突破充电效率距离限制 无线充电迈向中功率磁共振

合集下载

无线充电技术的发展历史与趋势

无线充电技术的发展历史与趋势

无线充电技术的发展历史与趋势摘要:无线充电技术是指通过无线电磁场或电磁波对电子设备进行无线充电。

自20世纪60年代以来,无线充电技术经历了多次重大变革,从最初的电感耦合式无线充电到如今的电容式和电磁共振式无线充电,其技术发展逐渐成熟。

本文将围绕无线充电技术的发展历史、现状以及未来发展趋势进行深入探讨。

关键词:无线充电技术、电感耦合、电容式、电磁共振、发展趋势。

正文:一、发展历史无线充电技术的雏形可以追溯到20世纪60年代,当时,日本NEC公司通过电磁感应原理首次实现了无线充电。

但由于充电空间必须和设备紧密贴合,这种充电方法被认为不够实用。

直到21世纪初,利用磁共振技术和放射技术,无线充电才开始真正兴起。

随着新技术新方案的不断涌现,无线充电技术也进入到了一个新的发展阶段。

二、现状分析目前,无线充电技术主要分为电感耦合、电容式和电磁共振三种类型。

其中,电感耦合式无线充电技术是最早的无线充电技术之一,其原理是通过电磁感应原理,将电能传输到充电设备中。

而电容式无线充电技术,则是将充电源和设备之间的电容器连接起来,通过电容储存和释放电能,实现无线充电。

电磁共振式无线充电采用了磁共振原理,通过外部往复磁场激励铁芯电感器振荡,产生电磁辐射,再通过铁芯电感器的感应收集电能,实现无线充电。

现在,电磁共振式无线充电技术已经被逐渐应用于智能手机、平板电脑等电子设备中,并取得了显著的效果。

三、发展趋势未来,无线充电技术将从以下几个方向进行发展:(1)技术革新,提高充电效率和传输距离。

现在,无线充电技术仍存在一些问题,例如效率不高、传输距离过短等。

未来,随着技术的不断升级,这些问题将会得到解决,充电效率和传输距离也将会不断提高。

(2)扩大应用范围,实现多设备充电。

随着无线充电技术的不断发展,其应用范围也将不断扩大,除了个人电子设备外,也将大量应用于智能家居设备、电动汽车等领域,实现多设备、甚至整个家庭的无线充电。

(3)实现自动化充电,提高用户体验。

无线充电技术方案

无线充电技术方案

无线充电技术方案无线充电技术是一种近年来不断发展的新兴领域,在无需使用传统充电线的情况下,通过无线电波或者其他形式的电磁波将电能传输到设备中,以实现充电效果。

本文将介绍几种常见的无线充电技术方案,并对其优劣进行评估。

一、电磁感应充电技术电磁感应充电技术是目前应用最广的无线充电技术之一。

基于法拉第电磁感应定律,该技术通过一个发射端产生的交变电磁场来感应接收端的线圈,进而实现无线能量传输。

这种技术在近距离传输方面效果良好,但受到距离限制,传输效率较低,且不适用于大功率设备充电。

二、磁共振充电技术磁共振充电技术通过发射端和接收端之间的磁场共振来传输电能。

与电磁感应充电技术相比,磁共振充电技术可以实现更远距离的无线充电,并且传输效率较高。

然而,由于磁场共振需要精确匹配频率,因此设备之间的传输效率会受到外界干扰的影响。

三、射频充电技术射频充电技术利用无线电波通过发射端和接收端之间的电磁耦合来传输电能。

相比其他技术,射频充电技术的传输距离较远,传输效率也较高。

它还可以同时给多个设备充电,为用户提供更便捷的充电体验。

然而,射频充电技术也存在电磁波对人体健康的潜在影响以及功率损耗较大的问题。

四、纳米发电充电技术纳米发电充电技术是一种新兴的无线充电技术方案。

它利用纳米材料的特殊性质,通过温差、压力或者光敏等方式将环境中的能量转化为电能。

这种技术在某些特殊情况下效果显著,例如可以将人体体温转化为电能进行充电。

然而,由于纳米材料的制备成本较高,该技术仍处于实验室研究阶段。

综上所述,无线充电技术方案具有各自的优势和不足。

电磁感应充电技术适用于近距离传输;磁共振充电技术实现了远距离传输;射频充电技术提供了更便捷的充电体验;而纳米发电充电技术则具备一定的创新潜力。

未来的发展中,我们可以综合利用不同的无线充电技术方案,以满足不同场景下的充电需求,进一步提高充电效率和用户体验。

无线充电技术的电能转换效率

无线充电技术的电能转换效率

无线充电技术的电能转换效率无线充电技术是近年来备受关注的一项技术创新,它能够为手机、平板电脑等电子设备提供便捷的电能补充。

然而,不同的无线充电技术在电能转换效率方面存在着差异,这直接影响了使用者的充电体验和能源利用效率。

本文将对当前常见的几种无线充电技术的电能转换效率进行探讨,并分析其存在的问题和未来的发展方向。

一、电磁感应无线充电技术电磁感应无线充电技术是目前应用最为广泛的无线充电技术之一。

它利用发射端产生的交变磁场,通过感应耦合的方式将电能传输到接收端。

该技术的电能转换效率主要受到两个因素的影响:传输距离和传输功率。

在传输距离方面,电磁感应无线充电技术的电能转换效率随着传输距离的增加而逐渐下降。

这是由于随着距离的增加,磁场的强度减弱,从而导致能量传输的损耗增加。

为了提高电能转换效率,研究人员可以通过增加发射端和接收端之间的距离,以及合理设计电磁感应系统的结构和参数,来减小能量传输的损耗。

在传输功率方面,电磁感应无线充电技术的电能转换效率与功率的大小相关。

通常情况下,功率越大,电能转换效率越高。

但是,过高的功率也会引发一些问题,如系统发热问题和安全隐患。

因此,在设计电磁感应无线充电系统时,需要综合考虑功率大小与电能转换效率之间的平衡,以满足实际应用的需求。

二、磁共振无线充电技术相比于电磁感应无线充电技术,磁共振无线充电技术在电能转换效率方面具有更大的优势。

它利用发射端和接收端之间的磁场共振现象,实现较远距离的电能传输。

磁共振无线充电技术的电能转换效率主要受到两个因素的影响:共振频率和传输功率。

在共振频率方面,发射端和接收端需要具有相同的共振频率,才能够实现高效的能量传输。

因此,合理设计共振电路的频率和参数,对于提高电能转换效率至关重要。

在传输功率方面,磁共振无线充电技术能够通过调节谐振器的耦合系数来实现自适应的功率传输,从而提高电能转换效率。

此外,磁共振无线充电技术还可以通过将传输功率分割成多个小功率,将能量分布在空间中,减小传输过程中的能量损耗。

Qi标准公布WPC1.2磁共振标准,无线充电将被引爆,你更看好哪家?

Qi标准公布WPC1.2磁共振标准,无线充电将被引爆,你更看好哪家?

Qi标准公布WPC1.2磁共振标准,无线充电将被引爆
就在A4WP发布磁共振正式标准BSS V1.2版本的第二天,WPC也公布了Qi版的磁共振标准WPC1.2,磁共振成了标准的必争之地,硝烟味很浓,也是接下来的发展趋势。

WPC的磁共振标准来了,A4WP又要头疼了。

WPC有了强大的生态系统,会员200多家,认证产品500多款,支持无线充电手机60多款。

且现在支持磁感应及磁共振两大无线充电技术,A4WP要想超越压力非常大。

WPC1.2的磁共振标准兼容以前的磁感应标准WPC1.1,充电距离Z方向由原来的5mm左右提升到45mm左右,且支持一对多无线充电,也就是说可以一个无线充电器可以同时给几台电子设备充电。

充电功率也将提升,除了可以给手机充电外,还可以给平板及笔记本等充电。

对于兼容WPC1.1的情况介绍(采用WPC1.2的发射端情况):
1. 对于以前支持WPC1.1的接收端,以前的Z方向的距离为7mm,现在可以达到30mm。

2. 对于WPC1.2的接收端来说,现在的充电距离可以达到45mm。

3. WPC1.2的接收端可以在WPC1.1的发射端上使用,WPC1.2的发射端也可以接受WPC1.1的接收端。

4. 对于WPC1.2的发射端和WPC1.2的接收端,可以支持一个发射端对应多个接收端的情况。

看到这种情况,无线充电行业的朋友应该也明白了,对于以前一直期待的A4WP。

标准是不是要动摇了!无线充电的下半年必定会很热闹了!
文章来源:无线充电圈。

电磁共振式无线充电技术原理

电磁共振式无线充电技术原理

电磁共振式无线充电技术原理电磁共振式无线充电技术原理解析引言无线充电技术在现代生活中扮演着越来越重要的角色。

其中一项重要的技术就是电磁共振式无线充电技术。

本文将从浅入深地解释电磁共振式无线充电技术的原理。

什么是电磁共振式无线充电技术?电磁共振式无线充电技术是一种通过电磁场实现无线充电的方法。

它基于共振的原理,通过在充电器和设备之间建立共振磁场,将能量传递给设备,从而实现无线充电的目的。

原理解析电磁共振式无线充电技术的原理可以分为以下几个关键步骤:1.发射端的工作:发射端通过电源将交流电转换为特定频率的交变电流。

该电流通过发射线圈,在发射器上产生一个交变磁场。

2.共振现象的发生:接收端上的接收线圈通过谐振,与发射器上的发射线圈产生共振。

这种共振现象使得两个线圈之间的交变磁场得以共享和传输。

3.能量传输:通过共振现象,发射端的交变磁场引起接收端的线圈内的交变电流。

这样,能量就从发射端传输到接收端,实现无线充电。

4.能量匹配:为了实现更高效的能量传输,发射端和接收端必须进行能量匹配。

这意味着它们的电感和电容需要调整到能够产生最佳的共振效果。

优势和应用电磁共振式无线充电技术具有以下几个优势:•方便性:无需插拔充电线,设备接触发射器的瞬间即可开始充电,使用更为方便。

•充电效率:电磁共振式无线充电技术能够通过共振现象提高能量传输的效率,相比传统有线充电更为高效。

•应用广泛:电磁共振式无线充电技术可用于手机、智能手表、电动汽车等各种设备,适用性极广。

结论电磁共振式无线充电技术通过共振现象实现了无线充电的便利和效率。

它的发展将极大地改善我们的充电体验,并促进无线充电技术的广泛应用。

我们可以期待这一技术在未来的发展和改进中,为我们的生活带来更多便利和可能性。

技术挑战和未来展望尽管电磁共振式无线充电技术在便利性和效率方面取得了显著的进展,但仍然存在一些技术挑战和改进空间。

以下是一些主要的挑战:•距离限制:目前电磁共振式无线充电技术的有效传输距离较短,一般在几厘米至几十厘米之间。

无线充电技术的使用方法和效率分析

无线充电技术的使用方法和效率分析

无线充电技术的使用方法和效率分析无线充电技术是近年来快速发展的一项科技创新,它摆脱了传统有线充电的限制,让用户能够更加便捷地给手机、平板电脑和其他智能设备进行充电。

在这篇文章中,我们将探讨无线充电技术的使用方法和效率分析,帮助读者更好地了解这一新兴技术。

首先,我们将介绍无线充电技术的使用方法。

无线充电技术基于电磁感应原理,利用电磁场将电能从充电器传输到设备中。

对于用户而言,无线充电相较传统有线充电的最大区别在于无需将设备与充电器之间连接,只需将设备放置在充电器上方或充电垫上即可启动充电。

对于特定的无线充电设备,也可能需要将设备放在具有充电功能的桌面或其它充电设施上进行充电。

总之,使用无线充电技术只需要将设备靠近或放置在充电设备上,充电的过程就会自动发生。

其次,我们将针对无线充电技术的效率进行分析。

在无线充电过程中,充电设备利用电磁场传输电能,无需物理连接,因此能够提供更方便的充电体验。

然而,无线充电设备的效率相较于传统有线充电方式存在一定差距。

这是因为,无线充电需要将电能通过空气等介质传输,而这个过程中会产生一定的能量损失。

因此,无线充电的效率一般较低。

具体来说,无线充电的效率受到多个因素的影响。

首先是传输距离,通常来说,无线充电设备对于设备的距离越近,传输效率越高。

其次是电磁辐射和干扰,无线充电设备会产生电磁辐射和对其他无线设备的干扰,从而降低了无线充电的效率。

此外,还有环境因素的影响,例如充电器和设备之间的障碍物、周围电磁场的干扰等。

因此,在使用无线充电技术时,尽量将设备放置在充电设备的传输范围内,减少障碍物的干扰,可以提高充电效果。

除了效率方面的考虑,无线充电技术还需要注意安全性。

一些研究发现长时间接触电磁辐射可能对人体健康带来潜在的风险。

因此,在使用无线充电设备时,用户需要注意避免长时间接触电磁辐射,以保证健康。

尽管存在一些效率和安全方面的问题,无线充电技术仍然具有巨大的发展潜力。

许多公司和研究机构正在进行技术改进,以提高无线充电的效率和可靠性。

无线充电技术的发展现状与趋势

无线充电技术的发展现状与趋势

无线充电技术的发展现状与趋势随着科技的不断发展,我们的生活也越来越依赖电子设备,如手机、平板电脑、智能手表等等。

在使用这些设备的时候,我们经常需要充电,而传统的充电方式往往需要使用插头和线缆。

而这些线缆不仅容易损坏,而且占据大量的空间,给我们的生活带来诸多不便。

而无线充电技术的发展,为我们提供了新的解决方案。

本文将从无线充电技术的发展现状与趋势两方面来探讨这一新技术的应用前景与发展趋势。

一、无线充电技术的发展现状无线充电技术最早可以追溯到19世纪末的尼古拉·特斯拉。

当时,他提出了一种通过空气传输电力能够实现无线充电的理论。

不过,由于当时科技的限制,这一技术一直处于未被实现的状态。

直到20世纪初期,无线电技术的快速发展使得无线充电技术开始进入人们的视野。

随着近年来移动互联网的高速发展,无线充电技术也开始逐步进入普通消费者的生活。

目前,无线充电技术的应用主要集中在智能手机、笔记本电脑、智能手表等小型电子设备上。

其中,最常见的无线充电技术标准是Qi标准。

这种技术采用了非接触式电磁感应,将电能通过电磁波传输到设备中。

而在Qi标准的基础上,还有一种更先进的技术——Qi无线充电技术,它采用了磁共振技术,比传统的电磁感应更加高效。

虽然无线充电技术的应用范围现在还比较狭窄,但是随着技术的不断进步,无线充电的应用前景也越来越广阔。

二、无线充电技术的趋势随着无线充电技术的发展,我们预见到下面三个趋势:1、无线充电技术将逐步向大型电子设备应用,并取代传统充电方式,例如电动汽车。

目前,无线充电技术在大型电子设备方面的应用还很少,但是无线充电技术的高效和方便的特点使得其逐渐变为大型电子设备充电解决方案的首选。

例如,作为一种新型充电方式,电动汽车无线充电技术的应用潜力很大,可以解决现有的安全、充电速度等方面的问题。

2、无限充电技术的应用领域将逐步扩大。

目前,无线充电技术的应用范围还比较狭窄,仅限于智能手机、笔记本电脑、智能手表等小型电子设备上。

无线充电方案

无线充电方案

无线充电方案随着智能手机的普及和使用,无线充电技术也越来越受到关注和重视。

无线充电是指通过电磁波传输能量来给设备充电,无需连接任何线缆或插头。

市场上已经有很多不同的无线充电技术方案,下面我们将介绍几种常用的无线充电方案。

一、感应式无线充电感应式无线充电是目前最主流的无线充电方案之一。

它利用电磁感应原理,将电能通过感应线圈在发送端与接收端之间无线传输。

在感应式无线充电中,发送端将能量转换为电磁波并通过感应线圈发送出去,接收端的感应线圈将电磁波转换回电能来为设备充电。

感应式无线充电的优点是充电效率高,充电速度快,还带有保护措施,可确保设备充电过程中不会受到过多的热量损耗。

但该技术也有一些缺点,比如需要在充电装置和设备之间放置线圈,充电距离较短等。

二、磁共振无线充电磁共振无线充电技术是一种高效、距离较远的无线充电方案。

该技术是利用磁共振原理,两个线圈之间通过磁共振能量传输达到充电的目的。

充电底座发送出能量的频率,通过类似共振的方式,匹配设备上的接收线圈,达到能量的传输和充电。

相比较感应式无线充电,磁共振无线充电距离更远,具有充电的灵活性和可扩展性,并且还能支持多台设备同时充电,充电速度也相对较快。

但该技术的唯一缺点是充电效率不如感应式无线充电。

三、射频天线无线充电射频天线无线充电技术是一种较新的无线充电方案,其原理是通过微小的天线在特定的频率下发射射频信号,以无线方式为设备充电。

该技术的工作原理类似于在 WiFi 无线网络中使用的路由器或基站,只不过在这种情况下,路由器或基站使用的是射频信号来连接设备,而不是数据包。

射频天线无线充电的优点是具有更长的充电范围和适用于不同类型的设备,并且可以将设备集成到更远的位置。

但是,它也有一些缺点,首先是充电的效率较低,并且无法同时充电多台设备。

四、太阳能无线充电太阳能无线充电是一种新兴的环保充电方案,它利用太阳能源将充电器以及设备直接连接到外部电源上,以无线方式为设备充电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中功率及磁共振无线充电发展加温。

WPC、A4WP、PMA三大无线充电标准阵营,皆已计划在今年发布充电功率达15~30瓦的无线充电新规格,并加紧投入磁共振技术研究,可望提升无线充电效率,并突破目前磁感应技术距离受限的桎梏。

中功率与磁共振无线充电行情看俏。

为了让小型电子产品以外的装置亦能享有无线充电功能,三大无线充电技术标准阵营正殚精竭虑发展中高功率无线充电标准,期能夺得市场先机;其中,又以电力事业联盟(PMA)动态最受瞩目。

随着无线充电技术朝中功率及磁共振方向演进,无线充电联盟(WPC)运行频段干扰问题已逐渐浮上台面,成为其日后发展的隐忧;反观PMA在与无线电力联盟(A4WP)结盟后,已同时握有磁共振及磁感应技术,加上其未来更拟采用传输距离更远的无线区域网路(Wi-Fi)做为通讯机制,因而更加受到市场瞩目。

兼具磁共振/磁感应技术PMA壮大无线充电势力图1UL检测事业部亚太区事业发展经理陈立闵认为,PMA已同时握有成熟的磁感应和磁共振技术,可望成为三大联盟中的最后赢家。

UL检测事业部亚太区事业发展经理陈立闵(图1)表示,若以消费者体验做为最终考量,无线充电势必走向磁共振应用方案,因此原本专注于磁感应技术的WPC及PMA已积极研拟相关标准;不过,WPC选错频段的结果可能使其最终错失市场商机。

陈立闵分析,WPC的Qi标准运行于110k?205kHz,与多种应用频段重叠,为了避免日后严重的频率干扰问题,及为往后的中高功率磁共振技术发展铺路,WPC正在讨论更换运行频段及通讯协定(Protocol)的可能性,不过一旦更动运行频段及晶片通讯协定,新旧晶片方案间的相容性将成一大疑虑。

这项浩大工程不仅让WPC进退维谷,亦让内部成员及外界对WPC未来发展打上问号。

另外,WPC成员中应用商少、晶片供应商多,比例失衡的结果,也让Qi的应用市场难以快速扩张,因此近来其会员增长的速度已愈来愈缓慢。

陈立闵表示,反观PMA,在2014年初已与A4WP签署合作协议;表面上看来是平等的合作关系,然事实上,A4WP之创始成员三星(Samsung)已将其无线充电技术捐赠予正积极发展磁共振技术的PMA,加上微软(Microsoft)、威瑞森(Verizon)等其他联盟的要角纷纷于近日宣布加入该阵营,让PMA气势如虹。

PMA因有美国联邦通讯委员会(FCC)的协助,一开始就选用了200M?400MHz的冷门频段,巧妙避开日后的频率干扰问题;而在「收编」A4WP后,该联盟手上已同时握有磁感应、磁共振的无线充电技术,成为一股足以与WPC抗衡的势力。

另一方面,甫与A4WP签署合作协议的日本横须贺研究园区宽频无线论坛(YRP-BWF),以及韩国电信技术协会(TTA)等组织,除了能协助PMA/A4WP扩大在亚洲市场的影响力外,更值得注意的是,这些组织原本就致力于中高功率磁共振的发展,未来三方的技术合作成果自是备受期待。

图2UL产品安全事业工程部资深专案工程师胡翔豪表示,PMA的API可提供客户资料搜集与分析服务,因此颇受通路商青睐。

不只PMA可接收A4WP的磁共振技术,A4WP亦可采用PMA的开放式网路应用程式介面(Open Network API)。

UL产品安全事业工程部资深专案工程师胡翔豪(图2)表示,这套API是PMA很重要的技术资产,不只能应用于无线充电网络管理,亦可提供后端应用商客户资料搜集与分析的服务,因此颇受通路端业主的青睐,可促进其采用PMA标准的意愿。

陈立闵补充,PMA未来更拟采用与蓝牙同样运行于2.4GHz频段的Wi-Fi做为通讯机制,实现优于蓝牙方案的传输距离;加上PMA阵营内拥有为数众多的应用商,如家具厂、建材厂、连锁餐饮业等,这些业者都能驱动消费者对无线充电的应用需求,再回头刺激晶片商推出可商用化的最终方案,进一步扩大无线充电的市场规模。

胡翔豪更直指,PMA在今年第三季就可能发布15瓦的中功率标准,前景备受期待,亦让目前身为商用进展最快的WPC备感压力。

为了防止市占率流失,WPC正积极制定中功率标准,更将未来的应用前景放眼在厨房、家电等中大功率无线充电应用市场。

巩固市占率WPC冲刺中高功率应用图3德国莱因EMC暨通讯服务部专案经理Jan-Willem Vonk指出,WPC将未来的应用前景放眼在厨房、家电等大功率无线充电应用市场。

德国莱因(TUV)EMC暨通讯服务部专案经理Jan-Willem Vonk(图3)表示,WPC可望在今年正式发布15瓦(W)的中功率无线充电标准,接下来亦计划往30瓦、90瓦、120瓦方案逐步前进。

Vonk进一步表示,不只WPC,其他标准组织皆有志一同地将未来的战场放在厨房及客厅。

尤其是有热水瓶、果汁机、微波炉、电锅等中高功率家电的厨房,将是继小型电子产品之后,下一个无线充电技术较劲的战场。

为了让无线充电的市场吸引力能与有线充电方案相匹敌,三大标准阵营及各个无线充电技术开发商,正致力于将无线充电的传输、接收功率往上提升;不过,无线充电模组接收端(Rx)的设计挑战一日不除,中高功率无线充电应用就永远无法成熟,而其中的关键因素,就在于主控IC的核心演算法。

[@B]催生中高功率无线充电主控IC演算成关键[@C] 催生中高功率无线充电主控IC 演算成关键目前无线充电市场中三大阵营--WPC、A4WP、PMA,不断透过各种方式以扩大自己的势力范畴,期能成为最终一统江湖的霸主;不过事实上,三大阵营最大的敌手并非彼此,而是有线充电,因此无线充电标准阵营及所有的无线充电技术开发商,最须绞尽脑汁的是,要如何提高无线充电的传输、接收功率。

陈立闵进一步解释,无线充电方案虽无法完全替代有线充电方案,但技术开发仍须跟上有线充电市场技术演进的速度,免得最终导致无线充电市场需求消失殆尽;像是行动装置快速充电(Quick Charge)方案的兴起,及通用序列汇流排(USB)等高速传输介面标准正不断提升充电效率,都在在成为无线充电方案的潜在威胁,因此无线充电技术往中高功率发展更是燃眉之急。

事实上,三大无线充电标准阵营正积极将传输、接收功率提升至15?30瓦。

理论上,中高功率无线充电技术对发射端(Tx)而言并非难事,因发射端只须不断传送电力即可,最关键的是接收端的模组设计;由于接收端模组周围常伴随着待充装置内部的其他元件,因此要如何克服电磁相容(EMC)问题,就成了中高功率无线充电技术发展的最大困境。

图4富达通无线充电事业部经理詹其哲认为,要克服中高功率无线充电技术的开发挑战,其核心关键就在于主控IC的设计。

富达通无线充电事业部经理詹其哲(图4)认为,要克服EMC等中高功率无线充电技术的开发挑战,其核心关键就在于主控IC的设计。

有鉴于此,富达通已经开发多项专利技术,以强化主控IC的控制演算法,并改善了Qi标准目前存在的技术漏洞,成功突破中高功率无线充电的设计桎梏。

以Qi的PID演算法为例,其发射、接收模组最重要的参数系来自接收端的资料封包,为避免系统因某些因素导致资料传送失败,而让整个PID回路失效无法运作,Qi标准系透过软体控制演算法来解决此问题。

不过,软体演算若没有控制好,当系统欲将传输频率降低以提高传输功率时,容易跨过谐振点,届时即使将频率降低,传输功率仍会开始往下掉,无法满足中高功率的传输需求。

詹其哲表示,为了解决此一技术问题,富达通已开发出「感应式电源中自动调节之方法」专利,以强化PID的演算模式;此外,该公司亦透过「可变功率系统」、「感应线圈位移修正」等专利技术强化主控IC的核心设计,让接收端可依需求自动调整输出功率,并可自动侦测感应距离进行功率控制,一一破解中高功率无线充电的技术关卡。

詹其哲指出,虽然中高功率仍将系市场最终发展方向,然目前市面上的无线充电产品仍以低功率为主,为了迎合市场所需,富达通决定将Qi的5瓦标准纳入该公司的中高功率无线充电方案。

据了解,富达通已在今年发布第五代感应式无线电力系统--α5,其传输功率最高可至100瓦,更重要的是,α5不仅能搭配100瓦方案的接收器--β5,亦可对符合Qi标准的接收器传输电力。

除了主控IC的演算法之外,线圈磁材的选用也将决定中高功率无线充电系统的良窳。

由于低功率无线充电系统的表面温升不明显,因此不管选用何种磁材,其磁导率、电阻率等物理特性表现并不突出;不过,设计中高功率无线充电线圈时,就须考量到系统温度对于线圈磁材特性的影响,以及每种磁材所适用的频段为何,因为这将大幅影响无线充电系统效率。

无线充电迈向中功率线圈磁材选用定成败图5高创科技行销部副理王世伟强调,无线充电线圈磁性材料的选择,决定了中高功率无线充电系统的充电效率。

高创科技行销部副理王世伟(图5)表示,无线充电线圈材料的选择,决定了该系统的充电效率,尤其在设计中高功率无线充电产品时,磁材及线材的选用上更须多方考量。

一般而言,无线充电线圈组成可粗分为四大部分,分别为由散热材、铁氧体类(Ferrite)的磁性元件、保护膜(PET)以及线材(Coil);在选择线材时,须考虑到各种材料的厚度、阻抗、绕制精度;磁性元件的选择则须考量磁导率、磁材饱和特性、电阻率及适用频段等因素,这些都会影响到无线充电电力传输系统的效率表现。

王世伟解释,目前常见的磁材约可分为锰锌及镍锌两类,前者相对磁导率高、电阻率低,后者则反之;基于这些特性,各种磁材所适用的频段也不尽相同。

如当同样的线圈放在磁导率较高的磁材上,其产生的感值会较大,因此若想要降低铜损耗,即可选用锰锌;然锰锌电阻率低,可能让线圈在充磁的过程中,也就是产生磁力线的同时,造成更多的涡电流损失。

不过,事实上,在低功率的无线充电系统设计上,锰锌跟镍锌的相对磁导率及电阻率其实相差无几,除非在长时间运作下,导致系统温度明显上升,才会产生些微差距;因此,低功率的无线充电线圈设计对于磁材的选用并不若选择线材般斤斤计较。

但若是15瓦以上的无线充电系统,磁材表面温度上升幅度会更为明显,这会让磁材的电阻率、磁导率等物理特性更为突出,因此在磁材的选择上就须考量到温度对于磁材物理特性的影响。

有鉴于此,王世伟表示,在设计中高功率无线充电线圈时,应该要选择导磁性低,但是电阻率较高的磁材;如只要选用阻抗起始点高于1MHz的磁材,中高功率无线充电系统产生的高频杂讯即能轻易被消灭,让中高功率无线充电系统效率再提升。

除了电子产品之外,高功率车载无线充电应用商机亦大有可为。

由于充电站数量少、建置成本过高,且充电方便性不足,电动车在市场上的渗透率一直难有起色,而无线充电技术能解决电动车充电方便性及安全性的疑虑,因此吸引众多车厂开发高功率磁感应或磁共振式车载无线充电技术,期能进一步扩大电动车的市占率。

竞推高功率无线充电电动车厂加速商用脚步图6车辆研究测试中心绿能车辆发展处专案副研究员江朝文提到,许多车厂正积极促成车载无线充电方式往商用化发展。

相关文档
最新文档