
例3 .如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为2.
其中正确结论的个数是()
A.1个B.2个C.3个D.4个
例4.如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.
变式练习:
1.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、
AC交于E、F两点.下列结论:①(BE+CF)=
2
2
BC;②S△AEF≤
1
4
S△ABC;③S四边形AEDF=AD•EF;
④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个
2.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.
求证:(1)BC=AD;
(2)△OAB是等腰三角形.
考点四:全等三角形开放性问题
例5 如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).
变式训练
1.如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.
能力提升
如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
6、如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
7、如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.
(1)证明:△CBF≌△CDF;
(2)若AC=2,BD=2,求四边形ABCD的周长;
(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.
8.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
相似三角形
相似多边形的性质:相似多边形的对应角相等,对边边成比例;相似多边形的周长比等于相似比,
34 316 4
27 内,已知
AE
AC
DE BC AD AB =
= E
D
C
B A
中考链接
1.(2013•广东)如图,已知▱ABCD.
(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.
2.(2013•广东)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.
(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1_________S2+S3(用“>”、“=”、“<”填空);
(2)写出如图中的三对相似三角形,并选择其中一对进行证明.
3.(2015年广东7分)如题图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG 的长.
课后作业
1.如图所示,90E F ∠=∠=,B C ∠=∠,AE AF =,
结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有
A .1个
B .2个
C .3个
D .4个
2.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( ) A .45° B .60° C .75° D .90°
3.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则AEC= .
4.已知:如图,AB=AE ,∠1=∠2,∠B=∠E .求证:BC=ED .
5.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.
6.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC 上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
第11 页共11 页。