3-1第一节 任意角和弧度制及任意角的三角函数练习题(2015年高考总复习)

合集下载

2015高考数学(理)一轮复习考点突破课件:3.1任意角和弧度制及任意角的三角函数

2015高考数学(理)一轮复习考点突破课件:3.1任意角和弧度制及任意角的三角函数

解析:角 α 与 β 的终边关于 y 轴对称,则 α+β=2kπ+π,所以 α =2kπ+π-β,k∈Z,答案为 C. 答案:C
2.弧度与角度的互化 (1)1 弧度的角 长度等于 半径 长的弧所对的圆心角叫做 1 弧度的角, 用符号 rad 表示. (2)角 α 的弧度数 如果半径为 r 的圆的圆心角 α 所对弧的长为 l,那么角 α 的弧 l 度数的绝对值是|α|=r. (3)角度与弧度的换算
1.角的有关概念 π (1)锐角的集合是 {α|0<α< } . 2 π (2)第一象限角的集合是 {α|2kπ<α<2kπ+ ,k∈Z} . 2 (3)终边在 x 轴上的角的集合是 {α|α=kπ,k∈Z} . π (4)终边在 y 轴上的角的集合是 {α|α=kπ+2,k∈Z} .
• •
2.三角函数的符号 在第一象限三种三角函数的值全为 ,在第二象限只有 正数 的值为正数,在第三象限只有 的值为正数,在第四象限只有 的值为正数.
• 【归纳提升】 所有与α角终边相同的角(连同角α在内),可以表示 为β=k·360°+α,k∈Z;在确定α角所在象限时,有时需要对整数 k的奇、偶情况进行讨论.
针对训练 3 7 1.设 α1=-570° ,α2=750° ,β1= π,β2=- π. 5 3 (1)将 α1,α2 用弧度制表示出来,并指出它们各自所在象限; (2)将 β1,β2 用角度制表示出来,并在-720° ~0° 之间找出与它 们终边相同的角.
答案:D
题型三
扇形的弧长、面积公式的应用 已知扇形的圆心角是 α,半径为 R,弧长为 l.
(1)若 α=60° ,R=10 cm,求扇形的弧长 l; (2)若扇形的周长为 L cm,当扇形的圆心角 α 为多少弧度时,这个 扇形的面积最大? π (3)若 α= ,R=2 cm,求扇形的弧所在的弓形的面积. 3

2015届高考数学总复习 第三章 第一节角的概念与弧度制及任意角的三角函数课时精练 理

2015届高考数学总复习 第三章 第一节角的概念与弧度制及任意角的三角函数课时精练 理

第三章 三角函数与解三角形第一节 角的概念与弧度制及任意角的三角函数1.(2013²河南调研)与-525°的终边相同的角可表示为 ( ) A .525°-k ²360°(k ∈Z ) B .165°+k ²360°(k ∈Z ) C .195°+k ²360°(k ∈Z ) D .-195°+k ²360°(k ∈Z )解析:在α=195°+k ²360°(k ∈Z )中,令k =-2得α=-525°,故选C. 答案:C2.若α是第二象限角,则π-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角解析:π-α=-α+π,若α是第二象限角,则-α是第三象限角,再逆时针旋转180°,得π-α是第一象限角.故选A.答案:A3.(2013²福州模拟)下列三角函数值的符号判断错误的是( ) A .sin 165°>0 B .cos 280°>0 C .tan 170°>0 D .tan 310°<0解析:∵170°为第二象限角,∴tan 170°<0,选C. 答案:C4.若cos α=-32,且角α的终边经过点P (x,2),则P 点的横坐标x 是( )A .2 3B .±2 3C .-2 2D .-2 3解析:由cos α=x x 2+4=-32,解得x =-2 3.答案:D5.已知角α的终边经过点(3,-1),则角α的最小正值是( ) A.2π3 B.11π6 C.5π6 D.3π4解析:∵sin α=-12=-12,且α的终边在第四象限,∴α=116π.答案:B6.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4 D .2或4解析:设扇形的半径为r ,弧长为l ,则由题意得⎩⎪⎨⎪⎧2r +l =6,12rl =2.解得r =1,l =4或r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案:C7.若角α和β的终边关于直线x +y =0对称,且α=-π3,则角β的取值集合是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪β=2k π+π6,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪ β=2k π-π6,k ∈Z C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪ β=k π+π6,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪β=k π-π6,k ∈Z解析:由对称性知,角β的终边与-π6的终边相同,故角β的取值集合是β⎪⎪⎪β=2k π-π6,k ∈Z .故选B.答案:B8.点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12解析:由弧长公式得,P 点逆时针转过的角度α=2π3,所以Q 点的坐标为⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,即⎝ ⎛⎭⎪⎫-12,32. 答案:A9.已知角α的终边上一点的坐标为⎝⎛⎭⎪⎫sin 2π3,cos2π3,则角α的最小正值为__________.解析:该点坐标是⎝ ⎛⎭⎪⎫32,-12,则α是第四象限角.所以角α的最小正值为11π6. 答案:11π610.若cos α=-35,且 α∈⎝⎛⎭⎪⎫π,3π2,则tan α=______.解析:∵sin 2α=1-cos 2α,cos α=-35且α∈⎝⎛⎭⎪⎫π,3π2,∴sin α=-45.∴tan α=43.答案:43答案:第一行:144°,-171.9°,-2 025°;第二行:-19π6,25π12;第三行:二,一,二,三,二;第四行:第一空:-7π6,5π6;第二空:-47π12,-23π12,π12;第三空:-16π5,-6π5;第四空:-()2π+3;第五空:-13π4,-5π4,3π4.12.已知点P (3r ,- 4r )(r ≠0)在角α的终边上,求sin α,cos α,tan α的值.解析:因为x =3r ,y =-4r ,所以|OP |=x 2+y 2=5|r |. (1)当r >0时,则|OP |=5r ,sin α=-45,cos α=35,tan α=-43;(2)当r <0时,则|OP |=-5r ,sin α=45,cos α=-35,tan α=-43.综上所述,sin α=±45,cos α=±35,tan α=-43.13.(2013²包头月考)已知角θ的终边上有一点M (3,m ),且sin θ+cos θ=-15,求m 的值.解析:r =32+m 2=m 2+9,依题意sin θ=m m 2+9,cos θ=3m 2+9,∴m m 2+9+3m 2+9=-15.即m +3m 2+9=-15,解得m =-4或m =-94,经检验知m =-94不合题意,舍去.故m =-4.14.已知π<α+β<4π3,-π<α-β<-π3,求2α-β的取值范围.解析:设α+β=m ,α-β=n ,则2α-β=12m +32n ,∵π<α+β<4π3,-π<α-β<-π3,∴π<m <4π3,-π<n <-π3.∴π2<12m <2π3,-3π2<32n <-π2. ∴-π<12m +32n <π6,即-π<2α-β<π6.。

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.若角的终边经过点P,则的值是.【答案】.【解析】由角的终边经过点P,知,由三角函数的定义可知:,故答案为:.【考点】三角函数的定义.2.点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点的坐标为________.【答案】【解析】由三角函数定义可知Q点的坐标(x,y)满足x=cos=-,y=sin=.3.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cos α=________.【答案】-=,且A点在第二象限,又因为圆O为单位圆,所以A点横坐标【解析】因为A点纵坐标yAx=-,由三角函数的定义可得cos α=-.A4.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.5.满足cos α≤-的角α的集合为________.【答案】【解析】作直线x=-交单位圆于C、D两点,连接OC、OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为.6.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.7.是第二象限角,则是第象限角.【答案】一或三【解析】是第二象限角,则有,于是,因此是第一、三象限角.【考点】象限角的概念.8.如果弧度的圆心角所对的弦长为,那么这个圆心角所对的弧长为()A.B.C.D.【答案】A【解析】连接圆心与弦的中点,则由弦心距,弦长的一半,半径构成一个直角三角形,半弦长为1,其所对的圆心角也为1故半径为,这个圆心角所对的弧长为,故选A.【考点】弧长公式.9.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm【答案】C【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).10.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为() A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知,求下列各式的值:(Ⅰ);(Ⅱ).【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先由已知式,解出的值,再把欲求式的分子分母都除以(需说明),变形为,代入的值,即可求得的值;(Ⅱ)先利用诱导公式将欲求式化为:,将这个式子变形为,分子分母都除以,变形为,代入的值,即可求得的值.试题解析:由已知得tanα=. 3分(1)原式===-. 8分(2)原式=sin2α+sinαcosα+2=sin2α+sinαcosα+2(cos2α+sin2α)====. 13分.【考点】三角函数給值求值.14.求值:= .【答案】【解析】由题意得:【考点】三角求值15.已知角x的终边上一点坐标为,则角x的最小正值为( )A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.已知角的终边经过点,且,则的值为()A.B.C.D.【答案】A【解析】因为,故为二三象限,故,且,解得.【考点】三角函数定义.17.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值18.运用物理中矢量运算及向量坐标表示与运算,我们知道:两点等分单位圆时,有相应正确关系为,三等分单位圆时,有相应正确关系为,由此推出:四等分单位圆时的相应正确关系为 .【答案】【解析】用两点等分单位圆时,关系为,两个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差为:,用三点等分单位圆时,关系为,此时三个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差与第三个角与第二个角的差相等,均为有,依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为,第二个角为,第三个角,第四个角为,即其关系为.【考点】三角函数的定义与三角恒等式.19.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.20.已知角的顶点在坐标原点,始边与轴的正半轴重合,,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则的值为()A.B.C.D.【答案】C【解析】由题意可知,,因为所以,,所以.【考点】三角函数的定义,和差角公式.21.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.22.如上页图,一条螺旋线是用以下方法画成:是边长为1的正三角形,曲线分别以为圆心,为半径画的弧,曲线称为螺旋线旋转一圈.然后又以为圆心为半径画弧…,这样画到第圈,则所得整条螺旋线的长度______.(用表示即可)【答案】n (3n+1)π【解析】设第n段弧的弧长为,由弧长公式,可得…数列是以为首项、为公差的等差数列.画到第n圈,有3n段弧,故所得整条螺旋线的长度【考点】本题主要考查倒靫收莲的概念,求和公式。

高中数学-任意角与弧度制及任意角的三角函数

高中数学-任意角与弧度制及任意角的三角函数

考点07任意角与弧度制及任意角的三角函数1.(2015·福建高考真题(文))若5sin 13α=-,且α为第四象限角,则tan α的值等于A .125B .125-C .512D .512-【答案】D 【详解】∵sin a =513-,且a 为第四象限角,∴1213cosa ==,则512sina tana cosa ==-,故选D.2.(2020·浙江高考真题)已知圆锥的侧面积(单位:2cm )为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【分析】利用题目所给圆锥侧面展开图的条件列方程组,由此求得底面半径.【详解】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)..(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式3.任意角的三角函数(x≠0).(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα=x,tanα=yx (2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.1.(2021·河北衡水中学高三月考)密位制是度量角的一种方法.把一周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“007-”,478密位写成“478-”,1周角等于6000密位,记作1周角6000=-,1直角1500=-.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为()A .1250-B .1750-C .2100-D .3500-2.(2021·全国高三专题练习(文))斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形51()2AB ABCD BC -=中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ,……,如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是()A .①②B .①④C .②③D .③④3.(2021·四川高三月考(文))已知角α的终边绕原点O 逆时针旋转2π后,得到角β的终边,角β的终边过点()8,P m -,且24cos 5mβ=,则tan α的值为()A .34±B .34-C .43-D .434.(2021·安徽蚌埠市·高三其他模拟(文))已知1tan 2α=-,则21sin 2cos αα=-()A .54-B .58-C .58D .545.(2021·河南高三其他模拟(文))若93tan 45πα⎛⎫-=- ⎪⎝⎭,则cos2α=()A .1517-B .217-C .217D .15176.(2020·海伦市第一中学高三期中(文))已知点()cos sin ,sin cos P αααα+-在第三象限,则α的取值范围是().A .()ππ2π,2π42k k k ⎛⎫++∈ ⎪⎝⎭Z B .()3π2π,2ππ4k k k ⎛⎫++∈ ⎪⎝⎭Z C .()3π5π2π,2π44k k k ⎛⎫++∈ ⎪⎝⎭Z D .()5π7π2π,2π44k k k ⎛⎫++∈ ⎪⎝⎭Z 7.(2020·广东广州市·华南师大附中(文))已知1sin cos 5αα+=,其中,2παπ⎛⎫∈ ⎪⎝⎭,则tan α=()A .247B .43-或34-C .34-D .43-8.(2020·四川省南充市白塔中学高三期中(文))已知tan 32α=,则sin 1cos αα=-()A .3B .13C .3-D .13-9.(2020·全国高三专题练习)2291sin cos αα+的最小值为()A .18B .16C .8D .610.(2020·全国高三专题练习)已知扇形面积为252cm ,当扇形的周长取得最小值时,扇形的圆心角为()A .2B .3C .4D .511.(2020·甘肃省武威第一中学高三月考(文))中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为()A .(35)π-B .51)π-C .(51)πD .52)π12.(2020·陕西榆林市·高三一模(文))已知3y ax =+与函数()2ln 5f x x =+相切,则不等式组()010x ay x a y -≥⎧⎪⎨++≥⎪⎩确定的平面区域在2224x y +=内的面积为()A .12πB .6πC .3πD .2π13.(2020·青铜峡市高级中学高三期中(文))《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为()23 1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米14.(2019·新乡市第一中学高三月考(文))《九章算木》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面釈所用的经验公式为:弧田面积=12(弦×矢+矢²).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为3π,弦长等于2米的弧田.按照《九章算木》中弧田面积的经验公式竍算所得弧田面积(单位,平方米)为A .3πB .33π-C .95322-D .11332-15.(2020·全国高考真题(理))已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A .53B .23C .13D .5916.(2008·全国高考真题(文))若sin 0α<,且tan 0α>,则α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角17.(2018·北京高考真题(文))在平面直角坐标系中, ,,,AB CDEF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A . AB B . CDC . EFD . GH18.(2014·全国高考真题(文))已知角α的终边经过点(4,3)-,则cos α=A .45B .35C .35-D .45-19.(2017·北京高考真题(文))在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则sin β=_____.20.(2015·浙江高考真题(文))在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan()24A π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若,34B a π==,求ABC ∆的面积1.B 【分析】计算出扇形所对圆心角的弧度数,可计算出扇形圆心角的密位数,结合密位制可得结果.【详解】设扇形所对的圆心角为α,α所对的密位为n ,则217226απ⨯=,解得7π12α=,由题意可得71260002n ππ=,解得76000175024n =⨯=,因此,该扇形圆心角用密位制表示为1750-.故选:B.2.A 【分析】不妨设1AB =-,则2BC =,根据弧长公式求出,,l m n ,再对①②③④逐个验证可得答案.【详解】不妨设1AB =-,则2BC =,所以 )12l BEπ==⨯-,)213ED =-=-,所以»(32m EG π==⨯,(134CG =--=,所以º())422n GI ππ==⨯-=-,所以(())341222m n l πππ⨯-+⨯=⨯==+,故①正确;(22227342m π-⨯-==,))271222l n ππ-⨯⨯=⋅=,所以2m l n =⋅,故②正确;))51222l n πππ⨯-+-+==,((22332m ππ=⨯⨯=,所以2m l n ≠+,故③不正确;11l n l n l n ++==⋅,(1135232m ππ+==⨯-,所以211m l n ≠+,故④不正确;所以①②正确,故选:A 3.D 【分析】根据三角函数的定义求得m ,继而求得tan α得选项.【详解】由24cos 5mβ==,得0m >,化简可得()()225964m m =+,解得6m =,63tan 84β-==-,1tan tan 2tan πβαα⎛⎫=+=- ⎪⎝⎭,所以4tan 3α=.故选:D .4.B 【分析】把目标转化为二次齐次式,弦化切即可得到结果.【详解】∵1tan 2α=-,∴222221sin +cos tan 15sin 2cos 2sin cos cos 2tan 18ααααααααα+===----,故选:B5.A 【分析】由诱导公式求得3tan 45πα⎛⎫-=- ⎪⎝⎭,进而得到tan 4α=,然后由三角恒等变换可得结果.【详解】因为93tan tan 2tan 4445πππαπαα⎛⎫⎛⎫⎛⎫-=+-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1tan 3tan 41tan 5πααα-⎛⎫-==-⎪+⎝⎭,解得tan 4α=,则22222222cos sin 1tan 11615cos2cos sin cos sin 1tan 11617ααααααααα---=-====-+++故选:A.【点睛】方法点睛:关于sin α,cos α的齐次式,往往化为关于tan α的式子.比如2222sin cos 2tan sin 22sin cos cos sin 1tan ααααααααα===++,22222222cos sin 1tan cos 2cos sin cos sin 1tan ααααααααα--=-==++.6.D 【分析】利用已知条件得到cos sin 0sin cos 0αααα+<⎧⎨-<⎩,利用同角三角函数的基本关系得到21sin 2sin 0αα⎧>⎪⎨⎪<⎩,求出2sin 2α<-,即可得出答案.【详解】()cos sin ,sin cos P αααα+- 在第三象限,cos sin 0sin cos 0αααα+<⎧∴⎨-<⎩,2222sin cos sin 1sin sin 0sin 0αααααα⎧⎧>>-∴⇒⎨⎨<<⎩⎩,21sin 2sin 0αα⎧>⎪∴⎨⎪<⎩,sin 2α∴<-,()5π7π2π,2π44k k k α⎛⎫∴∈++∈ ⎪⎝⎭Z .故选:D.【点睛】关键点睛:利用同角三角函数的基本关系得到2sin 2α<-解决本题的关键.7.D 【分析】由1sin cos 5αα+=,平方求得242sin cos 25αα=-,进而求得7sin cos 5αα-=,联立方程组求得sin ,cos αα的值,再结合sin tan cos ααα=,即可求解.【详解】由1sin cos 5αα+=,平方可得112sin cos 25αα+=,解得242sin cos 25αα=-,又由2249(sin cos )sin cos 2sin cos 25αααααα-=+-=,因为,2παπ⎛⎫∈⎪⎝⎭,可得sin cos 0αα->,所以7sin cos 5αα-=,联立方程组1sin cos 57sin cos 5αααα⎧+=⎪⎪⎨⎪-=⎪⎩,解得43sin ,cos 55αα==-,所以sin tan s 43co ααα==-.本题主要考查了三角函数的基本关系式的化简求值,其中解答中熟记三角函数的基本关系式,求得sin ,cos αα的值是解答的关键,着重考查运算与求解能力.8.B【分析】利用二倍角的正弦和余弦公式以及同角三角函数的基本关系式,将所求的表达式化简为正切函数的形式,代入求解即可.【详解】解:已知tan 32α=,而222sin cos 2sin cos sin 1122221cos 32sin tan 112sin 222ααααααααα====-⎛⎫-- ⎪⎝⎭.故选:B.【点睛】本题考查三角函数的化简求值,考查二倍角的正弦和余弦公式,以及同角三角函数基本关系式的应用,属于基础题.9.B【分析】直接利用三角函数关系式的变换和基本不等式的应用求出结果.【详解】()2222229191sin cos sin cos sin cos αααααα⎛⎫+=++ ⎪⎝⎭9116≥++,故选B .【点睛】本题考查的知识要点:三角函数关系式的变换,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.设扇形的半径是r ,弧长是l ,扇形的周长为y ,相应列出关系式,利用函数单调性得出结果.【详解】解:设扇形的半径是r ,弧长是l ,扇形的周长为y ,则2y l r =+,由题意得1252lr =,则50l r =,故502y r r =+()0r >,利用函数单调性的定义,可以证明当05r <≤,函数502y r r =+是减函数,当5r >时,函数502y r r =+是增函数,∴当=5r 时,y 取最小值20,此时10l =,2l r α==,即当扇形的圆心角为2时,扇形的周长取最小值.故选:A.【点睛】本题考查扇形的面积公式,圆心角的求法,属于中档题.11.A【分析】根据扇形与圆面积公式,可知面积比即为圆心角之比,再根据圆心角和的关系,求解出扇形的圆心角.【详解】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则512αβ=,又2αβπ+=,解得(3απ=-故选:A【点睛】本题考查圆与扇形的面积计算,难度较易.扇形的面积公式:21122S r lr α==,其中α是扇形圆心角的弧度数,l 是扇形的弧长.12.C【分析】设切点为()00,x y ,可得()0000002325f x ax y ax y lnx ⎧==⎪⎪⎪=+⎨⎪=+⎩'⎪⎪,解方程可得2a =,然后作出不等式组在2224x y +=内的区域,再利用扇形的面积公式即可求解.【详解】由3y ax =+与函数()2ln 5f x x =+相切,设切点为()00,x y ,则()0000002325f x a x y ax y lnx ⎧==⎪⎪⎪=+⎨⎪=+⎩'⎪⎪,解得2a =,所以不等式组为2030x y x y -≥⎧⎨+≥⎩,则不等式组确定的平面区域在2224x y +=内的面积为阴影部分,由题意可得1tan 2α=,11tan 33β⎛⎫=--= ⎪⎝⎭,所以()tan tan tan 11tan tan αβαβαβ++==-,所以4παβ+=,所以阴影部分的面积为:2112432424S R πππ=⨯⨯=⨯⨯=.故选:C【点睛】本题考查了导数的几何意义、不等式表示的平面区域、两角和的正切公式以及扇形的面积公式,综合性比较强,属于中档题.13.B【分析】由题分析出“弓”所在弧长,结合弧长公式得出这段弧所对圆心角,双手之间距离即是这段弧所对弦长.【详解】由题:“弓”所在弧长54488l ππππ=++=,其所对圆心角58524ππα==,两手之间距离 1.25 1.768d =≈.故选:B【点睛】此题考查扇形的圆心角和半径与弧长关系的基本计算,关键在于读懂题目,提取有效信息.14.D【分析】新型定义题,本题中要用弧田面积的经验公式竍算所得弧田面积,则需要利用经验中的公式进行计算,即需要求出本题中的弦长及矢长即可.【详解】在圆心角为3π,弦长等于2米的弧田中,半径为2,圆心到弦的距离为面积=12(弦×矢+矢²)=((211122222⎡⎤⨯+=-⎢⎥⎣⎦,故选D.【点睛】新型定义题型,已知一个公式计算公式,则需要把公式中所涉及的量一一计算出来,代入到公式中,即能完成本题.15.A【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos 28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又5(0,),sin 3απα∈∴==.故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.16.C【解析】sin 0α<,则α的终边在三、四象限;tan 0α>则α的终边在三、一象限,sin 0α<,tan 0α>,同时满足,则α的终边在三象限.17.C【解析】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在 AB 上时,cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在 CD上时,cos ,sin x y αα==,tan y xα=,tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在 EF 上时,cos ,sin x y αα==,tan y xα=,sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在 GH上且 GH 在第三象限,tan 0,sin 0,cos 0ααα><<,故D 选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到sin ,cos ,tan ααα所对应的三角函数线进行比较.18.D【详解】试题分析:由题意可知x=-4,y=3,r=5,所以4cos 5x r α==-.故选D.考点:三角函数的概念.19.13【详解】试题分析:因为角α与角β的终边关于y 轴对称,所以2,k k Z αβππ+=+∈,所以()1sin sin π2πsin 3k βαα=+-==.【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .20.(1)25;(2)9【解析】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan()24A π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin ,cos 1010A A ==.3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin 5C A B A B A B =+=+=,所以11sin 39225ABC S ab C ∆==⨯⨯=.考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.。

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。

高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题1.化为弧度是( )A.B.C.D.【答案】B【解析】本题角度化为弧度,变换规则是度数乘以,,故选B.【考点】弧度与角度的互化.2.是第( )象限角.A.一B.二C.三D.四【答案】C【解析】本题主要考查三角函数终边相同的角.由得出终边在第三象限,故选C.【考点】终边相同的角的表示.3.已知角的终边过点(-5,12),则=________.【答案】【解析】.【考点】任意角的三角函数的定义.4.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角5.与60°角终边相同的角的集合可以表示为( )A.{|=k·360°+,k Z}B.{|=2k+60°,k Z}C.{|=k·180°+60°,k Z}D.{|=2k+,k Z}【答案】D【解析】A,B把弧度制与角度制混在了一起,不规范,而C,应为=k·360°+60°,D正确.【考点】终边相同的角的集合.6.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.7.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.8.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算9.一个扇形的周长是6,该扇形的中心角是1弧度,该扇形的面积是_______.【答案】【解析】设该扇形的半径、弧长分别为,则依题意有,从中解得,从而.【考点】1.扇形的弧长公式;2.扇形的面积公式.10.已知角的顶点在坐标原点,始边在轴的正半轴,终边经过点,则【答案】-.【解析】由题意可得 x=-1,y=,r2=x2+y2=4,r=2,故cosa==-.【考点】任意角的三角函数的定义.11.已知圆中一段弧长正好等于该圆的外切正三角形的边长,那么这段弧所对的圆心角的弧度数为 ( )A.B.C.D.2【答案】D【解析】根据题意,由于设圆的半径为r,则可知,圆中一段弧长正好等于该圆的外切正三角形的边长,可知圆心到三角形不边长的距离为r,利用30得三角函数知可知,正三角形得边长得的长度为2r,那么利用弧长公式可知,弧度数等于弧长除以半径即为2,故选D.【考点】弧度数的问题点评:解决的关键是根据弧长公式,利用圆的半径来得到弧度数,属于基础题。

高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题1.已知角的终边经过点,则.【答案】【解析】由题意可得:,所以.【考点】任意角三角函数的定义.2.半径为1m的圆中,60°的圆心角所对的弧的长度为()m.A.B.C.60D.1【答案】B【解析】因为60°=又根据弧长计算公式L=故选B.【考点】扇形的弧长计算公式.3.下列命题正确的是 ( )A.小于的角一定是锐角B.终边相同的角一定相等C.终边落在直线上的角可以表示为,D.若,则角的正切值等于角的正切值【答案】D【解析】小于的角可以是锐角、零角及负角,故错;终边相同的角相差的整数倍,故错;终边落在直线上的角可以表示为,故错;正确.故选D.【考点】三角函数的概念的应用.4.一个半径大于2的扇形,其周长,面积,求这个扇形的半径和圆心角的弧度数.【答案】,【解析】由题设条件给出周长,面积,因为扇形周长由两半径和弧长组成,故可列出方程,再结合扇形面积公式:,可解得半径,从而求得圆心角试题解析:由得:将上式代入得(舍去)【考点】扇形的面积公式和弧长公式.5. sin480°等于().A.B.C.D.【答案】D.【解析】因为,所以选D.【考点】诱导公式,特殊角的三角函数值.6.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为().A.1B.2C.4D.8【答案】C【解析】,,则扇形的面积.【考点】扇形的弧长与面积公式.7.半径为3,中心角为120o的扇形面积为().A.B.C.D.【答案】B【解析】,.【考点】扇形面积公式.8.如图,在直角坐标系中,射线OP交单位圆O于点P,若∠XOP =θ,则点P的坐标是().A.(cosθ,sinθ)B.(-cosθ,sinθ)C.(sinθ,cosθ)D.(-sinθ,cosθ)【答案】A【解析】设,则,由任意角的三角函数定义得:,即.【考点】任意角的三角函数定义.9.如果有意义,那么的取值范围是()A.B.C.D.【答案】B【解析】∵,∴,即,∴.【考点】三角函数的取值范围.10. 2400化成弧度制是()A.B.C.D.【答案】C【解析】本题考查度与弧度的互化,利用公式弧度,可得.【考点】度与弧度的互化.11.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.12.已知点是角终边上一点,且,则的值为()A.5B.C.4D.【答案】D【解析】由两点间距离公式知点P到原点的距离=,有三角函数定义知==<0,故<0,平方解得=4(舍)或=4.由题知=,∴==<0,∴<0,解得=-4,故选D.【考点】任意角的三角函数定义13.设角的终边上有一点,则的值是( )A.B.C.或D.1【答案】A【解析】由三角函数的定义可知,所以,选A.【考点】任意角的三角函数.14.已知角是第二象限角,角的终边经过点,且,则()A.B.C.D.【答案】D【解析】由角的终边经过点与,可得,解得或,而是第二象限角,所以,故,所以,故选答案D.【考点】任意角的三角函数.15.是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】因为第一象限角的范围为;第二象限角的范围为;第三象限角的范围为;第四象限角的范围为;是第三象限角,故选C.【考点】象限角的概念.16.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.17.已知角的终边过,则= .【答案】【解析】根据题意,由于角的终边过,那么可知,该点的,则可知该点的正切值为,结合角的范围可知,的值为,故答案为。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.若为第三象限,则的值为()A.B.C.D.【答案】B【解析】因为为第三象限,所以.因此,故选择B.【考点】同角三角函数基本关系及三角函数符号.2.下列各式中,值为的是A.B.C.D.【答案】D【解析】;;;.【考点】二倍角的正弦、余弦、正切公式.3.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.4.是第( )象限角.A.一B.二C.三D.四【答案】C【解析】本题主要考查三角函数终边相同的角.由得出终边在第三象限,故选C.【考点】终边相同的角的表示.5.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.6.已知点P()在第三象限,则角在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由已知得,即,则角在第二象限。

【考点】(1)三角函数值符号的判断;(2)象限角的判断。

7. 2400化成弧度制是()A.B.C.D.【答案】C【解析】本题考查度与弧度的互化,利用公式弧度,可得.【考点】度与弧度的互化.8.的值是()A.B.C.D.【答案】C【解析】.任意角的三角函数值可利用诱导公将角化为锐角的三角函数值求得.【考点】诱导公式,特殊角的三角函数值.9.若,且,则角的终边所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,又因为,所以,所以角的终边所在象限是第四象限,故选D.【考点】1、三角函数值的符号;2、二倍角的正弦.10.设为第四象限角,其终边上的一个点是,且,求和.【答案】;.【解析】利用余弦函数的定义求得,再利用正弦函数的定义即可求得的值与的值.∵为第四象限角,∴,∴,∴,∴,∴=,∴,.【考点】任意角的三角函数的定义.11.将120o化为弧度为()A.B.C.D.【答案】B【解析】,故.【考点】弧度制与角度的相互转化.12.下列角中终边与330°相同的角是()A.30°B.-30°C.630°D.-630°【答案】B【解析】与330°终边相同的角可写为,当时,可得-30°.【考点】终边相同的角之间的关系.13.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.14.圆心角为弧度,半径为6的扇形的面积为 .【答案】【解析】扇形面积公式,即(必须为弧度制).【考点】扇形面积公式.15.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.16.已知【答案】【解析】由已知得,又因为,所以,而,故答案为.【考点】1.诱导函数;2.特殊角的三角函数值.17.一钟表的分针长5 cm,经过40分钟后,分针外端点转过的弧长是________cm【答案】【解析】分针每60分钟转一周,故每分钟转过的弧度数是,分针经40分钟,分针的端点所转过的角的弧度数为2π×=,代入弧长公式l=αr,得出分针的端点所转过的长为×5=(cm).故答案为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 任意角和弧度制及任意角的三角函数
时间:45分钟 分值:75分
一、选择题(本大题共6小题,每小题5分,共30分)
1.(2014·昆明检测)已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin π
6,cos π6,则角α的最小正值为( )
A .11π
6 B .5π
6 C .π3
D .π6
解析 由tan α=cos π6
sin π6=
3212
=3,故角α的最小正值为π
3,选C . 答案 C
2.(2014·福州质检)下列三角函数值的符号判断错误的是( ) A .sin 165°>0 B .cos 280°>0 C .tan 170°>0
D .tan 310°<0 解析 165°是第二象限角,因此sin 165°>0正确;280°是第四象限角,因此cos 280°>0正确;170°是第二象限角,因此tan 170°<0,故C 错误;310°是第四象限角,因此tan 310°<0正确.
答案 C
3.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ
2是( ) A .第一象限角 B .第二象限角 C .第三象限角
D .第四象限角
解析 由于θ是第三象限角,所以2k π+π<θ<2k π+3π
2(k ∈Z ),
k π+π2<θ2<k π+3π4(k ∈Z );又|cos θ2|=-cos θ2,所以cos θ
2≤0,从而2k π+π2≤θ2≤2k π+3π2,(k ∈Z ),综上可知2k π+π2<θ2<2k π+3π
4,(k ∈Z ),即θ
2是第二象限角.
答案 B
4.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的中心角的弧度数是( )
A .2
B .1 C.12
D .3
解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,则面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,∴当r =1时S 最大,这时l =4-2r =2,从而α=l r =21=2.
答案 A
5.若一个α角的终边上有一点P (-4,a )且sin α·cos α=3
4,则a 的值为( )
A .4 3
B .±4 3
C .-43或-4
3 3
D. 3
解析 依题意可知α角的终边在第三象限,点P (-4,a )在其终边上且sin α·cos α=34,易得tan α=3或33,则a =-43或-4
3 3.
答案 C
6.(2014·海口调研)已知点P (sin α-cos α,tan α)在第一象限,则
在[0,2π]内α的取值范围是( )
A.⎝ ⎛⎭⎪⎫π4,π2
B.⎝ ⎛

⎪⎫π,54π C.⎝ ⎛⎭
⎪⎫3π4,54π D.⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛

⎪⎫π,54π 解析 由已知得⎩
⎨⎧
sin α-cos α>0,
tan α>0.
解得α∈⎝
⎛⎭
⎪⎫π4,π2∪⎝


⎪⎫π,54π.
答案 D 二、填空题
7.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限.
解析 由题意知,tan α<0,cos α<0,所以α是第二象限角. 答案 二
8.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.
解析 根据题意得Q ⎝
⎛⎭⎪⎫cos π3,sin π3, 即Q ⎝ ⎛⎭⎪⎫
12,32.
答案 ⎝ ⎛⎭⎪⎫
12
,32
9.已知角α的终边在直线y =-3
4x 上,则2sin α+cos α=__________.
解析 由题意知tan α=-3
4,∴α在第二象限或第四象限,故sin α
=35,cos α=-45或sin α=-35,cos α=45,
∴2sin α+cos α=25或-2
5. 答案 25或-25 三、解答题
10.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=3
6x ,求sin α、tan α的值.
解 ∵P (x ,-2)(x ≠0), ∴P 到原点的距离r =x 2+2.
又cos α=36x ,∴cos α=x x 2+2=3
6x ,
∵x ≠0,∴x =±10,∴r =2 3. 当x =10时,P 点坐标为(10,-2), 由三角函数定义,有sin α=-66,tan α=-5
5; 当x =-10时,P 点坐标为(-10,-2), ∴sin α=-66,tan α=5
5.
11.已知扇形OAB 的圆心角α为120°,半径长为6, (1)求AB ︵
的弧长; (2)求弓形OAB 的面积. 解 (1)∵α=120°=2π3,r =6, ∴AB ︵
的弧长为l =2π
3×6=4π.
(2)∵S 扇形OAB =12lr =1
2×4π×6=12π,
S △ABO =12r 2·sin 2π3=12×62×3
2=93, ∴S 弓形OAB =S 扇形OAB -S △ABO =12π-9 3.
12.已知A 、B 是单位圆O 上的动点,且A 、B 分别在第一、二象限.C 是圆O 与x 轴正半轴的交点,△AOB 为正三角形.记∠AOC =α.
(1)若A 点的坐标为⎝ ⎛⎭⎪⎫
35,45,求sin 2α+sin2αcos 2α+cos2α的值;
(2)求|BC |2的取值范围.
解 (1)∵A 点坐标为⎝ ⎛⎭
⎪⎫
35,45,
∴tan α=4
3.
∴sin 2α+sin2αcos 2α+cos2α=sin 2α+2sin αcos α2cos 2α-sin 2α= sin 2αcos 2α+2×sin αcos α2-sin 2αcos 2α
=tan 2α+2tan α
2-tan 2α
=169+83
2-169
=20. (2)设A 点的坐标为(x ,y ), ∵△AOB 为正三角形,
∴B 点坐标为⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫α+π3,sin ⎝ ⎛
⎭⎪⎫α+π3,
且C (1,0).
∴|BC |2
=⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫α+π3-12+sin 2
⎝ ⎛⎭
⎪⎫α+π3
=2-2cos ⎝ ⎛

⎪⎫α+π3.
而A 、B 分别在第一、二象限,
∴α∈⎝ ⎛⎭
⎪⎫
π6,π2.
∴α+π3∈⎝ ⎛⎭⎪⎫π2,5π6.
∴cos ⎝ ⎛⎭⎪⎫α+π3∈⎝ ⎛⎭
⎪⎫
-32,0.
∴|BC |2的取值范围是(2,2+3).。

相关文档
最新文档